Some examples of σ-ideals and related Baire systems

by

R. Daniel Mauldin (Gainesville, Fl.)

In [4], the author gave some characterizations of the Baire system of functions generated by the collection of all functions continuous almost everywhere with respect to a σ-ideal R of a metric space S.

In this paper are given some examples of σ-ideals, and some theorems which are connected with them [6]. The first example is the σ-ideal of all first category sets. Kuratowski has analysed the Baire system related to this σ-ideal [2]. In case S is complete, separable and uncountable, this Baire system does not generate all the real functions on S. Theorem 1 gives necessary and sufficient conditions on a σ-ideal R so that the related Baire system is the set of all real functions on S. In Theorem 2 a characterization of scattered or dispersed subsets of complete and separable metric spaces is given as a consequence of Theorem 1.

A second example is the σ-ideal of all countable subsets of R. The final example is the σ-ideal of all sets of measure 0 where μ is a complete, regular, σ-finite measure on S, $\mu(S) \neq 0$. In Theorem 3, it is shown that the related Baire system should be the set of all μ-measurable functions is equivalent to each of the following three conditions: 1) the Baire process of taking pointwise limits should end in one step, 2) there be a scattered (dispersed) subset M of S such that $\mu(S - M) = 0$ and 3) the Baire system be the collection of all real functions on S.

The notation of this paper is the same as in [4].

Example 1. Suppose S is a separable and complete metric spaces and R is the σ-ideal of all first category subsets of S. Then $B_2(G) = G$ is the collection of all functions continuous almost everywhere with respect to E. Kuratowski has shown that a function f is in $B_2(G)$ if and only if there is a subset E of S such that $S - E$ is of the first category and f_E is continuous [2]. Moreover, Kuratowski showed that in this case $B(G) = B_2(G)$. This means that the Baire system connected with sets of the first category is generated by taking limits one time. This contrasts with
the fact that in case S contains a perfect set, the Baire system, generated by the continuous functions is not generated by countably many iterations of the process of taking limits.

Even though G is a more numerous collection than C, the continuous functions on S, in general $B(G)$ is still a proper subset of $P(S)$, the set of all real functions on S. In fact if S is uncountable, then since S is complete and separable, there is a subset A of S such that if M is a perfect subset of S, then $A \cdot M$ and $A \cdot \overline{M}$ are dense subsets of M. The characteristic function of A would not belong to $B(G)$, since it is not continuous on any perfect set and every second category set contains a perfect set. The following theorem characterizes the σ-ideals E in a complete and separable metric space such that $B(E)$ should be $P(S)$.

Theorem 1. Suppose S is a complete and separable metric space and R is a σ-ideal of S. In order that $B(G)$ should be $P(S)$ it is necessary and sufficient that there be a scattered (or dispersed) subset M of S such that M' is in R. Moreover, if $F(S) = B(G)$, then $F(S) = B(G)$.

Proof. Suppose $B(G) = F(S)$ and S is not scattered. Since S is complete, S contains a perfect set.

Let A be a subset of S such that if F is a perfect subset of S, then $F \cap A$ and $F \setminus A$ are dense subsets of S and let h be the characteristic function of A. If K is a perfect subset of S, then h_S is totally discontinuous; h belongs to $F(S) = B(G)$. It can be shown by transfinite induction that if f is in $B(G)$, then there is a countable subcollection G of G such that f belongs to the Baire system generated by G. So, there is a countable subcollection G of S such that h belongs to $B(G)$. Let N be the subset of S to which h belongs if and only if some function in G is discontinuous if x. The set N is the σ-ideal R.

Let $M = S - N$ and suppose M is not scattered. Let H be a subset of M which is dense in itself; H is perfect. If f is in G, then f is continuous at each point of H. Since H is a dense subset of S, M is continuous at each point of H. Since H is a dense subset of M, M is continuous except for a set of the first category with respect to H. If f is in G, then f is in G, the collection of all functions over H which are continuous except for a first category set with respect to H. So, h_S belongs to $B(G)$. Therefore, by Kuratowski's theorem there is a subset N of S such that A is the first category with respect to H and h_S is continuous. Let L be a perfect subset of M dense in itself; M is scattered and $N = M$ in E.

Now, suppose M is a scattered set of S. If S is M, then S is countable and it follows from Theorem 12 of $[3]$ that $F(S) = B(M)$. So, suppose M is not S and $M = M$ is the σ-ideal R.

The set M is an inner limit set and since S is separable, M is countable; $M: \eta_1, \eta_2, \eta_3, \ldots$. Let E_1, E_2, E_3, \ldots be a monotonic sequence of open sets whose intersection is M.

Let E_1 be a spherical open set containing η_1 such that (1) E_1 is a subset of E_2, and (2) no boundary point of E_1 belongs to M. For each n, and for each n, $E_n \subseteq M+1$, let E_{n+1} be a spherical open set containing η_n such that (1) E_{n+1} is a subset of E_n, (2) no boundary point of E_{n+1} belongs to M, (3) if $1 \leq p \leq n$, E_{n+1} is a subset of E_p, and (4) E_{n+1} is an ϵ-neighborhood of E_n and E_{n+1} are mutually exclusive if $i \neq j$.

For each n, let $D_n = \sum_0^n k + n \prod_{1}^{n} (n+1)$; D_1, D_2, D_3, \ldots is a sequence of open sets whose common point is M.

Suppose f belongs to $P(S)$. For each n, let

$$f(x) = \begin{cases} f(x), & x \in D_n, \\ 1, & x \in E_1 \cap \bigcup_{i=n}^{\infty} \bigcap_{n}^{\infty} \bigcap_{k}^{\infty} (n+1) \\ f(i), & x \in $n+1$, 1 \leq x \leq n.

For each n, f is continuous at each point of M. The sequence f_1, f_2, f_3, \ldots is a sequence of functions on G which converge to f. So, $F(S) = B(G)$. This completes the proof of Theorem 1.

Theorem 1 easily yields a characterization of scattered subsets of complete and separable metric spaces.

Theorem 2. Suppose M is a subset of a complete and separable metric space S. The set M is scattered if and only if every real function on S is the limit of a sequence of functions each continuous at each point of M.

Theorem 2 follows from Theorem 1 by taking the σ-ideal R to be the class of all subsets of S which do not intersect M.

Example 2. Suppose E is the class of all countable subsets of a metric space S. It follows from Theorem 3 of $[1]$ that a function f on S is in $B(E)$ if and only if there is a function g in $B(E)$ such that the set $(f \neq g)$ is countable. G. Tucker $[5]$ has shown that this is true in a more general setting. Certainly, $B_1(E)$ is a subset of $B(E)$. In general $B_1(E)$ is a proper subset of $B_1(E)$. For example, if S is K, 1, and f is on the rational numbers and 1 on the irrational numbers, then f is the limit of a sequence of step functions. So, f is in $B_1(E)$ but f is not in $B_1(E)$.

However, if h is in $B_1(E)$, then by Theorem 3 of $[4]$, there is a function g in $B_1(E)$ such that the set $(g \neq h)$ is countable. The function $h - g$ is 0 except for a countable set. It follows that $h - g$ is in $B_1(E)$. So, $h = (h - g) + g$ is in $B_1(E)$. Therefore, $B_1(E)$ is a subset of $B_1(E)$. So, if h is the σ-ideal of all countable subsets of S, then $B_1(E)$ may be a proper subset of $B_1(E)$, but if $a > 1$, then $B_1(E) = B_1(E)$.
The final theorem and example are connected with measures.

In what follows, suppose \(S \) is a complete and separable metric space and \(\mu \) is a complete, regular, \(\sigma \)-finite measure on \(S \) and \(\mu(S) > 0 \) and \(B \) is the \(\sigma \)-ideal of all clients of measure 0. If \(f \) is a function in \(B = B_0(G) \), then \(f \) is continuous. Theorem 2 of \([4] \) and the fact that \(\mu \) is a topological measure that \(f \) is a measurable function. So, \(B_0(G) \) is a collection of measurable functions. Hence, \(B(G) \), the Baire system generated by \(G \) is a collection of measurable functions. If there is a scattered subset \(S \) of \(\mathbb{R} \) such that \(\mu(S - M) = 0 \), then it follows from Theorem 1, that \(S \) is the class of all measureable functions. Theorem 3 characterizes the measures \(\mu \) such that \(B(G) \) is the collection of all measurable functions.

Theorem 3. Suppose \(\mu \) is a complete, regular, \(\sigma \)-finite measure on the complete and separable metric space \(S \) and \(\mu(S) > 0 \) and \(B \) is the \(\sigma \)-ideal of all clients of measure 0. Each two of the following statements are equivalent:

1. \(B(G) \) is the collection of all measurable functions,
2. there is a scattered subset \(S \) of \(\mathbb{R} \) such that \(S = M \) or \(\mu(S - M) = 0 \).
3. \(B(G) = \mathcal{F}(S) \), and
4. \(B(G) = B_0(G) \).

Proof. Suppose \(B(G) \) is the collection of all measureable functions and \(S \) is not scattered. Let \(S_p \) be the subset of \(S \) to which \(p \) belongs if and only if \(\mu(p) = 0 \). There are not uncountably many points of \(S \) which do not belong to \(S_p \).

Suppose \(\mu(S_p) > 0 \). Since \(\mu \) is regular, there is a closed subset of \(S_p \) having positive measure. Let \(S_q \) be a perfect subset of \(S_p \) having positive measure. If there is no point \(p \) of \(S_q \) and open set \(D \) containing \(p \) such that \(\mu(S_q - D) = 0 \), then let \(S_r = S_q \). If there is such a point, let \(T \) be the set of all such points \(p \) and for each point \(p \) in \(T \), let \(B_p \) be an open set containing \(p \) such that \(\mu(B_p) < \epsilon \). Let \(E \) be a countable subcollection of the set of all \(B_p \)'s covering \(T \). The set \(E^c \), the sum of the members of \(E \), is an open set and \(\mu(E^c) = 0 \). Let \(S_t = S_r - E^c \). \(S_t \) is a closed subset of \(S_q \). Suppose there is a point \(x \) of \(S_t \) and an open set \(B_s \) containing \(x \) such that \(\mu(B_s) = 0 \) and \(B_s \) is an open set containing \(x \) and \(\mu(B_s + E^c) = \mu(B_s) + \mu(E^c) = 0 \). This is a contradiction. So, if \(E \) is an open set intersecting \(S_t \), then \(\mu(R - S_t) > 0 \). It follows that \(S_t \) is a perfect subset.

Let \(K \) be a countable dense subset of \(S_t \). Suppose \(\mu(K) = 0 \). Let \(A \) be an inner limiting set containing \(K \) such that \(\mu(A) = 0 \). \(S_t - A \) is an inner limiting set with respect to \(S_t \). \(S_t - A \) is of the first category with respect to \(S_t \).

Let \(A \) be a subset of \(A \) such that if \(H \) is a perfect subset of \(A \), then \(H \cdot (A - A) \) is a dense subset of \(H \) and let \(h \) be the characteristic function of \(A \). If \(L \) is a perfect subset of \(A \), then \(h_L \) is not continuous. Since the measure \(\mu \) is complete, the function \(h \) is a measurable function; \(h \) belongs to \(B(G) \). It follows from Theorem 3 of \([4] \) that there is a function \(g \) in \(B(G) \) and an inner limiting set \(L \) such that \(\mu(S - L) = 0 \) and \(g_L = h_L \).

Let \(S = L - \sum_{p=1} F_p \), where each \(F_p \) is closed. For each \(p \), if \(F_p \) intersects \(S_1 \), then \(\mu(F_p - S_1) = 0 \) and so \(F_p - S_1 \) is a closed nowhere dense subset of \(S_1 \). So, \((S - L) - S_1 \) is of the first category in \(S_1 \). Let \(K \) be a perfect subset of \(S_1 \) and \(K \) is of the first category in \(S_1 \). \(K \) is a perfect subset of \(A \) and \(\mu(K) = 0 \). The function \(g_K \) belongs to \(B(C(K)) \) and it follows from Theorem 1 that \(\mu(K) = 0 \). So, \(\mu(S_1) = 0 \).

Let \(M = \mathbb{R} - S_1 \). \(M \) is countable and every function on \(S \) is a measurable function. Also, a function belongs to \(G \) if and only if \(f \) is continuous at each point of \(M \). It follows from Theorem 1 that \(M \) is scattered. So, statement 1 implies statement 2.

Certainly, statement 2 implies statement 1 and it follows from Theorem 2 that statement 2 and 3 are equivalent and that statement 3 implies statement 4.

Suppose \(B(G) = B_0(G) \) and \(S \) is not scattered. Let \(S_p \) be the set of all points \(p \) such that \(\mu(p) = 0 \). Suppose \(\mu(S_p) > 0 \). Let \(S_q \) be a perfect subset of \(S_p \) such that if \(D \) is an open set intersecting \(S_q \), then \(\mu(D - S_p) > 0 \).

Let \(A \) be an inner limiting set such that \(S_p - S_q \cdot A \) is of the first category in \(S_p \) and \(\mu(A) = 0 \). Let \(h \) be the characteristic function of \(A \). \(h \) is in \(B(G) \). So, \(h \) is in \(B(G) \) and \(h \) is in \(B_0(G) \).

By Theorem 3 of \([4] \), there is an inner limiting set \(A_p \) and a function \(g_p \) in \(B_0(G) \) such that \(\mu(S - A_p) = 0 \) and \(g_p = h \).

The set \(A \) is a subset of \(S_p \), since \(S_p \) has positive measure; \(A \cdot S_q \) is an inner limiting set with respect to \(S_p \) and \(\mu(S_q - A_p - S_q) = 0 \). \(S_p - S_q \cdot A \) is not continuous at \(S_p \). Let \(F_p \) be closed for each \(p \), \(F_p \) is closed and \(\mu(F_p) = 0 \). Since \(S_p \) is not continuous at \(S_p \), \(S_p \) is dense in \(S_p \). So, \(S_p - A_p \cdot S_q \) is of the first category with respect to \(S_p \).

The function \(g_{S_p} \) is in \(B_0(G(S_p)) \). So, the set \((g_{S_p})/2 \) is the sum of countably many closed sets. Also, since \(g_p \) and \(h \) agree almost everywhere, \(\mu((g_{S_p} + h)/2) = 0 \). So, \((g_{S_p} + h)/2 \) is of the first category in \(S_p \).

Since each set on the right hand side is of the first category in \(S_p \), \(S_p \cdot A \) is of the first category in \(S_p \). This is a contradiction. So, \(\mu(S_p) = 0 \).
A corrected correction

by

J. R. Isbell (Buffalo, N. Y.)

The result of this note is that there exist an algebra A of real-valued functions on a set, closed under uniform convergence and all continuous finitary operations, and a homomorphism of A onto a non-archimedean ordered field which has a countable cofinal subset.

I denoted this in [2] (omitting proof). In [1] we correctly deduced this from a claimed example of a completely regular space X, an increasing sequence of zero sets Z_t of βX disjoint from X, and a point x each of whose neighborhoods meets every difference $Z_t - Z_{t+1}$. It remains to repair that example, and to thank Eleanor Aron for pointing out the error. (The algebra A consists of the continuous functions on X having continuous real-valued extensions over the complement of some Z_t; the maximal ideal at x provides the ordered field, and the verification [1] is straightforward.)

Let X be the product of n copies of the positive integers. Let p_t be the tth coordinate function, $q_t = p_1 + \ldots + p_t$, r_t the reciprocal of q_t, s_t the continuous extension of r_t over βX. Let Z_t be the zero set of s_t. Evidently the Z_t are increasing and disjoint from X. Consider all closed subsets of X defined by conditions of the form $p_n > \varphi(p_1, \ldots, p_{n-1})$. No finite family of such conditions is inconsistent; so the closure in βX of all these sets has a common point x. For any neighborhood U of x, for any index n, there are natural numbers a_1, \ldots, a_n such that on the points of $U \cap X$ where $p_1 = a_1, \ldots, p_{n-1} = a_{n-1}$, p_n is unbounded; for a bound $\varphi(a_1, \ldots, a_n)$ will yield a contradiction. So $(U \cap X)^-$ meets $Z_n - Z_{n+1}$, and every neighborhood of x contains one of these.

References