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FAITHFUL EXTENSIONS OF ANALYTIC SETS TC BOREL SETS
D. Cenzer and R. D. Mauldin

ABSTRACT. A faithful extension property is a property P such
that for any analytic subset A of the product X XY of two
Polish spaces, X and Y, such that each Y-seciion of A possesses
property P, there is a Borel set B including A so that each
V-section of B possesses property P. Lyapunov and others
showed that various properties are faithful extension. In this
paper a uniform method is given for showing that these and
_ many other properties are faithful extension.

Introduction. In this paper we consider the following general problem: Given
two Polish spaces X and Y and an analytic subset A of the product X X Y such that
each section Ay (defined to be { x: (x,y) € A}) satisfies a cerfain property P - - Is there
a Borel set B D A such that each section By satisfies P? Such a B will be calied a
faithful extension of A. P is called a faithful extension (or FE) property of subsets of
X if for any Y and A as above, there exists a faithful extension B.

Note that for the continuum or the Baire space NN 2 set is analytic iff it is
definable in 2; form and Borel iff it is Ai, that is, definable in both E§ and ﬁi form.
(See Rogers {51, page 373, for an explanation of definability.) This characierization
follows from some general results about Polish spaces which we develop in Section
one, (A space is said to be Polish if it is separable and possesses a complete metric.)

The general problem outlined above is motivated by the following classical
example. Suppose that every section of a given analytic set A i3 & singleton; then A
itself is Borel. (For NN, we have the l’l% definition: (x,y)€ A Iff (for éll Z)
[(z,y) € A= x=12].) The same method yields that any analytic sef each section of
" which contains exactly n elements must be Borel. This becomes false if the condiiion

is weakened to “contains << n elements”’; however, this is still an FE property.
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The intuition drawn from this example is that if P is a property of “‘small” sets,
then P should be FE, as there will be plenty of room in which to make extensions.

In the second section, we show that Hi monotone properties are FE. This implies
that the following properties are FE: finite, well-ordered, scattered, nowhere dense,
and totally bounded. In the third section we show that compactness and “strongly
measure zero™ are FE properties.

To obtain the results mentioned above, we shall use the powerful notion of a
sieve to analyze the analytic sets in question. The necessary facts concerning sieves to
be used here are discussed in the first section.

Finally, at the end of the paper we state a number of problems.

1. Sieves. Let N= {1,2,..}. Let S be the set of all finite sequences of positive
integers; '

$=U {NK k=0 to s}
We consider S provided with the so-called Brouwer-Kleene ordering:
s = (my ,...,mk) <(ng s""“E) =tiffs2>tor
(there exist i) (my = ny & **~ & my = n; & My <ngey)
Note that S is isomorphic to the set of dyadic rationals g, 0 <<q <1, with the usual
ordering reversed.
A sieve is a map L from S into F(X), the closed subsets of X. For each x € X, let
Ip ) ={q: x€ L(g)}. The set sifted by a sieve L is
R(L) = {x: Ij (x) is not well-ordered}.
Thus, the set C(L) = X - R(L) may be expressed as the union of a chain of sets:
C(L) =V {CXL), < wy},
where, for each «,
CHL) = {x: 1L () <o,
{(We use the notation |-| to denote order type.)
The principal facts here are that the sets C*(L) are Borel and that if B is a Borel
subset of X and B € C(L), then there is some o < wj such that B& CH*L) - - see

Kuratowski and Mostowski [8, page 389] for details. Of course, R{L} is an analytic set
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and every analytic subset .of X is sifted by some sieve.
Notice that if L sifts R(L), then R(L) is also sifted by G, where
Glq) = N {L{1): g 2t}.
The sieve G has the property that if s 2 t,thenG(s) C G(t). Such sieves will be said to
be extension decreasing.

LEMMA 1. Supposé {qy: n €N} is a sequence from S such that for each n,
4y > qn—ﬂ.' Thern there exists u € NN such that for some infinite increasing sequence
of natural numbers py:

o uln = épnin,
where ujn = (u(1),...,u(n)).

The real u is just the “limit’” of the sequence q, - - see {81, pages 377-378, for
details. |

LEMMA 2. Let L be an extension decreasing sieve and let X & X. Then x € R(L)
iff there is some u € NN such that forevery p € N,ulp €I (x).

_ PROOF. Ciearly, if there is sore such u, then IL(x) is not well-ordered smce it
contains the decreasing sequence ull,ui2,ul3,... .

Conversely, if x € C(L), there exists a sequence qy of elements of Iy (x} which is
decreasing. By Lemma 1, there exists some u & NN with each uln = qpnin. Thus, for
eachn, X € L(qp n} € L(ujn) and uln € IL(X)

NOTE. This lemma provides a Ell definition for the arbitrary analytic set A.

The main tool to be used here is a method of “stitching” sieves together to give a
new sieve which has some useful properties. We now describe the stitching process.

Let ¢ be a one-to-one map of N X N onto N such that ¢(i,n+l1) > o(i,n) for aI} i
and n (for example, ¢(i,n) = 21’1(2n~1 )). The map ¢ induces maps o052 S 5 by
setting for each q = (q(1),...,q()) in 5:

oi(a) = (@) =(qj( 1) 4P = (@@(E,1)),...,a(@ P
provided ¢(i,1) <@ (in which case p is the largest integer such that ¢(i,p) <%). For
ue NN, fet
u; =4 {(ulp);: p € N}.

If {Lyn& N} is a sequence of sieves, then the stitched sieve generated by this
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sequence is the sieve L where:
L(g) =N {Ly((q)y): n €N}
for each g in S.
THEOREM 3. Let { Lyn € N} be a sequence of extension decreasing sieves

and let L be the generated stitched sieve. Then L is extension decreasing and
CLy=V {C(Ln): n€ N}.

- Moreover, for each o< wy, CHL) €U {CHL,): n €N},
Before proceeding to the proof, let us set I(x} = Ij (x) and In(x} = ILn(x).
PROOF. It can be checked that L is extension decreasing. To see that C(L) =
U {C(Ly): n € N}, notice that
(*) (there existsu € NN)(for all p) (ulp € X)) iff
{there exists u € NN) (for all n} (for all p) (u,lp € L.

In view of the properties of our coding function, (*) holds if and only if
(for all n) (there exists u™t € NN) (for all p) (uPp € I,(x)).

To see that CX(L) G U {C*HL,): n €N}, it is enough to show that if x € C(L),
then
H{x)| = min{ {In(x)l: x & C{Ln)} = 0,

Suppose now that x € C(L). Let I = {n: x €C(L,)}; notice that J # ¢ and let p
be as above. For n €], |L(x)| = p - - let {"%: 0 <p} be a sub-ordering of L;{(x) of
length p. For each né¢J. let u® be an element of NN such that for every p,
ullp €1, (x).

For each o < p, let q¥ be the longest sequence such that

(t) @9, 1" forn €7J
and

(tt) (@9, Culforn€l.

Notice that the length of g% is min{¢(n,length(:"9)+1: n €J} - 1 and that the terms
of q% are completely determined by (1) and (}1). Also, notice that for each o <p,
there is some n € J such that (q%),, = "7,

Finally, we have, for each o0 < p, q% € I(x) and, for any ¢} <g9 <p, qa1 <q02.

This last relation can be seen from the following consideration: The assumption that
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qqz ~~<\qo1 for some gy < 6, would contradict the fact that rmJrl <rn02, where n is
chosen with (@’ 1) =1 1. Thus, [I()] > p.

Before turning to the discussion of faithful extension properties, we present an
unrelated application of this “‘stitching” theorem.

Recall that every uncountable Borel set includes a perfect subset, whereas it is
possible tﬁat some uncountable co-analytic set may not. We can now give a simple
proof for a known result.

PROPOSITION 4. If, for each n, the co-analytic set C, includes no perfect set,
then UC,, includes no perfect set. _

PROOF. Following the stitching theorem, let C = UC* and each C,, = UC%, with
each C% C UC Now each CJ is countable - - since Borel it would otherwise include a
perfect set - - it follows that each C% is countable. Thus no C% can include a perfect
set. But if P is a perfect sbltbset of C (and therefore Borel), then by the boundedness
principle, P C C* for some a. Thus C includes no perfect set.

2. H} monotone properﬁes are FE. In this section we prove that any ﬂ}
monotone property is a faithful extension property.

DEEINITIONS. Let X be 2 set and P a'property of subsets of X. The property P
is said to be monotone provided that K €M and P(M) implies P(K). If X is also a
Polish space then P is said to be Hi monotone provided there is a co-analytic (II{)
subset V of %N cuch that a subset M of X has property P if and only if MmN CV.
Equivalently, there is an analytic (Ei) set T= XN -V such that P(M) iff MNAT= Q.
The set T will be called the fest set for the property P. The following condition is very
useful: If P is Il‘.l1 monotone, then M has property P if and only if every countable
subset of M has property P. Of course the converse of the preceding statement is not
true. (See Cenzer [1] for further discussion of H% monotone properties.)

Before proceeding to the main theorem of this section, let us give some examples
of Il% monotone properties in a Polish space X.

EXAMPLE 1. Scattered: A subset M is said to be scattered if there is no
sequence { X,: n € N} of points of M which forms a dense-in-itself set. Let T be the
subset of XN consisting of all sequences which are dense—imthemselves. Then M is

scattered iff MNNT= (@. It can be checked that T is Ei (actually Borel) in xN. Ii was
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announced by Lyapunov [9] that the property of scattered is faithful extension for
subsets of the real line. Koz]oya (4,51 gave a proof under the assumption that the
Cantor-Bendixson derived set orders of the sections are uniformly bounded below ¢ I»
which in fact is always true [11].

EXAMPLE 2. Nowhere dense: Let {B,:n&N} be a countable base for the
topology of X. A subset M of X fails to be nowhere dense if and only if there is a
sequénce { Xpin€ N1} of points of M whose closure includes some B,,. Thus, let T be
thé subset of XN consisting of all sequences whose closure includes some B,,- Again, it
can be checked that T is Borel.

EXAMPLE 3, Totally bounded: Let {Bn: n € N} be a sequence of balls which
forms a base for the topelogy of X. Now M is not totally bounded if and énly if there
is a countable subset K of M such that C2(K) is not compact - - equivalently, there is a
sequernce {xn: n € N} of points of M and a positive integer p such that no finite
collection {Bn 1,...,Bnk} of balls of diameter < 1/p from the base covers C#(K). Let
Tp be the set of all sequences from X with this property and let T = UTp. Then M is
totally bounded if and only if TN MN= . It can be checked that T is a Borel set, We
note that the property of total boundedness is faithful extension also follows from the
fact that compactness is faithful extension. Of course, compactness is not a II%

monotone property (see Section 3).

EXAMPLE 4. Let X be the Euclidean plane and P the property of having no
vertical line segment included in the closure. It can be checked that this is a H%
monotone property. |

EXAMPLE 5. Cardinality: The property of containing < n points is a #II%
monotone property. As a corollary, if A is analytic and every section of A consists of
exactly n points, then A is a Borel set. Finiteness is also Il i‘and monotone, However,
countability is not 11 { , although it is monotone and tums out to be FE. Novikov [12]
sﬂowed that the property of containing < n points is faithful extension. It was shown

by Lyapunov [9] that finiteness is a faithful extension property. Luzin [10] showed
that countability is FE. _

EXAMPLE 6. Let X have a Borel linear order <. This means that {(x}.x;):
x1 <Xy} is 2 Borel subset of X2. The property of being well ordered with respect to -
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this order is a ﬂ%

monotone property. This follows from the fact that a subset A of X
is well ordered with respect to < if and only if there does not exist a sequence
{ag} 52 of elements of A such that ap,; <ap, for eachn.

For the usual order on the real line, Lyapunov [9] announced that being well
ordered is faithful extension. Kozlova [4,5] gave a proof under the assumption that
the order types of the sections are uniformly bounded below w}, which is always true

[10}.

THEOREM 5. Every Hi monotone property is a faithful’extension property.

PROOF. Let A be an analytic subset of X X Y each y-section of which satisfies
the H% monotone property Pilet C=XXY-A Let TC xNpe a E% test set for the
property P. Let K be an extension decreasing sieve which sifts A and, for each n, let
L, be given by:

({x; 1 €N} ) € (@) ff (xy) € KC@)-

Then Ln sifts {({x;: IENLY): (x4 ¥) € A}= X XY -D,. Also, L is extension
decreasing and CH(L,) = {({x;: i€ NLy): (xp,¥) €CHK) ).

Let L be the stitched sieve generated by the L’s. Then.

C(L)=V{D,: n€N}.

Notice that T X Y is analytic and T X Y € C(L). Thus, there is an ordinal < wy
such that

(") TXYCCL) C {CHLy:nEN}

Consider B= X X Y - C*K). Certainly B is a Borel set containing A. Suppose
that, for some v, By does not have property P. Then there is some t = {tpie N} € T
such that, for all §, (t;,y) € B; thus (t;,y) € CHK).

On the other hand, t € T implies by (*) that, for some n, (t,y) € C%L,,), which
means that (t,,y) € C%XK). This contradiction establishes that P is a faithful extension
property.

3. Other results and open questions. Some properties which are not HII

monotone are nonetheless faithful extension properties. Luzin [ 10, page 247} showed _
that countability, which is monotone but not 1l %, is FE (another argument for this is
given in [111).
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' ‘M .:st_ of the FE properties previously considered imply countablhty, the
_ns are tota}ly bounded and nowhere dense. This seems to confirm our ongmal
4 that FE properties are propertaes of small sets. On the other hand, the
p op Tnes of compactness and o-compactness, of having measure 0, and of bemg ﬁrst _ '
category all are prOpert1es of small sets, but do not imply countability and are not Hi .
monotone. . ‘

Since all countable sets are first category, of measure 0, and a»comlh)alct, thesé

cannot be ﬂ; monotone properties, although the first two are monotone,

Compactness is neither H% nor monotone, although it satisfies one direction of
our condition: If M is not compact, then there is a countable KCM which is not
compact. (Given a cover {G,: n €N} of M which has no finite subcover, just let K
contain one point from each non-empty G 1 -(Gy U Gy U= UG,))

Any non-monotone property P, such as compactness, can be extended to a
monotone property Q given by Q(K) iff (there exists M 2 K)P(M). Now a set M is.
compact iff it is both closed and totally bounded. Thus every subset K of M is also
totally bounded. On the other hand, the closure of a totally bounded set is still totally
bounded and is therefore compact. Thus a set K is totally bounded iff it is included in
some compact set. In other words, total boundedness is the smallest monotone
extension of compactness.

We can use these facts to show that compactness is FE. Let ACX XY be
analytic with each section Ay compact and therefore tofally bounded. Let
{d,,: n €N} be a countable dense subset of X and let

(d,,y) € D iff (there exists x) (there exists €) [(x,y) €A & Ex—dnl <e
& (for all m <n)ix-d,,l = €l.

D is clearly analytic and we claim the following:

(1) Foreachy €Y, Ay C 5;;

(2) Foreachy €Y, Dy is totally bounded.

Statement (1) is obvious, since for any x EEAy and any €>>0, Dy contains a
point within ¢ of x.

Here is a proof of statement (2): Fixing y and ¢, let {Uy,...,U,} be a cover c)fAy
by €/3-balls. For each j <n, let ij be the least i such that d; € Ui’ and let N be the
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maximum of {il,...,in}. Expand each U to an e-ball V;. Then any point not in
ViU see U V), is at Jeast 2¢/3 distant from any point in Ay; on the other hand, any
point in Ay is within 2e/3 of one of {d,...,dy}. It follows that Dy C{d{,.dNt U

VI U= UV, sothat D, hasa finite cover of e-balls. Thus D is totally bounded.

y
Applying Proposition 6 for totally bounded, we can now extend D to a Borel set

EC {d;:n€ N3}, each section Ey of which is totally bounded. Let
B = U{Ey: y €Y} ={(xy): (for all k) (there exists n) [(d;,,y) €E
& ldyx{<1/k1}.

Then Bis a Borei set from its description. Each section of B is the closure of a totally
bounded set and is therefore compact. Finally, for each y, Ay - 13;.2 g = By, O
that A C B. This completes the proof of the following.

PROPOSITION 7. Compactness is an FE property.

Kozlova [6] showed that compactness is a faithful extension property of subsets

of the real line.

The property of having measure 0 can also be approkirnated bya H% monotone

property, although not in the same fashion. It turns out Jordan content zero is a
faithful extension property. Recall that M has content zero provided that for each
positive €, there is a finite cover of M by open intervals with the sum of the lengths
being less than e, It is nof difficult to see that this is a H% monoione property. Any
compact set of measure zeto is of content zero. In fact, a set K has content zero iff it

is included in some compact set of measure zero.

Of course, this depends on the definition of measure in terms of the lengths of
_ intervals as in the real line.
PROPOSITION 8. If every section of an analytic A C R X R has content zero,

then A can be extended to a Borel set B each section of which has content zero.

COROLLARY 9. If every section of an analytic'A C R X R is compact and has
measure 0, then A can be extended to a Borel set B each section of which has measure
0. (These results hold when R is either the irrationals or the complete real line.)

Here is one final observation. The class of relations P over subsets of a given

1

i monotone

topological space X is of course a Boolean algebra. The class of 1l
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properties is of course a sub-ring of this algebra. More generally, the class of all
monotone FE properties is closed under conjunction; this can be seen by the
following. Given FE properties P and Q and an analytic set A each section of which
satisfies both P and Q, there will be Borel extensions B and B* of A such that each
section of B satisfies P and each section of B* satisfies Q. Since P and Q are monotone,
it follows that each section of B B* satisfies both P and Q. Thus B B¥* is a faithful
extension for the property P & Q.

Thus any two of the monotone properties shown above to be FE can be
combined to yield a new FE property, such as being both countable and nowhere
dense.

We 1ea§e the reader with the following open guestions.

PROBLEM 1. Is the class of monotone FE properties closed under disjunction?
Is the class of FE properties closed under conjunction and/or disjunction?

PROBLEM 2. Which of the following properties are FE - - first category,
g-compact {(in a Polish space which is not ¢-compact), measure zero (with respect to
some regular, o-finite, complete Borel measure)?

PROBLEM 3. if P is FE and Q is defined by: QM) iff M is the countable union
of sets with property P, does it follow that Q is FE? '

Since the paper was first written during the spring of 1976 several developments
have taken place. If was pointed out o us by John Bufgess [16] that our resuits could
be viewed as “faithful separation” or “fully faithful extension™ theorems rather than
“faithful extension” theorems, A property P is a faithful separation property provided
that if E and A are digjoint analytic subsets of the product X X Y of two Polish spaces ¢
X and Y and for each x, E, has property P, then there isa Borel set B which separates
E from A;ECB,BN A = ¢ and for each x, B, has property P. Regarding Problem 2, .
Saint-Raymond [6] proved that o-compactness is a faithful separation property and
more. The present authors have shown that first category and measure zero are
‘faithfui separation properties [7]. Also, G. Hillard has independently demonstrated
that first category is a faithful separation property. This is discussed by Dellacherie
[18]. Finally, some of the ideas presented have been employed by Louveau {17].
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