σ-ideals and related Baire systems

by

R. Daniel Mauldin (Gainesville, Fla.)

Suppose \(S \) is a metric space with metric \(d \), \(E \) is a proper \(\sigma \)-ideal of subsets of \(S \) and \(\mathcal{G} \) is the collection of all real functions defined on \(S \) which are continuous almost everywhere with respect to \(E \). Let \(\mathcal{B}_\alpha(\mathcal{G}) \) be \(\mathcal{G} \) and for each ordinal number \(\alpha < \omega_1 \), let \(\mathcal{B}_\alpha(\mathcal{G}) \) be the collection of all pointwise limits or sequences taken from the collection \(\sum_{\gamma \leq \alpha} \mathcal{B}_\gamma(\mathcal{G}) \).

In this paper, the collections \(\mathcal{B}_\alpha(\mathcal{G}) \), the analytic representable functions or Baire functions of class \(\alpha \) generated by \(\mathcal{G} \), are characterized in terms of an associated collection of Baire type sets (Theorem 1). These Baire type sets are characterized by a relation to the classical Baire sets (Theorems 2a, b, and c). In Theorem 3, the collections \(\mathcal{B}_\alpha(\mathcal{G}) \), \(\alpha > 0 \) are characterized by a relation to Baire’s class \(\alpha \). Finally, in the case the space \(S \) is separable, a theorem of T. Traczyk is used to give another characterization of the collections \(\mathcal{B}_\alpha(\mathcal{G}) \), \(\alpha > 0 \), (Theorem 4).

Notation. The collection of all sets of the form \((a, b) \), where \((a, b) \) is a number segment and \(f \) is in \(\mathcal{G} \), is denoted by \(\mathcal{D} \). If \(L \) is a collection of subsets of \(S \), then \(W_\alpha(L) \) denotes \(L \) and for each ordinal number \(\alpha \), \(0 < \alpha < \omega_1 \), \(W_\alpha(L) \) denotes the collection to which \(X \) belongs if and only if \(X = \sum_{\gamma = 1}^{\omega_1} X_\gamma \), where, for each \(\gamma \), there is some \(\varepsilon_\gamma < \alpha \) such that \(X_\gamma \) is in \(W_{\varepsilon_\gamma}(L) \) and \(X_\gamma \) is the complement of \(X_\gamma \).

THEOREM 1. Suppose \(\alpha \) is an ordinal number, \(0 < \alpha < \omega_1 \). A real function \(f \) on \(S \) is in \(\mathcal{B}_\alpha(\mathcal{G}) \) if and only if for each number segment \((a, b) \), the set \((a < f < b) \) is in \(W_\alpha(L) \).

Indication. It is true that \(\mathcal{G} \) is a linear lattice of real functions on \(S \) containing the constant real functions on \(S \). Also, if \(f \) is in \(\mathcal{G} \) and \(U \) is a continuous real function on the range of \(f \), then \(U(f) \) is in \(\mathcal{G} \). Also, it is true that \(\mathcal{G} \) is also containing \(\mathcal{G} \) or \(L(\mathcal{G}) \), where \(U(\mathcal{G}) \) is the collection of all limits of nonincreasing (nondecreasing) sequences from \(\mathcal{G} \). Using these facts, Theorem 1 for the case \(\alpha = 0 \) follows from Theorem 11 of [6] and the cases \(0 < \alpha < \omega_1 \) follow from Theorem 9 of [5].
As was pointed out in [5], the collection \(G \) is a complete ordinary function system as defined by F. Hausdorff [1, Chapter 9] and we have the following relationships between the method presented here and the method of F. Hausdorff. The functions in \(B_d(G) \) are the functions \(f^1 \), if \(0 \leq \xi < \omega \) and are the function \(f^{\xi+1} \), if \(\omega \leq \xi < \Omega \). Also, the sets in \(W_d(D) \) are the sets \(M^n \), if \(0 \leq \xi < \omega \) and the sets \(M^{\xi+1} \), if \(\omega \leq \xi < \Omega \).

In case \(G \) is \(C \), the continuous functions on \(S \), then \(B_d(C) \) is \(\Phi_n \), the \(a \) Bien functions or analytic representable functions of class \(a \) as described by K. Kuratowski in [2, p. 392] and the collection \(D \) is \(G_n \), the collection of all open sets. For each \(n \geq 0 \), let \(B_n \) be \(B_d(C) \) and let \(W_n = W_d(G_n) \).

It can be shown by transfinite induction that we have the following relationship between the collections \(W_n \), the analytic representable sets of class \(a \) and the Borel sets of class \(a \) as defined in [2, p. 312]:

\[
W_n = \begin{cases}
G_{a,}\quad a \text{ is even and finite}, \\
F_{a,}\quad a \text{ is odd and finite}, \\
F_{a+1,}\quad a \text{ is even and infinite}, \\
G_{a+1},\quad a \text{ is odd and infinite}.
\end{cases}
\]

Theorem 2 characterizes the collections \(W_d(D) \) in the general case, in terms of the collections \(W_n \).

Theorem 2a. A subset \(X \) of \(S \) is in the collection \(W_d(D) \) if and only if \(X \) is a subset of an \(F_n \) set in the \(\sigma \)-ideal \(R \), \(X \) is in \(W_n \), or \(X \) is the sum of a set in \(W_n \) and a subset of an \(F_n \) set in \(R \).

Proof. Suppose \(X \) is in \(D = W_d(D) \). Let \(f \) be a function in \(G = B_d(G) \) and \((a, b) \) a segment such that \((a < f < b) \) is \(X \). For each \(n \), let \(H_n \) be the set of all points \(p \) such that the discontinuity of \(f \) at \(p \) is \(>1/n; H_n \) is a closed set in the \(\sigma \)-ideal \(R \).

Suppose \(f \) is continuous at some point \(a < f < b \). For each point \(p \) of continuity of \(f \) in \((a < f < b) \), let \(S_p \) be an open set containing \(p \) such that \(S_p \) is a subset of \((a < f < b) \). Let \(K \) be the sum of all the \(S_p \)’s. The set \(K \) is an open set and is a subset of \((a < f < b) \). The set \(X = (a < f < b) \) is \(K \) or \(X = (a < f < b) = K + (a < f < b) = \sum_{n=1}^{\infty} H_n \). So, if \(f \) is continuous at some point \(a < f < b \), then \(X \) is an open set or \(X \) is the sum of an open set and a subset of an \(F_n \) set in the \(\sigma \)-ideal \(R \).

If \(f \) is not continuous at any point \(a < f < b \), then \(X \) is a subset of an \(F_n \) set in \(R \).

Now, suppose that \(X \) is an open set. Let \(f \) be the function defined as follows:

\[
f(p) = \begin{cases}
1, & \text{if } d(p, S-X) \geq 1, \\
d(p, S-X), & \text{if } d(p, S-X) < 1,
\end{cases}
\]

where \(d(p, S-X) \) means the distance from the point \(p \) to the set \(S-X \). The function \(f \) is continuous on \(S \) and the set \(X \) is \((0 < f < 2) \) and so \(X \) is in \(W_d(D) = D \).

Suppose \(X = K + H \), where \(K \) is an open set and \(H \) is a subset of \(\sum_{n=1}^{\infty} H_n \), where each \(H_n \) is a closed set in the \(\sigma \)-ideal \(R \). For each \(p \), let \(M_p = (S-K)
M_p \) is closed in \(R \) and \(X = K + (X-K) \cdot H \).

Let \(f \) be the function on \(S \), defined as follows:

\[
f(p) = \begin{cases}
1, & \text{if } p \text{ is in } K \text{ and } d(p, S-K) \geq 1, \\
d(p, S-K), & \text{if } p \text{ is in } K \text{ and } d(p, S-K) < 1, \\
1/n, & \text{if } p \text{ is in } (X-K) \cdot H \text{ and } M_p \text{ is the first term of the sequence } M_1, M_2, ..., \text{ which contains } p, \\
-1/n, & \text{if } p \text{ is in } \sum_{n=1}^{\infty} M_p - (X-K) \cdot H \text{ and } M_p \text{ is the first term of the sequence } M_1, M_2, ..., \text{ which contains } p, \\
0, & \text{if } p \text{ is in } S-(K+\sum_{n=1}^{\infty} M_n).
\end{cases}
\]

The function \(f \) is continuous at each point of \(\sum_{n=1}^{\infty} M_p \), \(f \) is in \(B_d(G) = G \) and \(\sigma \)-ideal \(R \) is \(X \), the set \(X \) is in \(D = W_d(D) \). There is a similar argument to show that \(X \) is a subset of an \(F_n \) set in \(R \), then \(X \) is in \(W_d(D) \).

This completes Theorem 2a.

Theorem 2b. A subset \(X \) of \(S \) is in the collection \(W_d(D) \) if and only if there is an \(F_n \) set, \(X \) in \(R \), a set \(A \) in \(W_n \), and a subset \(B \) of \(K \) such that \(X = A \cdot K + B \).

Proof. Suppose \(X \) is in \(W_d(D) \). Then \(X = \sum_{n=1}^{\infty} \bigcap_{X_{n,p}} X_{n,p} \), where for each \(n \), \(p \), \(X_{n,p} \) is in \(D = W_d(D) \). Then \(X = \sum_{n=1}^{\infty} \bigcap_{X_{n,p}} X_{n,p} \cdot B \). But, since the collection \(W_d(D) \) is countably additive, \(X = \sum_{n=1}^{\infty} X_{n,p} \), where for each \(n \), \(X_{n} \) is in \(W_d(D) \). For each \(n \), \(X_{n} = A_{n} + B_{n} \), where \(A_{n} \) is an open set and \(B_{n} \) is a subset of an \(F_n \) set in the \(\sigma \)-ideal \(R \). \(X = \sum_{n=1}^{\infty} X_{n} = \bigcap_{n=1}^{\infty} (A_{n} + B_{n}) \).

So, \(X = (\bigcap_{n=1}^{\infty} A_{n}) + C \), where \(C \) is a subset of an \(F_n \) set, \(K \text{ in } R \).
So, $X = \left(\prod_{n=1}^{\infty} A_n \right) \cdot C = \left(\prod_{n=1}^{\infty} A_n \right) \cdot (K' + (K - C))$. Letting $A = \left(\prod_{n=1}^{\infty} A_n \right)$ and $B = A \cdot (K - C)$ we have $X = A \cdot K' + B$, where A is an F_0 set and B is a subset of K, an F_0 set in the σ-ideal E. Now, suppose $X = A \cdot K' + B$, where A is in W_1, K is an F_0 set in the σ-ideal E and B is a subset of K. Since W_1 is an additive class, $E = A + K$ is in W_1 and $E' = \left(\prod_{n=1}^{\infty} A_n \right)$, where for each n, A_n is open. So, $X = A \cdot K' + B = A \cdot K' + E \cdot B = E \cdot (K' \cdot B)$. Let $C = K \cdot B$. Then $X = E' \cdot C' = (E' + C')$. $X = \left(\prod_{n=1}^{\infty} A_n \right) \cdot (C' + \prod_{n=1}^{\infty} A_n) = \left(\prod_{n=1}^{\infty} (A_n \cdot C) \right) = \sum_{n=1}^{\infty} (A_n \cdot C)$. It follows from Theorem 2a, that for each n, $A_n + C$ is in $W_1(D)$ and it follows from the definition of $W_1(D)$ that X is in $W_1(D)$. This completes Theorem 2b.

Theorem 2c. Suppose $1 < a < \infty$. A subset X of S is in $W_1(D)$ if and only if $X = A + B$, where A is in W_1 and B is a subset of an F_0 set in the σ-ideal E.

Proof for $a = 2$. Suppose X is in $W_1(D)$. Then

(1) $X = \sum_{n=1}^{\infty} \prod_{p=1}^{\infty} X_{n,p}$, where for each $n, p, X_{n,p}$ is in $W_1(D)$. Noting Theorem 2b, for each n, p, let $X_{n,p} = A_{n,p} \cdot K_{n,p} + B_{n,p}$, where $A_{n,p}$ is in W_1 and $B_{n,p}$ is a subset of an $K_{n,p}$, an F_0 set in R. For each n, p:

$X_{n,p} = (A_{n,p} \cdot K_{n,p} + B_{n,p})' = (A_{n,p} + K_{n,p}) \cdot B_{n,p}$

and

$B_{n,p} = K_{n,p} + (K_{n,p} - B_{n,p})$.

So, $X_{n,p} = (A_{n,p} + K_{n,p}) \cdot (K_{n,p} - B_{n,p})$.

(2) $X_{n,p} = A_{n,p} \cdot K_{n,p} + (A_{n,p} + K_{n,p}) \cdot (K_{n,p} - B_{n,p})$. Using (2) in (1) we have $X = \sum_{n=1}^{\infty} \prod_{p=1}^{\infty} (A_{n,p} \cdot K_{n,p} + (A_{n,p} + K_{n,p}) \cdot (K_{n,p} - B_{n,p}))$ and expanding this we have that $X = \sum_{n=1}^{\infty} \prod_{p=1}^{\infty} (A_{n,p} \cdot K_{n,p} + B_{n,p})$, where B is a subset of an F_0 set in R.

For each n, p let $T_{n,p} = A_{n,p} \cdot K_{n,p}$. The set $A_{n,p}$ is in W_1 and $K_{n,p}$ is an F_0 set. So, $K_{n,p}$ is in W_1 and since W_1 is an additive class, $T_{n,p}$ is in W_1.

Since $T_{n,p} = A_{n,p} \cdot K_{n,p}$ for each n, p, we have $X = \sum_{n=1}^{\infty} \prod_{p=1}^{\infty} T_{n,p} + B$. The set $A = \sum_{n=1}^{\infty} \prod_{p=1}^{\infty} T_{n,p}$ is in W_1.

Now, suppose $X = A + B$, where A is in W_1 and B is a subset of $\sum_{n=1}^{\infty} M_n$, each M_n is a closed set in R. Since A is in W_1, $A = \sum_{n=1}^{\infty} \prod_{p=1}^{\infty} A_{n,p}$, where for each $n, p, A_{n,p}$ is in W_1. So,

$X = \sum_{n=1}^{\infty} \prod_{p=1}^{\infty} A_{n,p} + \sum_{n=1}^{\infty} B_n \cdot M_n$.

However, for each n,

$B_n \cdot M_n = (M_n + (M_n - B_n))^\prime$.

so that for each p,

$A_{n,p} + B_n \cdot M_n = A_{n,p} + (M_n + (M_n - B_n))^\prime$.

Since for each n, M_n is closed, M_n is in W_1 and since W_1 contains W_1 and W_1 is finitely multiplicative we have that for each p, $A_{n,p} \cdot M_n$ is in W_1. It follows from Theorem 2b that $X_{n,p} = A_{n,p} \cdot M_n + A_{n,p} \cdot (M_n - B_n)$ is in $W_1(D)$. So, $X = \sum_{n=1}^{\infty} \prod_{p=1}^{\infty} X_{n,p}$, is in the collection $W_1(D)$. This completes the argument for Theorem 2c for the case $a = 2$.

There are arguments for the cases $a > 2$ similar to the argument given here for the case $a = 2$.

Theorems 2a, b, and c give a characterization of each collection $W_1(D)$ in terms of W_1. From these theorems, we see that if a is a countable ordinal number, other than 1, then X is in $W_1(D)$ if and only if there is a set A in W_1 and a set B, which is a subset of an F_0 set in the σ-ideal E such that $X = A + B$.

Theorem 3 characterizes each collection $B_1(D)$, the analytic representable functions or Baire functions of class α generated by G, in terms of B_1, the Baire function of class α.

Theorem 3. Suppose f is a function on S and $0 < a < \infty$. The function f is in $B_1(G)$ if and only if there is a function g in B_1 and an inner limiting set E such that $f = g$ on E and E belongs to the σ-ideal F.

Proof. Suppose f is in $B_1(G)$. Let f_1, f_2, f_3, \ldots be a sequence from $B_1(G) = G$ converging to f. For each n, let H_n be the set of all points of discontinuity of f_n and let $H = \sum_{n=1}^{\infty} H_n$. H is in E and H is an F_0 set. Let $E = S - H$; E is an inner limiting set. For each n, f_δ, the partial function of f_n over E is in $C(E)$, the collection of all continuous functions over E.
So, \(f_S \) is in \(B_\alpha(C(E)) \). It follows by a theorem of K. Kuratowski [2, p. 434] that \(f_S \) can be extended to \(S \) without changing its class. So, there is a function \(g \) in \(B_\alpha \) such that \(g_S = f_S \).

Now, suppose \(E \) is an inner limiting set, \(S - E \) is in \(B_\alpha \), \(f \) is a function of \(S \) and there is a function \(g \) in \(B_\alpha \) such that \(f_S = g_S \). Let \(g_1, g_2, g_3, \ldots \) be a sequence from \(B_\alpha = C \) converging to \(g \) and let \(S - E = \sum_{\beta=1}^\infty K_\beta \), where each \(K_\beta \) is closed.

For each \(\alpha \), let

\[
\begin{cases}
 g_\alpha(x) = \begin{cases}
 g(x), & \text{if } x \text{ is in } S - (K_1 + \ldots + K_\alpha), \\
 f(x), & \text{if } x \text{ is in } K_1 + K_2 + \ldots + K_\alpha.
 \end{cases}
\end{cases}
\]

For each \(\alpha \), \(f_\alpha \) is continuous at each point of \(S - (K_1 + \ldots + K_\alpha) \). For each \(\alpha \), \(f_\alpha \) is in \(B_\alpha \). Let \(f_1, f_2, f_3, \ldots \) be a sequence converging to \(f \) such that for each \(\alpha \), \(f_\alpha \) belongs to \(B_\alpha \). Suppose \(f \) is in \(B_\alpha \). Let \(f_1, f_2, f_3, \ldots \) be a sequence converging to \(f \) such that for each \(\alpha \), \(f_\alpha \) is in \(B_\alpha \). Let \(f_1, f_2, f_3, \ldots \) be a sequence converging to \(f \) such that for each \(\alpha \), \(f_\alpha \) is in \(B_\alpha \), where \(\gamma_\alpha < \alpha \), and let \(S - E = \sum_{\beta=1}^\infty K_\beta \), where each \(K_\beta \) is closed.

For each \(\alpha \), let

\[
\begin{cases}
 g_\alpha(x) = \begin{cases}
 g(x), & \text{if } x \text{ is in } S - (K_1 + K_2 + \ldots + K_\alpha), \\
 f(x), & \text{if } x \text{ is in } K_1 + K_2 + \ldots + K_\alpha.
 \end{cases}
\end{cases}
\]

For each \(\alpha \), \(f_\alpha \) is in \(B_\alpha \). Let \(f_1, f_2, f_3, \ldots \) be a sequence converging to \(f \) such that for each \(\alpha \), \(f_\alpha \) belongs to \(B_\alpha \). Let \(f_1, f_2, f_3, \ldots \) be a sequence converging to \(f \) such that for each \(\alpha \), \(f_\alpha \) is in \(B_\alpha \). Then Theorem 3 follows by transfinite induction.

In case \(S \) is a separable metric space we can obtain another characterization of the collections \(B_\alpha \), \(\alpha > 0 \) from a theorem of T. Traczyk [7]. In [7], Traczyk makes use of the following definition.

DEFINITION. Suppose \(S \) is a metric space, \(D \) is a metric space and \(f \) is a mapping from \(S \) into \(D \). The function \(f \) has property \(A_\alpha \) at the point \(x_0 \) of \(S \) if for every \(\epsilon > 0 \), there is a neighborhood \(E \) of \(x_0 \), a mapping \(g \) of \(S \) into \(\alpha \), and a set \(A \) in \(I \) such that

\[
|f(x) - g(x)| < \epsilon, \quad \text{for every } x \text{ in } A \cdot E.
\]

Traczyk gives the following theorem in [7]:

Suppose \(S \) is a separable metric space, \(D \) is a separable and complete metric space and \(f \) is a mapping from \(S \) into \(D \). If \(\alpha > 0 \) and for each closed subset \(E \) of \(S \), the mapping \(f_E \) has property \(A_\alpha \) with respect to \(F \) at some point of \(E \), then there is a mapping \(g \) in \(\alpha \), a set \(A \) in \(I \) such that \(f(x) = g(x) \).

This theorem is a generalization of some earlier results of G. Lepper and later Lepper generalized this result [4, Theorem III].

Before using this theorem of Traczyk, consider the following situation. The space \(S \) is the real numbers and \(\alpha \) is the collection of all sets of Lebesgue measure 0. Suppose we let \(E \) be \(I \), the \(\alpha \)-ideal of Traczyk’s definition. As can be seen from Theorem 3, if \(f \) is in \(B_\alpha \) and \(\alpha > 0 \) then \(f \) satisfies the hypothesis of Traczyk’s theorem. However, every measurable function satisfies the hypothesis of Traczyk’s theorem for \(\alpha = 1 \), but the Baire system generated by \(G \), the collection of all functions continuous almost everywhere does not contain all the measurable functions see [6, Theorem 3]. So, it does not suffice to let \(R = I \).

In order to get a characterization of \(B_\alpha \) using Traczyk’s theorem we do the following. Noting that if \(f \) is continuous almost everywhere (with respect to \(R \)), then it is continuous except for an \(F_\alpha \) set in \(R \), let \(R \) be the collection of all sets in \(R \) which are subsets of \(F_\alpha \) sets in \(R \). \(R \) is \(\alpha \)-ideal. Let \(L \) be the \(\alpha \)-ideal of Traczyk’s definition stated above. Then Theorem 1 follows easily from Traczyk’s theorem.

THEOREM 4. Suppose the metric space \(S \) is separable and \(0 < \alpha \). A function \(f \) is in \(B_\alpha \) if and only if for each closed subset \(E \) of \(S \), the mapping \(f_E \) has property \(D_\alpha \) (where the \(\alpha \)-ideal \(I \) is \(R \)) with respect to \(F \) at some point of \(E \).

References

University of Florida
Gainesville, Florida

Reçu par le Redaction le 12. 2. 1970