Sur les séries de translatées de fonctions positives

par

Zoltán Buczolich \(^1\)
Jean-Pierre Kahane \(^2\)
R. Daniel Mauldin \(^3\)

On associe à une fonction \(f : \mathbb{R} \to \mathbb{R}^+\) et à une partie discrète de \(\mathbb{R}^+\), \(\Lambda\), la série des translatées de \(f\) par les éléments de \(\Lambda\), et les ensembles complémentaires, \(C(f, \Lambda)\) et \(D(f, \Lambda)\), où cette série converge resp. diverge. On distingue les \(\Lambda\) de type 1, pour lesquels, quel que soit \(f\) mesurable, l’un de ces deux ensembles est de mesure nulle, et les \(\Lambda\) de type 2. Buczolich et Mauldin ont montré que \(\{\log n\} \quad (n = 1, 2, \ldots)\) est de type 2. Nous donnons d’autres exemples de type 2 et nous montrons que le type 2 est générique, et le type 1 rare. Le théorème 1 donne un exemple de type 1.

On series of translates of positives functions

Given \(f : \mathbb{R} \to \mathbb{R}^+\) and \(\Lambda\) discrete in \(\mathbb{R}^+\) we denote by \(C(f, \Lambda)\) resp. \(D(f, \Lambda)\) the \(x\)—set where the series \(\sum f(x + \lambda) \quad (\lambda \in \Lambda)\) converges resp. diverges. The sets \(\Lambda\) break into two types. Type 1 consists of \(\Lambda\) such that the Lebesgue measure of either \(C(f, \Lambda)\) or \(D(f, \Lambda)\) vanishes whatever \(f\) measurable, and type 2 consists of all the other \(\Lambda\). Buczolich and Mauldin proved that \(\{\log n\} \quad (n = 1, 2, \ldots)\) is of type 2. Type 2 is generic, type 1 is rare, and we give examples of both cases (theorems 1, 2, 3).

\(^1\) Department of Analysis, Eötvös Loránd University, Budapest, Rákóczi út 5, 1088, Hongrie.
\(^2\) Département de Mathématique, Bât. 425, Université de Paris-Sud, 91405 Orsay Cedex, France.
\(^3\) Department of Mathematics, University of North Texas, Denton, Texas 76203, USA.

Les recherches de Zoltán Buczolich ont été subventionnées par les bourses T019476 et FKFP 0192/1999 du Fonds National Hongrois pour la recherche scientifique et celles de R. Daniel Mauldin par la bourse DMS-9801583 de la NSF.
Abridged English version

The investigation of

\[C(f, \Lambda) = \{ x : \Sigma f(x + \lambda) < \infty, \; (\lambda \in \Lambda) \} \]

and

\[D(f, \Lambda) = \{ x : \Sigma f(x + \lambda) = \infty, \; (\lambda \in \Lambda) \} \]

goes back to Lekkerkerker 1958 [4], in the case \(\Lambda = \{ \log n \} \; (n = 1, 2, \ldots) \) and \(f = 1_E \). Answering a long standing question, Buczolich and Mauldin exhibited a set \(E \) such that both \(C(f, \Lambda) \) has positive Lebesgue measure and \(D(f, \Lambda) \) contains an interval (\(f = 1_E, \Lambda = \{ \log n \} \) [1]. We continue this investigation, both for \(\Lambda = \{ \log n \} \) and for other \(\Lambda \), on distinguishing type 1 and type 2.

Theorem 1 says that the union of all finite sets \(2^{-k} \mathbb{N} \cap [n_k, n_{k+1}] \) (\(n_k \) being an increasing sequence of integers, \(k = 1, 2, \ldots \)) is of type 1, meaning that the Lebesgue measure of either \(C(f, \Lambda) \) or \(D(f, \Lambda) \) is zero whenever \(f \) is Lebesgue-measurable.

Theorem 2 is about the case \(\Lambda = \{ \log n \}, \; n = 1, 2, \ldots \) (type 2), and exhibits \(f \) such that \(C(f, \Lambda) \) has full Lebesgue measure on \(]0, \infty[\), while \(D(f, \Lambda) \) contains \(] - \infty, 0[\).

Theorem 3 expresses that type 2 corresponds to an open dense set of \(\Lambda \), with a natural topology.

Proposition 4 says that if \(\Lambda = \{ \lambda_n \}, \lambda_n \uparrow \infty \) and \(\lim (\lambda_{n+1} - \lambda_n) > 0 \), \(\Lambda \) is of type 2.

Propositions 5 and 7 give other examples of type 2 and proposition 6 shows that types 1 and 2 can be tested on the functions \(f \in C_0^+ (\mathbb{R}) \) (continuous, positive, tending to 0 at infinity).

It proves convenient to define asymptotically lacunary resp. asymptotically dense \(\Lambda \) by the conditions \(\lim (\lambda_{n+1} - \lambda_n) > 0 \) resp. = 0 (cf. proposition 4). We also define \(T(\Lambda) \), the semi-group of translators of \(\Lambda : t \) is a translator of \(\Lambda \) whenever \(\lambda + t \) belongs to \(\Lambda \) for every \(\lambda \in \Lambda \) but a finite number. Clearly \(C(f, \Lambda) + T(\Lambda) \) is included in \(C(f, \Lambda) \), and \(D(f, \Lambda) - T(\Lambda) \) is included in \(D(f, \Lambda) \). These notions are too weak to give a characterization of \(\Lambda \) of type 1 (cf. theorem 1 and proposition 7).
A une partie discrète infinie de \mathbb{R}^+, Λ, et à une fonction mesurable définie sur \mathbb{R} à valeurs dans \mathbb{R}^+, f, nous faisons correspondre la somme

$$s(x) = \sum_{\lambda \in \Lambda} f(x + \lambda)$$

et les sous-ensembles complémentaires de \mathbb{R}

$$C = C(f, \Lambda) = \{ x : s(x) < \infty \}, \quad D = D(f, \Lambda) = \{ x : s(x) = \infty \}.$$

Que peut-on dire de ces ensembles, et en particulier de leurs mesures de Lebesgue, $|C|$ et $|D|$? La question s’est présentée dans la littérature sous des formes diverses, et généralement en notation multiplicative.

Dans le cas $\Lambda = \{ \log n \} \ (n = 1, 2, \ldots)$ Lekkerkerker a établi en 1958 deux résultats importants :

1) Si $f(x)$ est intégrable par rapport à la mesure $e^x \, dx$, alors $|D| = 0$.

2) Il existe une fonction $f(x)$, somme de fonctions indicatrices d’intervalles disjoints, non intégrable par rapport à la mesure $e^x \, dx$, telle que $|D| = 0$.

Il a observé d’autre part que, si $|D| = 0$, on peut changer $f(x)$ sur un ensemble de mesure nulle, à savoir la remplacer par 0 sur l’ensemble $D + \Lambda$ (somme algébrique), de façon que, pour la nouvelle fonction, f^*, on ait $D(f^*, \Lambda) = \emptyset$ [4]. Ces résultats ont été retrouvés et complétés, le premier par Weizsäcker [5] et le second par Haight, qui l’a étendu au cas d’un Λ quelconque [2], [3]. Toujours dans le cas $\Lambda = \{ \log n \}$, Haight a demandé si, pour toute fonction à valeurs 0 ou 1, on a nécessairement $|C| = 0$ ou $|D| = 0$ [2], [3]. Weizsäcker a posé la même question relativement à toute fonction $f(x)$ [5]. Buczolich et Mauldin ont répondu négativement, en construisant une fonction f à valeurs 0 ou 1 telle que C soit de mesure pleine sur un intervalle, et D contienne un autre intervalle [1].

Nous dirons que Λ est de type 1 si, pour toute fonction $f(x)$, on a soit $|C| = 0$, soit $|D| = 0$, et que Λ est de type 2 dans le cas contraire. Commençons par exhiber un Λ de type 1, et par préciser pour $\Lambda = \{ \log n \}$ le théorème de Buczolich et Mauldin.

Théorème 1. Soit $\Lambda_k = 2^{-k} \mathbb{N} \cap [n_k, n_{k+1}]$, où (n_k) est une suite croissante d’entiers positifs, et soit Λ la réunion des Λ_k. Alors Λ est de type 1.

Théorème 2. Soit $\Lambda = \{ \log n \} \ (n = 1, 2, \ldots)$. Alors Λ est de type 2, et il existe une fonction $f(x)$ telle que C soit de mesure pleine sur la demi-droite $]0, \infty[$ et que D contienne la demi-droite $]-\infty, 0[$.
L’importance du théorème 1 tient à ce que le type 1 est “rare” dans le sens suivant. Ordonnons chaque \(\Lambda \) sous forme d’une suite croissante \(\{\lambda_n\} \) \((n = 1, 2, \ldots) \). Pour chaque \(\Lambda \), les suites \((r_n) \) strictement positives définissent une base de voisinages, constitué des \(\Lambda' \) tels que \(|\lambda_n - \lambda_0| < r_n \) \((n = 1, 2, \ldots) \). L’ensemble des \(\Lambda \) constitue ainsi un espace topologique \(\mathcal{L} \) qui est un espace de Baire.

Théorème 3. Dans \(\mathcal{L} \), les \(\Lambda \) de type 2 constituent un ouvert dense.

Pour chaque \(a \geq 0 \), définissons \(\mathcal{L}(a) \) comme la partie de \(\mathcal{L} \) constituée des \(\Lambda \) tels que

\[
\lim (\lambda_{n+1} - \lambda_n) = a \quad (n \to \infty).
\]

Les \(\mathcal{L}(a) \) sont ouverts. On dira que \(\Lambda \) est asymptotiquement dense s’il appartient à \(\mathcal{L}(0) \), et sinon qu’il est asymptotiquement lacunaire.

Proposition 4. Si \(\Lambda \) est asymptotiquement lacunaire, \(\Lambda \) est de type 2, et il existe deux intervalles \(I \) et \(J \) et une fonction \(f \) tels que \(C \) contienne \(I \) et \(D \) contienne \(J \); on peut imposer que \(I \) soit à gauche de \(J \), ou aussi bien que \(I \) soit à droite de \(J \).

Ainsi les \(\Lambda \) de type 1 sont asymptotiquement denses.

Proposition 5. Supposons qu’il existe trois intervalles \(I, J, K \) tels que \(J = K + I - I \) (somme algébrique), \(I \) à gauche de \(J \) et à une distance de \(J \) supérieure ou égale à \(|I| \), et deux suites \((y_j) \) et \((N_j) \) tendant vers l’infini \((y_j \in \mathbb{R}^+, N_j \in \mathbb{N}) \) tels que, pour chaque \(j \), \(y_j - I \) contienne au moins \(N_j \) points de \(\Lambda \) qui ne soient pas combinaisons linéaires rationnelles de \(\Lambda \cap (y_j - \Lambda) \). Alors \(\Lambda \) est de type 2. De plus, il existe une \(f(x) \) telle que \(D \) contient \(I \) et que \(C \) soit de mesure pleine sur \(J \).

Dans tous les énoncés qui précèdent, on peut imposer à la fonction \(f \) d’être une fonction indicatrice (à valeurs 0 ou 1), ou aussi bien d’être une fonction continue tendant vers 0 à l’infini (nous écrirons alors \(f \in C_0^+ \)). Il y a là un fait général, et un problème.

Proposition 6. Pour toute fonction \(f(x) \) positive et mesurable au sens de Lebesgue, il existe une fonction \(g \in C_0^+ \) telle que \(C(f, \Lambda) \) et \(C(g, \Lambda) \) ne diffèrent que par un ensemble de mesure nulle. Ainsi, pour tester les types 1 et 2, on peut se borner aux \(g \in C_0^+ \).

Question. Peut-on se borner aux fonctions indicatrices ?

A tout \(\Lambda \) nous associons un semi-groupe \(T(\Lambda) \), constitué des translateurs de \(\Lambda \). On dira que \(t > 0 \) est un translateur de \(\Lambda \) si, pour tout \(\lambda \in \Lambda \) sauf un nombre fini, \(\lambda + t \)
appartiennent à Λ. Dans le théorème 1, \(T(\Lambda) \) est l’ensemble des rationnels dyadiques > 0, et, dans le théorème 2, \(T(\Lambda) = \Lambda \). On a toujours, quel que soit \(f \),

\[
C + T(\Lambda) \subset C, \quad D - T(\Lambda) \subset D.
\]

Des exemples montrent que la considération de \(T(\Lambda) \) ne permet pas de distinguer le type 1 et le type 2. Voici le plus frappant.

Proposition 7. Soit \(\Lambda_k = 2^{-m(k)} \mathbb{N} \cap [n_k, n_{k+1}] \), où \((n_k) \) est une suite croissante d’entiers positifs, et \(m(k) \) une suite convenablement choisie en fonction de \((n_k) \). Alors la réunion des \(\Lambda_k \) est de type 2, et \(T(\Lambda) \) est constitué de rationnels dyadiques.

Voici un aperçu des preuves et des enchaînements.

La preuve du théorème 1 est délicate ; elle repose sur le lemme suivant.

Lemme. Soit \(\varphi_n : \mathbb{T} \to \mathbb{R}^+ \) une suite de fonctions mesurables positives définies sur le cercle \(\mathbb{T}(= \mathbb{R}/\mathbb{Z}) \) \((n = 1, 2, \ldots) \). Si \(\Sigma \varphi_n(2^n t) < \infty \) p.p., alors \(\Sigma \varphi_n(2^n t + \frac{1}{2}) < \infty \) p.p.

Le théorème 2 utilise la proposition 5 et les translateurs.

Le théorème 3 résulte de la proposition 5 (pour montrer que le type 2 est dense) et de la proposition 6 (pour montrer qu’il est ouvert).

La proposition 4 est élémentaire.

La proposition 5 explicite et étend légèrement l’argument de Buczolich et Mauldin, qui utilise l’indépendance des \(\log p \) (\(p \) premier) [1].

La proposition 6 est élémentaire.

La proposition 7 est assez délicate. Elle s’inspire de la proposition 5 en éliminant tout argument d’indépendance.

Le détail des preuves et des compléments se trouveront dans un article intitulé “On series of translates of positive functions”.
Références

