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On the Baire system
generated by a linear lattice of functions

by

R. Daniel Mauldin (Gainsville, Fla)

Suppose @ is a linear space of real functions defined over a point
set § such that if fis in &, then |f] is in &; & is a linear lattice of functions
over §. Also, suppose G containg the constant functions over §. Let
By@) = G and for each ordinal number a, 0 < < 8, let B,(G) denote -
the collection of all pointwise limits of sequences from the collection
2 B,(@). Sierpinski [1] and Tucker [2] have given necessary . and
y<a
sufficient conditions on a function f in order that it be in B,(G). These
conditions are in terms of partieular sequences of functions which con-
verge in a uniform or a monotonic sense. Since for each ordinal a > 0,
the collection ' B,(@) is a linear lattice of real functions over S and

y<a
it contains the constant function over §, these results may be extended
to give necessary and sufficient conditions on a function f in order that
it be in Bu(G). In this paper we characterize the collection Bi(@), a> 0,
in terms of an associated collection of Baire sets (Theorem 7). and give
some relationships between these collections and the collections deseribed
by Hausdorff in [3].

Notation. If K is a lattice of functions, then K. denotes the
collection of all functions which are uniform limits of sequences from K,
USK the collection of all funetions which are limits of nonincreasing
sequences from K and LSK the collection of all functions which are
limits of nondecreasing sequences from K. The Baire system of functions
generated by K is denoted by B(XK). If f is 2 bounded function, ||f]| denotes
the Lu.b. norm of f.

THEOREM 1. If f is a bounded function in @, then f*is in Gu.

4%
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Proof. Suppose f is a bounded function in & and f # 0. Let b = T,
8o that b is in G. For each =, let

sl o 2ot o

2i—1 i(i—1)
Ty T

i—1

if o <h(w)<£—m where —2"+1< i< 2",

If h(z)=14-27", then ha(z) = (¢-27") = K(x) and if h(x) is between
(1—1)-27" and i-2", then hn(s) is between [(1—1)-2™"F and (i-27™" Ko,
~ for each # in §,

Iha(@) = W@)] < (027" = [(i-1)-27"F| = 2720 —1] < 27 (2)i] +1) .

80, [ha(2)—K(@)] < 27" (2:2"+1) = 27" 2™ and the sequence
{Mo}pm1 converges uniformly to A

For each n, let gu = max[(i—1)-27" min(h,4-27")], and let Cns
= 27%(2{—1), for each 4, —2"+1 < i < 2"

o em on
Letdp =1— 3 oyi2"=1— Y i(20—1).27". 27",
i=—ght1 fe= g

Since @ is a linear lattice containing the constant functions, the
on

function du+ 3 on-gw is in @ for each n.
1

=Sy
Suppose # is a positive integer and (p =1)-27" < h(x) < p-27",
where — 2™+1 < p <. 2", Then
on

dy+ 2 Cni” gni()

f=m2ni]

—~1 . o
2i—1)¢ | 2p—1 N Dl f—
( )'L_l_ pn B2+ 2%» 1i-1

. 2ot g 7 T
Ta=—2041 [
29p—1 29p—1 Y (@i—1)i NN (201 (i
=L )21 Y @iy D EDG L,
9 ™. 9 on.on or.gn
T=—2n.43 d=mpd, .
2p pep-1) 1 G
= Biz)— - . — 1
g M) 2".2m  gr.gn Z @i-1)+1.
Taptl
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an )
But, Y (2i—1)=2"-2"_p® §o,

T=p+1

an
2 engn(@)+dn = (2p—1)2 () —p(p—1)-27 9" hn(®) .

i=2n41

This shows that for each n, h, is in ¢ and it follows that fPis in Gy.

THEOREM 2. Suppose f and g are bounded Sunctions in Gy. Then (1) f-¢
8 in Gu, (2) every polynomial in fisin Gu, and (3) if ¢ is a continuous real
Sfumction whose domain includes the range of f and ¢ s the wniform limit
of a sequence of polynomials, then ®[f] is in Gy.

Theorem 2 is a_corollary to Theorem 1.

DEFINITION. The collection to which X belongs if and only if there -
is some f in @ and segment (@, b) such that X — (a<f<b) is
denoted by D,

THEOREM 3. Suppose X is a proper subset of 8 and X is in D. If g is
the characteristic function of § —X, then g s in USG.

Proof. Let f be a function in G and (@,d) a segment such that
X=(a<f<?b). Let h=2-(hb—q)™* [max (2, min(f, b)) — (a-+ b)-27Y, so
that # is in @, —1<h<1 and (~1<h<1)=(a<f<b)=X. It
follows from Theorem 2 that, for each n, B is in Gy. For each #, (B = 1)
=({f<a)+(f>b)=8—X, and B> 1™ The sequence {AT}y, is
a noninereasing sequence from @, converging to g so that g is in US(Gy).
It follows that g is in USE.

THEOREM 4. In order that f be in USG it is necessary that, if a s
a number, then the set (f < a) showld be the sum of countably many sets each
belonging to D. In case f is bounded above, this condition is also sufficient.

Proof. Suppose f is in USE. Let { Toine1 be a nonincreasing sequence
from @ converging to f from above. If a is a number, then (f < a)

oo (=]
=D Z,; (6—n <fp < a) and is the sum of countably many sets from D.
n=1p=

Suppose f is bounded above and for each number a, (f < a) is the
sum of countably many sets from D. Let F — 1+f—lub. f and let

{ro}o—1 be a sequence of all rational numbers < 1.

o0 .
For each 4, let (F<r)=) Xy where, for each p, X is in D
p=1

and let gy(w) = 1, if o is in 8—Xip, and gip(x) = 1y, if # is in Xip. For
each n, let fn = min(g,, ..., g1, gor, wee3 fony ooy Gniy ooy Gun). The sequence
{fo}p=1 is nonincreasing and converges to F. Let uip(z) = 1 if is in §— Xy
and ¢;p(w) = 0, if 2 is in Xp. It follows from Theorem 3, that uip is in USG.
B0 (1—1r5)-usp+7 = gp is in TS GQ. So, for each #, f, is in USG and since
US(USG) = USE, F is in USG. It follows that fis in USG.
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TugorEM 5. If H is a linear laitice on 8 containing the constant
functions such that USH .LSH = H, then Hy = H. ‘

Proof. If h is in Hu, let {hy)p-1 be a sequence from H such that
for each p,lh—hyll <p™" Let ap = min(h+1,.., hp+p"") for each
p; {ap}p=1 is & non-decreasing sequence from H converging to k. h is in
USH. Similarly, & is in LSH.

TaEoREM 6. If ¢ is in L8G, h is in USG and g = hy then there is
a function f in LX -USG such that g > f = b and if g(x) > h(x), then g(x)
> flz) > h(®).

Indication of Proof. Suppose {gp}lp~1 i8 & nondecreasing sequence
from @ converging to g and {hy)p=1 is 2 nonincreasing sequence from &
converging to k. For each p, let ay= gp—277 and fp = hp+277, so that
the sequence {a,}y-1 is an increasing sequence from @ converging to ¢
and the sequence {Bp}p-1 is a decreasing sequence from @ converging to .

Tt 4, = a, and for each n, v, = MaxX(Un, fu) a0d Ut = min(vn, dnt1)-
Tt can be shown that there is a function f such that uy < u < U < ...
fe o << <o, and that g =>f> % and if g(@)> h(z), then g(x)
> fiz) > h(®).

DerNITioN. If R is a collection of subsets of §, then Wi(R) is the

o0

collection to which X belongs if and only it X = Y ([] X7,) where, for

ne=l Pp=1

each n, p, Xnp is in B and X, is the complement of Xnp.

The next theorem includes a characterization of B,(G) in terms
of Wy(D).

THEOREM 7. Suppose f is a function on 8. Bach two of the following
statements are equivalent: :

() 1 is in By@),

(2) f is in US(LSG)-LS(USG),

(8) f is the uniform limit of a sequence each term of which is the dif-
ference of two fumctions in USG,

(4) f is in B(USG LS8G), and

(3) for each segment (a,b), the set (a < f<<b) is in Wy(D).

Sierpinski has proved that statements 1 and 2 are equivalent in [1]
and Tucker that statements 1 and 3 are equivalent in [2].

Proof that 2 implies 4 and 5.Suppose fis in US(LS@)-LI(US Q).
Let {gp}p=1 be a noincreasing sequence from LS@ converging to f and
let {hy}p=1 be a non-decreasing sequence from US@ converging to f. For
each p, gp > f = hy and it follows from Theorem 5 that there is a function fp
in USG LS@ between gy and hy. The sequence {fy}p- converges to f.
So, fis in B,(USG-LSG) and 2 implies 4. Suppose (a, b) is a segment.

icm®
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The set (d<f<b)=2'1 (a+b—“<hq).(gq<b__b_—_“)
=1 p

4 =1
b—a

— 5 5 (<ot
d=1p=1 p

b— b—
(h,, < a+ T) and (gq >b— Ta) are the sums of countably many sets

) . (gq >b— —;—a) . It follows from Theorem 4 that

. b—a\' b—a\’
in D. So (hq < a+ T) '(gq> b—-p—a’) is the common part of the

complements of countably many sets in D and (a <f< b)isin Wy(D).
8o, statement 2 implies statement 5.

Proof that 4 implies 2. Suppose f is in B(USG-LSE). Since
US@-LSG is a linear lattice and statements 1 and 2 are equivalent, f is
in UB[LS(USG-LSG] and in LS[US(USG-LSG)]. But, it is easy to show
that LS(USG L8G) = L8G and that US(USG-LSG) = USG. So, f is
in US(LS@)-LS(USG). Statements 2 and 4 are equivalent. )

Proof that 5 implies 4. Suppose f is a function on § and for
each segment (a,b), (e <f<b) is in Wy(D). Let f = 2z tan™" f. For
each n, let Ly, be the collection of all segments of the form (¢ —1/2", i-1-1/2")
where, — 2" +1 < < 2"+1. L, is a collection of segment§ covering (—1, 1).
For each n, .let {Knplp=1 be a sequence such that (1) each K, is the
common part of the complements of countably many sets in D, (2) for
each p, there is some member (a, b) of L, such that K.y is a subset of
{a <f" < b), and (8) for each segment (a, b) of Ly, there is a subsequence

o0
{Eppts such that (@ <f <b)= 5 Eup.
i=1
For each positive integer pair #, p, let gup(®) =1, if  is in §—Kopp
and gnp(w) = b, if 2 is in Kyup and Kap is a subset of (a < f* < b) and (a, b)

is in-Ly and let hap(2) = —1, if 2 is in 8—Kup and hap(x) = a, if % is in Kyy
and Kyypis a subset of (o < f* < b) and (a, b) isin L,. For each n, p, (hxp < ¢)

=8, i ¢> a and (hnp < ¢) =8 —Knyp, if ¢ < a. But §— Kup is the sum

of countably many sets in D. It follows from Theorem 4 that hyp is in USG.
Similarly, gap is in LSG.

For each 7, let an = Min(gy, ...; G1ny Gars s Gony -ovy Gniy ---y Gnn) and
let B = max(hyy, -5 Bang Bory ooy Bany -ooy Bnay oory Benn). For each m, a, is in
LSG and B is in USG, as > any1 and Pr < Pnii. Noting that for each
Ny Py hnp <J' < gup, we have that for each m, fn <f < an. It.can be
shown that the sequences {ay)p—: and {fn}p—: converge to f'. So, ' is in
B(US@ LSG). Let {lp)pr be a sequence from USG-LSG converging
to f such that, for each n, [tall = ¢x < 1. For each n, let S, = tan /2 tu;
it follows from Theorems 2 and 5 that S, is in USG-LS@G. The sequence
{Sp)oe: converges to f. f is in B;(USG -LSG). This completes the proof
of Theorem 7.
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Hausdorff in [3] defines an ordinary function system F as a col-
lection of functions which is a linear lattice containing the constant
functions such that if f and g are in F, f-g is in F' and if there is no @ such

=0, ' is in . A complete ordinary function system is an
g}rlﬁfnﬁg) sys%:an{ thich is closed urll)der uniformylimits. In [3}3 Hausdortt
characterized By(F) where F' iy an ordinary function system in terms
of associated Baire sets and proved that B,(F) is a complete ordinary
function system. Theorem 7 and the following theorem strengthen these
results.

THEOREM 8. If G is a linear lattice on S containing the constant
functions, then B,(G) is a complete ordinary funciion system.

Proof. Certainly B;(@) is a linear lattice on § containing the constant
functions. Sierpinski [1] has shown that USB,(@)-LSB,(F) = By(Q). So,
by Theorem 5, B;(G) is closed under uniform limits. Suppose f is in By(Gh.
Let {fp}p-1 be a sequence of bounded. functions from @ converging to f.
According to Theorem 2, s is in Gy for each 9. It follows that f* is inB,(@).
If g is in By(@), since 2f-g = (f4¢)*—*— ¢ we have f-gis in B,(@). Sup-
pose there is no & such that f(s) = 0. Let {f,}5-, be a sequence from @
converging to f* such that for each p, t, is bounded and to(#) = p7", for
each ¢ in . Let 8, = t;" for each . Again, according to Théorem 2,
8p is in the Gu. So, f* is in By(@) and hence f' = f-f is in B,(&). So,
B,(@) is a complete ordinary function system. '

DEFINITION. Let Wo(D) = D and for each ordinal number a,0<a<
let Wa(D) be W.(3 W,(D)).
y<a

Use of transfinite induetion and the fact that the collection Y B,()
y<a

is a linear lattice containing the constant funetions, yields the following
theorem.

- THEOREM 9. Suppose f is a function on 8 and 0 < o < Q. In order
that f belong to By(@) it is necessary and sufficient that, for each segment
(a, b), the set (a < f << b) should be in Wo(D).

Remark. In case @ is a complete ordinary function system, we
have the following relationships hetween the method presented here
and the method given by Hauidorff [3, Pp. 292-2937. The functions
in By(@) are the functions f¥, if 0 < & < w and are the functions FEH it
W< £< O, Also, the sets in Wy(D) are the sets %, if 0 < & < w and are
the sets M** if w << £< Q.

TOE{EOREM 10. Suppose G is USG-LSG. If for each ny, An 48 in D,
then Y, Ap is in D.

p=1 .

Proof. For each n, 4y = (a, < fn < bu). For each m, let g
= (bn— an)"*[min (b, 04X (@n, o)) —an], ga is in @ and A, = (0 < gn < 1).
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For each n, let by = (1 —gu)-gn. It follows from Theorems 2 and 5 that Fn.

isinG. Let h= ) 27 %hy. Again, it follows from Theorem 5 that & in & and
p=1

00

D Ap=(0<h<2)isin D.

=1
’ Theorem. 10 allows us to make a simplification in describing the
collection Waii(D) where, 0 < a < Q. Since TS B,(G)- L8 By(@) = By(G,
it follows from Theorem 10 that the sum of countably many sets in Wo(D)
belongs to Wo(D). If X ‘is in Waa(D), then X = 3 [] Xi.. Since

n=1 p=1

Il Xpn= ( ZXM)' and USBL(@) - L8BLG) = B,(@) (see Sierpiriski [11,

p=1 p=1

p. 13), it follows from Theorem 10, that > X, is in WoD). 80, Xisin
p=1

Weora(D) if and only if X = 3 X,'where, each X, is in Wi(D).

n=1

The preceding results characterize the collection B,(G) in terms.
of Wy(D) for each a, 0 < o < Q. However, Wy(D) = D may not characterize
By(@) = G. For example, let & be the collection of all bounded functions.
over the interval [0, 1] which are continuous except for a countable set
and let H be the collection of all function on the interval [0, 1] which.
are continuous except for a countable set. The D sets for the collection G
are the D sets for the collection H. The following theorem gives some
conditions under which the collection D does characterize G.

THEOREM 11. Suppose G is USG-LSG. The following statements are
equivalent:

(1) If f is in @ and @ is a continuous real function on the range of f, o[ f]
is in Q. -
‘ (2) A function f is in @ if and only if for each segment (a, b), (a < f < b}
is an D. i

Proof. By definition if f is in &, then (¢ <f<b) is in D for each
segment (a, b).

Suppose f is a function on § such that for each segment (a, ), the:
set (@ <f<b)is in D. Let f'= 2/n tan"'f. For each #, let

i1 ) 4
1ifmisinS~—(’L2n <f<%;;),

In,i{®) =

; N = | 34
llg%l,ifoslsm (1'2—n<f’< ;),
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and
|[ —1if # isin §— (21 'L;;l)
b
M= 2"1, if # is in (%_771 <f'<4£-§,;—1)

‘where —2"4+1 <4< 2"—1. It follows from Theorem 4, that On,i 18 in
USG and hy,; is in LSG and we have gn: > f' > fny

Let a; = min(g1,-1, f1,0y §11) and f; = max(h, 1,h10,h11), zmd_ for
each n, Gniy = MiN(Grgy Ny, Gr2Bogy ooy Go—aMi1, 1, . v 0n)y and  fuiq
== MAX (An20—1y naWs; vy Bnym2Miqy By, ory Bu).  For each Ny ap 18 in
USE and B. is in LSG and it follows that A= 02 4= .. >« ..

<Py <P < pr.Bo, f isin USG-L8G = G. By assumption, f= tan [gf’]

is in G. So, statement 1 implies statement 2.

Now, suppose that h is in @ if and only if for each segment (a, b),
the seb (& < k< b) is in D. Suppose f is in & and @ 18 a continuous real
funetion on ¥y, the range of f.

Suppose (a,b) is a segment. Let {ap, by)}p1 be a sequence of

Ssegments such that (a<g¢<d) = ¥, Z(a,,, bp) 8o that (a < [f] < b)

2 (ap < f < by). Bo, the set (@ < @[f] < b) is the sum of countably many °

sets in D. Since USG-LSG =@, it follows from Theorem 10, that
{a < @[fI<b) is in D. 8o, ¢[f]isin G Statements 1 and 2 are equwalent

TEEOREM 12. Suppose 8 is a couniable set and F(8) denotes the col-
Lection of all real functions on 8. In oider that F (8) = B(G) it is necessary
and sufficient that if & and y are in 8, then there be o Sunction f in & such
that f(@) # f(y). Moreover, if F(S) = B(@), then F(8)= By(&.

Proof. Suppose that if & and y are in 8, then there is some f in ¢
such that f(z) # f(y). Let {s,}o; be a sequence of all the points of S.

It follows that for each two positive integers # and p, there is
a function 4, in @ such that fenpll < 1, tup(8p) = 0 and tup($n) = 1. Let
pp(®) =1 for each » and each # in 8.

Let hpg= [ [ typ, for each positive integer pair =, g. It follows
from Theorem 2 that hagis in Gy, It ¢ < n, then hng($¢) = 0if i £ gand =1
if ¢=g.

Suppose f is a function on §. For each =n, let f, = 2 T (8¢) Bng.

It i < my then fu(sy) = F(se). )- 8o, f is the pointwise limit of a sequence from
Gy and f is in By(G).

icm®
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