On the Baire system

generated by a linear lattice of functions

by

R. Daniel Mauldin (Gainsville, Fla)

Suppose G is a linear space of real functions defined over a point set S such that if f is in G, then $[f]$ is in G. If G is a linear lattice of functions over S. Also, suppose G contains the constant functions over S. Let $B_{p}(G)$ denote the collection of all pointwise limits of sequences from the collection $\sum_{y \in S} B_{p}(G)$. Sierpiński [1] and Tucker [2] have given necessary and sufficient conditions on a function f in order that it be in $B_{p}(G)$. These conditions are in terms of particular sequences of functions which converge in a uniform or a monotonic sense. Since for each ordinal $\alpha > 0$, the collection $\sum_{\gamma < \alpha} B_{p}(G)$ is a linear lattice of real functions over S and it contains the constant function over S, these results may be extended to give necessary and sufficient conditions on a function f in order that it be in $B_{p}(G)$. In this paper we characterize the collection $B_{p}(G)$, $\alpha > 0$, in terms of an associated collection of Baire sets (Theorem 7) and give some relationships between these collections and the collections described by Hausdorff in [3].

Notation. If K is a lattice of functions, then K_{α} denotes the collection of all functions which are uniform limits of sequences from K, USK the collection of all functions which are limits of nonincreasing sequences from K and LSK the collection of all functions which are limits of nondecreasing sequences from K. The Baire system of functions generated by K is denoted by $B(K)$. If f is a bounded function, $[f]$ denotes the l.u.b. norm of f.

Theorem 1. If f is a bounded function in G, then f^{*} is in G_{α}.

50

B. M. Schein

References

Proof. Suppose f is a bounded function in G and $f \neq 0$. Let $h = f(g)$, so that h is in G. For each n, let

$$h_n(x) = 2^n \left(\frac{2^n}{2^n} \right) h(x) - \frac{i-1}{2^n} \left(\frac{2^n}{2^n} \right) h(x) + \frac{i}{2^n},$$

$$= \frac{2i-1}{2^n} h(x) + \frac{i(i-1)}{2^n} h(x),$$

$$= \frac{2i-1}{2^n} h(x) + \frac{i(i-1)}{2^n} h(x).$$

If $i - 1 \leq 2^n$, then

$$h_n(x) = \frac{i(2^n-1)}{2^n} h(x)$$

and if $h(x)$ is between $(i-1)2^{-n}$ and $i2^{-n}$, then $h_n(x)$ is between $(i-1)2^{-n}$ and $i2^{-n}$. So, for each x in S,

$$|h_n(x) - h^2(x)| < |(i(2^n-1)2^{-n}) - [(i-1)2^{-n}]| = 2^{-n}(2i-1) \leq 2^{-n}(2|i+1).$$

So, $h_n(x) - h^2(x) < 2^{-n}$, $g_n+1 = 2^{-n+1} + 2^{-n}$, and the sequence $(h_n)_{n=1}^\infty$ converges uniformly to h^2.

For each n, let $g_n = \max((i-1)2^{-n}, \min(h_{n+1}, i2^{-n}))$, and let $c_n = 2^{-n}(2i-1)$, for each i, $2^{-n} \leq i \leq 2^n$.

Let $d_n = 1 - \sum_{i=0}^{n} c_i i 2^{-n} = 1 - \sum_{i=0}^{n} c_i (2i-1)2^{-n} 2^{-n}$.

Since G is a linear lattice containing the constant functions, the function $d_n + \sum_{i=0}^{n} c_i g_i$ is in G, for each n.

Suppose n is a positive integer and $(p-1)2^{-n} \leq h(x) \leq p2^{-n}$, where $-2^n+1 \leq p \leq 2^n$. Then

$$d_n + \sum_{i=0}^{n} c_i g_i(x) = \sum_{i=0}^{n} \left(\frac{2^n}{2^n} \right) (2i-1)2^{-n} + \frac{p-1}{2^n} h(x) + \sum_{i=0}^{n} \left(\frac{2^n}{2^n} \right) (i-1) \frac{i}{2^n} + \sum_{i=0}^{n} \left(\frac{2^n}{2^n} \right) \frac{i}{2^n} + d_n$$

$$= \frac{2p-1}{2^n} h(x) - \frac{p-1}{2^n} + \sum_{i=0}^{n} \left(\frac{2^n}{2^n} \right) (2i-1) \frac{i}{2^n} + \sum_{i=0}^{n} \left(\frac{2^n}{2^n} \right) \frac{i}{2^n} + d_n$$

$$= \frac{2p-1}{2^n} h(x) - \frac{p-1}{2^n} + \frac{1}{2^n} \sum_{i=0}^{n} (2i-1) + 1.$$
Theorem 6. If \(g \) is in \(LSG \), \(h \) is in \(USG \) and \(g \geq h \), then there is a function \(f \) in \(LX \cap USG \) such that \(g \geq f \geq h \) and if \(g(x) > f(x) > h(x) \), then \(g(x) > f(x) > h(x) \).

Induction of Proof. Suppose \(\{a_n\}_{n=1}^\infty \) is a non-decreasing sequence from \(G \) converging to \(g \) and \(\{h_n\}_{n=1}^\infty \) is a non-increasing sequence from \(G \) converging to \(h \). For each \(p \), let \(a_p = g_p - 2^{-p} \) and \(h_p = h_p + 2^{-p} \), so that the sequence \(\{a_n\}_{n=1}^\infty \) is an increasing sequence from \(G \) converging to \(g \) and the sequence \(\{h_n\}_{n=1}^\infty \) is a decreasing sequence from \(G \) converging to \(h \).

Let \(u_0 = a_0 \) and for each \(n \), \(u_n = \max(u_{n-1}, h_{n-1}) \) and \(u_{n+1} = \min(u_n, a_{n+1}) \). It can be shown that there is a function \(f \) such that \(u_1 \leq u_2 \leq u_3 \leq \ldots \rightarrow f \) and \(u_n \leq v_n \leq u_{n+1} \) and that \(g \geq f \geq h \). Then \(g(x) > f(x) > h(x) \), then \(g(x) > f(x) > h(x) \).

Definition. If \(R \) is a collection of subsets of \(S \), then \(W(R) \) is the collection to which \(X \) belongs if and only if \(X = \bigcup \left(\bigcap_{U \in U} U \right) \) where, for each \(n \), \(Y \in R \times \infty \) is in \(R \) and \(Y \times n \) is the complement of \(X \times n \).

The next theorem includes a characterization of \(B_1(G) \) in terms of \(W(R) \).

Theorem 7. Suppose \(f \) is a function on \(S \). Each two of the following statements are equivalent:

1. \(f \) is in \(B_1(G) \).
2. \(f \) is in \(USG : LSG \).
3. \(f \) is the uniform limit of a sequence of functions each term of which is the difference of two functions in \(USG \).
4. \(f \) is in \(B_1(USG : LSG) \), and
5. For each \((a, b) \), the set \((a < f < b) \) is in \(W(R) \).

Sierpiński has proved that statements 1 and 2 are equivalent in [1] and Tucker that statements 1 and 3 are equivalent in [2].

Proof that 2 implies 4 and 5. Suppose \(f \) is in \(USG : LSG \). Let \(\{a_n\}_{n=1}^\infty \) be a non-increasing sequence from \(LSG \) converging to \(f \) and let \(\{h_n\}_{n=1}^\infty \) be a non-decreasing sequence from \(USG \) converging to \(f \). For each \(n, \ p, g_p > h_p \) and it follows from Theorem 5 that there is a function \(f_p \) in \(USG : LSG \) between \(g_p \) and \(h_p \). The sequence \(\{f_p\}_{p=1}^\infty \) converges to \(f \). So, \(f \) is in \(B_1(USG : LSG) \) and 2 implies 4. Suppose \((a, b) \) is a segment.
Hausdorff in [3] defines an ordinary function system \(E \) as a collection of functions which is a linear lattice containing the constant functions such that if \(f \) and \(g \) are in \(E \), then \(f + g \) is in \(E \) if and only if there is no \(x \) such that \(f(x) = 0 \), \(f' \) is in \(E \). A complete ordinary function system is an ordinary system which is closed under uniform limits. In [3] Hausdorff characterized \(B_1(E) \) where \(E \) is an ordinary function system in terms of associated Baire sets and proved that \(B_1(E) \) is a complete ordinary function system. Theorem 7 and the following theorem strengthen these results.

Theorem 8. If \(E \) is a linear lattice on \(S \) containing the constant functions, then \(B_1(E) \) is a complete ordinary function system.

Proof. Certainly \(B_1(E) \) is a linear lattice on \(S \) containing the constant functions. Sierpiński [1] has shown that \(USB_2(G) \cdot LSB_2(G) = B_3(G) \). So, by Theorem 5, \(B_1(E) \) is closed under uniform limits. Suppose \(f \) is in \(B_1(E) \). Let \(\{f_\alpha\}_{\alpha \in \Delta} \) be a sequence of bounded functions from \(E \) converging to \(f \). According to Theorem 2, \(f_\alpha \) is in \(G_\alpha \) for each \(\alpha \). It follows that \(f_\alpha \) is in \(B_1(E) \). If \(g \) is in \(B_1(E) \), since \(\forall \alpha \geq 0 \), \(\alpha \neq 0 \), we have \(f_\alpha \) is in \(B_1(E) \). Suppose there is no \(x \) such that \(f(x) = 0 \). Let \(\{f_\alpha\}_{\alpha \in \Delta} \) be a sequence from \(E \) converging to \(f' \) such that for each \(\alpha \), \(f_\alpha \) is bounded and \(\lim_{\alpha} f_\alpha(x) = f'(x) \) for each \(x \). Let \(\delta \), be \(\epsilon \), for each \(\alpha \). Again, according to Theorem 2, \(\delta_\alpha \) is in \(G_\alpha \). So, \(f' \) is in \(B_1(E) \) and hence \(f^{-1} = f \) is in \(B_1(E) \). So, \(B_1(E) \) is a complete ordinary function system.

Definition. Let \(W_\Delta(D) = D \) and for each ordinal number \(a, 0 < a < \Omega \), let \(W_a(D) = W_\Delta(D) \).

Use of transfinite induction and the fact that the collection \(\sum_{a < \alpha} B_1(G) \) is a linear lattice containing the constant functions, yields the following theorem.

Theorem 9. Suppose \(f \) is a function on \(S \) and \(0 < a < \Omega \). In order that \(f \) belong to \(B_1(G) \), it is necessary and sufficient that, for each segment \((a, b)\), the set \((a < f < b)\) should be in \(W_\Delta(D) \).

Remark. In case \(G \) is a complete ordinary function system, we have the following relationships between the method presented here and the method given by Hausdorff [3, pp. 292-295]. The functions in \(B_1(G) \) are the functions \(f_\alpha \), if \(0 < \xi < u \) and are the functions \(f^{\xi^+} \), if \(w < \xi < u \). Also, the sets in \(W_\Delta(D) \) are the sets \(M_\xi \), if \(0 < \xi < u \) and are the sets \(M^{\xi^+} \), if \(w < \xi < u \).

Theorem 10. Suppose \(G \) is USG-LSG. If for each \(n \), \(A_n \) is in \(D \), then \(\sum_{n} A_n \) is in \(D \).

Proof. For each \(n \), \(A_n = (a_n < f_n < b_n) \). For each \(n \), let \(g_n = (b_n - a_n)^{-1}[\max(b_n, \max(a_n, f_n)) - a_n] \). \(g_n \) is in \(G \) and \(A_n = (0 < g_n < 1) \).

For each \(n \), let \(a_n = (1 - g_n) \cdot a_n \). It follows from Theorems 2 and 5 that \(h_n \) is in \(G \). Let \(h = \sum_{n=1}^{\infty} 2^{-n} h_n \). Again, it follows from Theorem 5 that \(h \) in \(G \) and

\[
\sum_{n=1}^{\infty} A_n = (0 < h < 1) \text{ is in } D.
\]

Theorem 10 allows us to make a simplification in describing the collection \(W_{\alpha+1}(D) \) where \(0 < \alpha < \Omega \). Since \(USB_2(G) \cdot LSB_2(G) = B_3(G) \), it follows from Theorem 10 that the sum of countably many sets in \(W_{\alpha}(D) \) belongs to \(W_{\alpha+1}(D) \). If \(X \) is in \(W_{\alpha+1}(D) \), then \(X = \sum_{n=1}^{\infty} X_n \).

Since

\[
\sum_{n=1}^{\infty} X_n = \left(\sum_{n=1}^{\infty} X_n \right) \quad \text{and} \quad USB_2(G) \cdot LSB_2(G) = B_3(G) \quad \text{(see Sierpiński [1], p. 13)},
\]

it follows from Theorem 10, that \(\sum_{n=1}^{\infty} X_n \) is in \(W_{\alpha+1}(D) \). So, \(X \) is in \(W_{\alpha+1}(D) \) if and only if

\[
X = \sum_{n=1}^{\infty} X_n \quad \text{where, each } X_n \text{ is in } W_{\alpha}(D).
\]

The preceding results characterize the collection \(B_1(G) \) in terms of \(W_{\alpha}(D) \) for each \(a, 0 < a < \Omega \). However, \(W_{\alpha}(D) = D \) may not characterize \(B_1(G) = G \). For example, let \(G \) be the collection of all bounded functions over the interval \([0, 1]\) which are continuous except for a countable set and let \(H \) be the collection of all function on the interval \([0, 1]\) which are continuous except for a countable set. The \(D \) sets for the collection \(G \) are the \(D \) sets for the collection \(H \). The following theorem gives some conditions under which the collection \(D \) does characterize \(G \).

Theorem 11. Suppose \(G \) is USG-LSG. The following statements are equivalent:

1. If \(f \) is in \(G \) and \(\varphi \) is a continuous real function on the range of \(f, \varphi[f] \) is in \(G \).
2. A function \(f \) is in \(G \) if and only if for each segment \((a, b)\), \((a < f < b)\) is in \(D \).

Proof. By definition if \(f \) is in \(G \), then \((a < f < b)\) is in \(D \) for each segment \((a, b)\).

Suppose \(f \) is a function on \(S \) such that for each segment \((a, b)\), the set \((a < f < b)\) is in \(D \). Let \(f' = 2^{n} \tan^{-1}f \). For each \(n \), let

\[
g_n(x) = \begin{cases}
1 & \text{if } x \in S \cap \left(b_n - \frac{i-1}{2^n} < f < b_n + \frac{i+1}{2^n} \right), \\
\frac{i}{2^n} & \text{if } x \in S \cap \left(b_n - \frac{i-1}{2^n} < f < b_n + \frac{i+1}{2^n} \right),
\end{cases}
\]
and
\[h_{a,i}(x) = \begin{cases}
-1 & \text{if } x \text{ is in } S^{-\frac{i-1}{2^n}} < f' < \frac{i+1}{2^n}, \\
\frac{i-1}{2^n}, & \text{if } x \text{ is in } \left(\frac{i-1}{2^n}, \frac{i+1}{2^n} \right),
\end{cases} \]

where \(-2^n + 1 \leq i \leq 2^n - 1 \). It follows from Theorem 4, that \(g_{a,i} \) is in \(\text{USG} \) and \(h_{a,i} \) is in \(\text{LSG} \) and we have \(g_{a,i} > f' > h_{a,i} \).

Let \(\alpha_r = \min(g_{a,1}, g_{a,2}, g_{a,3}) \) and \(\beta_r = \max(h_{a,1}, h_{a,2}, h_{a,3}) \), and for each \(n, \ a_{n+1} = \min(g_{a,1}, g_{a,2}, \ldots, g_{a,n} - \frac{1}{2^n}, a_1, \ldots, a_n) \) and \(\beta_{n+1} = \max(h_{a,1} + \frac{1}{2^n}, h_{a,2} + \frac{1}{2^n}, \ldots, h_{a,n} + \frac{1}{2^n}, \beta_1, \ldots, \beta_n) \). For each \(n, a_n \) is in \(\text{USG} \) and \(\beta_n \) is in \(\text{LSG} \) and it follows that \(a_1 \geq a_2 \geq a_3 \geq \ldots \rightarrow f' \rightarrow \infty \in \beta_3 \leq \beta_2 \leq \beta_1 \). So, \(f' \) is in \(\text{USG-LSG} = \mathcal{G} \). By assumption, \(f = \tan \left(\frac{n}{2} f' \right) \) is in \(\mathcal{G} \). So, statement 1 implies statement 2.

Now, suppose that \(f \) is in \(\mathcal{G} \) and only if for each segment \((a, b) \), the set \(\{a < h < b\} \) is in \(D \). Suppose \(f \) is in \(\mathcal{G} \) and \(\varphi \) is a continuous real function on \(Y_f \), the range of \(f \).

Suppose \((a, b) \) is a segment. Let \(\left\{ \langle a_p, b_p \rangle \right\}_{p=1}^{\infty} \) be a sequence of segments such that \((a < \varphi < b) = Y_f. \frac{\sum_{p=1}^{\infty} (a_p, b_p)}{b_p - a_p} \) so that \((a < \varphi[f] < b) \)

\[= \sum_{p=1}^{\infty} (a_p < f < b_p). \] So, the set \((a < \varphi[f] < b) \) is the sum of countably many sets in \(D \). Since \(\text{USG-LSG} = \mathcal{G} \), it follows from Theorem 10, that \((a < \varphi[f] < b) \) is in \(D \). So, \(\varphi[f] \) is in \(\mathcal{G} \). Statements 1 and 2 are equivalent.

Theorem 12. Suppose \(\mathcal{S} \) is a countable set and \(F(S) \) denotes the collection of all real functions on \(S \). In order that \(F(S) = B(\mathcal{G}) \) it is necessary and sufficient that if \(x \) and \(y \) are in \(S \), then there be a function \(f \) in \(\mathcal{G} \) such that \(f(x) \neq f(y) \). Moreover, if \(F(S) = B(\mathcal{G}) \), then \(F(S) = B(\mathcal{G}) \).

Proof. Suppose that if \(x \) and \(y \) are in \(S \), then there is some \(f \) in \(\mathcal{G} \) such that \(f(x) \neq f(y) \). Let \(\langle e_p \rangle_{p=1}^{\infty} \) be a sequence of all the points of \(S \).

It follows that for each two positive integers \(p \) and \(q \), there is a function \(t_{pq} \) in \(\mathcal{G} \) such that \((|t_{pq}| \leq 1, t_{pq}(x) = 0 \) and \(t_{pq}(e_i) = 1 \) for each \(e_p \) and each \(x \) in \(S \).

Let \(h_{aq} = \left. \frac{1}{q} \right| \right. t_{qp}, \) for each positive integer pair \(n, q \). It follows from Theorem 2 that \(h_{aq} \) is in \(\mathcal{G}_q \). If \(i \leq n \), then \(h_{aq}(e_i) = 0 \) if \(i \neq q \) and equals 1 if \(i = q \).

Suppose \(f \) is a function on \(S \). For each \(e_i \), let \(f_i = \sum_{i=1}^{q} f(e_i) h_{aq} \).

If \(i = n \), then \(f_i(e_i) = f(e_i) \). So, \(f \) is the pointwise limit of a sequence from \(\mathcal{G}_q \) and \(f \) is in \(B(\mathcal{G}) \).