

References

- [1] G. Birkhoff, Lattice theory, Revised edition, Providence, R. I., 1967.
- [2] G. Bruns, Darstellungen und Erweiterungen geordneter Menger, J. reine angew. Math. 209 (1962), pp. 167-200; 210(1962), pp. 1-23.
- [3] М. Гаврилов, Върху две полугрупи от преобразования на топологически пространства, Годишник Софийск. ун-т, Матем. фак. 57 (1962-1963) (1964), pp. 377-380.
- [4] Л. М. Глускин, Идланы полугрупп преобразований, Матем. сборн. 47 (1959), 111-130.
- [5] Полугруппы изотонных преобразований, Успехи матем. наук 16 (1961), 157-162.
- [6] Автоморфизмы полугрупп бинарных отношений, Матем. записки 6 (1967), pp. 44-54.
- [7] А. Е. Либер, О симметрических обобщённых группах, Матем. сборн. 33 (1953), pp. 531-545.
- [8] Е. С. Ляпин, Некоторые эндоморфизмы упорядоченного множества, Изв. высш. учебн. завед., Математика № 2 (27) (1962), pp. 87-94.
- [9] B. M. Schein, Relation algebras, Bull. Acad. polon. Sci., Sér. sci. math., astr. et phys. 13 (1965), pp. 1-5.
- [10] Дифференцируемое многоодразие характеризуется псевдогруппой своих локальных диффеоморфизмов, Материялы II Прибалтийской геометрической коиференции, Тарту, 1965, pp. 179–182.
- [11] Homomorphisms and subdirect decompositions of semigroups, Pacific J. Math. 17 (1966), pp. 529-547.
- [12] J. Schreier, Über Abbildungen einer abstrakten Menge auf ihre Teilmengen, Fund. Math. 28 (1937), pp. 261–264.
- [13] R. Sikorski, Boolean algebras, Second edition, Berlin-Göttingen-Heidelberg-New York, 1964.
- [14] Л. Б. Шнеперман, Полугруппы непрерывных преобразований топологических пространств, Сибирск. матем. журн. 6 (1965), pp. 221–229.
- [15] W. J. Thron, Lattice-equivalence of topological spaces, Duke Math. J. 29 (1962), pp. 671-679.
- [16] К. А. Зарецкий, Абстрактная характеристика полугруппы всех бинарных отношений, Учёные записки Ленинградск. гос. пед. ин-та им. А. И. Герцена, каф. матем. 183 (1958), pp. 251–263.
- [17] Полугруппа вполне эффективных бинарных отношений, Теория полугрупп и её прилож., вып. 1 1965, pp. 238–250.

Reçu par la Rédaction le 3. 2. 1969

On the Baire system generated by a linear lattice of functions

bу

R. Daniel Mauldin (Gainsville, Fla)

Suppose G is a linear space of real functions defined over a point set S such that if f is in G, then |f| is in G; G is a linear lattice of functions over S. Also, suppose G contains the constant functions over S. Let $B_a(G) = G$ and for each ordinal number $a, 0 < a < \Omega$, let $B_a(G)$ denote the collection of all pointwise limits of sequences from the collection $\sum B_{\nu}(G)$. Sierpiński [1] and Tucker [2] have given necessary and sufficient conditions on a function f in order that it be in $B_1(G)$. These conditions are in terms of particular sequences of functions which converge in a uniform or a monotonic sense. Since for each ordinal a > 0, the collection $\sum B_{\gamma}(G)$ is a linear lattice of real functions over S and it contains the constant function over S, these results may be extended to give necessary and sufficient conditions on a function f in order that it be in $B_a(G)$. In this paper we characterize the collection $B_a(G)$, a > 0, in terms of an associated collection of Baire sets (Theorem 7) and give some relationships between these collections and the collections described by Hausdorff in [3].

Notation. If K is a lattice of functions, then K_u denotes the collection of all functions which are uniform limits of sequences from K, USK the collection of all functions which are limits of nonincreasing sequences from K and LSK the collection of all functions which are limits of nondecreasing sequences from K. The Baire system of functions generated by K is denoted by K. If K is a bounded function, $\|f\|$ denotes the l.u.b. norm of K.

THEOREM 1. If f is a bounded function in G, then f^2 is in G_u .

Proof. Suppose f is a bounded function in G and $f \neq 0$. Let $h = f/(\|f\|)$, so that h is in G. For each n, let

$$\begin{split} h_n(x) &= 2^n \left(\frac{i}{2^n}\right)^2 \left(h(x) - \frac{i-1}{2^n}\right) - 2^n \left(\frac{i-1}{2^n}\right)^2 \left(h(x) - \frac{i}{2^n}\right) \\ &= \frac{2i-1}{2^n} h(x) - \frac{i(i-1)}{2^n \cdot 2^n} \,, \end{split}$$

$$\text{if } \frac{i-1}{2^n}\leqslant h\left(x\right)\leqslant \frac{i}{2^n}\,, \text{ where } -2^n+1\leqslant i\leqslant 2^n\,.$$

If $h(x) = i \cdot 2^{-n}$, then $h_n(x) = (i \cdot 2^{-n})^2 = h^2(x)$ and if h(x) is between $(i-1) \cdot 2^{-n}$ and $i \cdot 2^n$, then $h_n(x)$ is between $[(i-1) \cdot 2^{-n}]^2$ and $(i \cdot 2^{-n})^2$. So, for each x in S,

$$|h_n(x)-h^2(x)|<|(i\cdot 2^{-n})^2-\lceil (i-1)\cdot 2^{-n}\rceil^2|=2^{-2n}|2i-1|\leqslant 2^{-2n}\cdot (2|i|+1)\;.$$

So, $|h_n(x) - h^2(x)| < 2^{-2n} \cdot (2 \cdot 2^n + 1) = 2^{-n+1} + 2^{-2n}$ and the sequence $\{h_p\}_{p=1}^{\infty}$ converges uniformly to h^2 .

For each n, let $g_{ni} = \max[(i-1) \cdot 2^{-n}, \min(h, i \cdot 2^{-n})]$, and let $c_{ni} = 2^{-n}(2i-1)$, for each $i, -2^n+1 \le i < 2^n$.

Let
$$d_n = 1 - \sum_{i=-2^n+1}^{2^n} c_{n_i} \cdot i \cdot 2^{-n} = 1 - \sum_{i=-2^n+1}^{2^n} i(2i-1) \cdot 2^{-n} \cdot 2^{-n}$$
.

Since G is a linear lattice containing the constant functions, the function $d_n + \sum_{i=-n+1}^{2^n} c_{ni} \cdot g_{ni}$ is in G, for each n.

Suppose *n* is a positive integer and $(p-1) \cdot 2^{-n} \le h(x) \le p \cdot 2^{-n}$, where $-2^n+1 \le p \le 2^n$. Then

$$\begin{split} d_n + \sum_{i = -2^n + 1}^{2^n} c_{ni} \cdot g_{ni}(x) \\ &= \sum_{i = -2^n + 1}^{p-1} \frac{(2i - 1)i}{2^n \cdot 2^n} + \frac{2p - 1}{2^n} \cdot h(x) + \sum_{i = p + 1}^{2^n} \frac{2i - 1}{2^n} \cdot \frac{i - 1}{2^n} + d_n \,, \\ &= \frac{2p - 1}{2^n} h(x) - \frac{p(2p - 1)}{2^n \cdot 2^n} + \sum_{i = -2^n + 1}^{p} \frac{(2i - 1)i}{2^n \cdot 2^n} + \sum_{i = p + 1}^{2^n} \frac{(2i - 1)(i - 1)}{2^n \cdot 2^n} + d_n \,, \\ &= \frac{2p - 1}{2^n} h(x) - \frac{p(2p - 1)}{2^n \cdot 2^n} - \frac{1}{2^n \cdot 2^n} \cdot \sum_{i = p + 1}^{2^n} (2i - 1) + 1 \,. \end{split}$$

$$\sum_{i=2^{n+1}}^{2^n} c_{ni}g_{ni}(x) + d_n = (2p-1)2^{-n}h(x) - p(p-1)\cdot 2^{-n}\cdot 2^{-n} = h_n(x).$$

This shows that for each n, h_n is in G and it follows that f^2 is in G_u .

THEOREM 2. Suppose f and g are bounded functions in G_u . Then (1) $f \cdot g$ is in G_u , (2) every polynomial in f is in G_u , and (3) if φ is a continuous real function whose domain includes the range of f and φ is the uniform limit of a sequence of polynomials, then $\varphi[f]$ is in G_u .

Theorem 2 is a corollary to Theorem 1.

DEFINITION. The collection to which X belongs if and only if there is some f in G and segment (a,b) such that X=(a< f< b) is denoted by D.

THEOREM 3. Suppose X is a proper subset of S and X is in D. If g is the characteristic function of S-X, then g is in USG.

Proof. Let f be a function in G and (a,b) a segment such that X = (a < f < b). Let $h = 2 \cdot (b-a)^{-1} \cdot [\max(a, \min(f, b)) - (a+b) \cdot 2^{-1}]$, so that h is in G, $-1 \le h \le 1$ and (-1 < h < 1) = (a < f < b) = X. It follows from Theorem 2 that, for each n, h^{2n} is in G_u . For each n, $(k^{2n} = 1) = (f \le a) + (f \ge b) = S - X$, and $h^{2n} \ge h^{2n+2}$. The sequence $\{h^{2p}\}_{p=1}^{\infty}$ is a nonincreasing sequence from G_u converging to g so that g is in US G_u . It follows that g is in US G_u .

THEOREM 4. In order that f be in USG it is necessary that, if a is a number, then the set (f < a) should be the sum of countably many sets each belonging to D. In case f is bounded above, this condition is also sufficient.

Proof. Suppose f is in USG. Let $\{f_p\}_{p=1}^{\infty}$ be a nonincreasing sequence from G converging to f from above. If a is a number, then (f < a) $= \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} (a-n < f_p < a) \text{ and is the sum of countably many sets from } D.$

Suppose f is bounded above and for each number a, (f < a) is the sum of countably many sets from D. Let F = 1 + f - 1.u.b. f and let $\{r_p\}_{p=1}^{\infty}$ be a sequence of all rational numbers ≤ 1 .

For each i, let $(F < r_i) = \sum_{p=1}^{\infty} X_{ip}$ where, for each p, X_{ip} is in D and let $g_{ip}(x) = 1$, if x is in $S - X_{ip}$, and $g_{ip}(x) = r_i$, if x is in X_{ip} . For each n, let $f_n = \min(g_{11}, \dots, g_{1n}, g_{21}, \dots, g_{2n}, \dots, g_{n1}, \dots, g_{nn})$. The sequence $\{f_p\}_{p=1}^{\infty}$ is nonincreasing and converges to F. Let $u_{ip}(x) = 1$ if is in $S - X_{ip}$ and $i_{ip}(x) = 0$, if x is in X_{ip} . It follows from Theorem 3, that u_{ip} is in US G. So $(1-r_i) \cdot u_{ip} + r_i = g_{ip}$ is in US G. So, for each n, f_n is in US G and since US (USG) = USG, F is in US G. It follows that f is in US G.

55

THEOREM 5. If H is a linear lattice on S containing the constant functions such that $USH \cdot LSH = H$, then $H_u = H$.

Proof. If h is in H_u , let $\{h_p\}_{p=1}^{\infty}$ be a sequence from H such that for each p, $||h-h_p|| \leq p^{-1}$. Let $a_p = \min(h_1+1, ..., h_p+p^{-1})$ for each p; $\{a_p\}_{p=1}^{\infty}$ is a non-decreasing sequence from H converging to h. h is in US H. Similarly, h is in LS H.

THEOREM 6. If g is in LSG, h is in USG and $g \ge h$, then there is a function f in LX·USG such that $g \ge f \ge h$ and if g(x) > h(x), then g(x) > f(x) > h(x).

Indication of Proof. Suppose $\{g_p\}_{p=1}^{\infty}$ is a nondecreasing sequence from G converging to g and $\{h_p\}_{p=1}^{\infty}$ is a nonincreasing sequence from G converging to h. For each p, let $a_p = g_p - 2^{-p}$ and $\beta_p = h_p + 2^{-p}$, so that the sequence $\{a_p\}_{p=1}^{\infty}$ is an increasing sequence from G converging to g and the sequence $\{\beta_p\}_{p=1}^{\infty}$ is a decreasing sequence from G converging to g.

Let $u_1 = a_1$ and for each $n, v_n = \max(u_n, \beta_n)$ and $u_{n+1} = \min(v_n, a_{n+1})$. It can be shown that there is a function f such that $u_1 \leqslant u_2 \leqslant u_3 \leqslant \ldots$ $\rightarrow f \leftarrow \ldots \leqslant v_3 \leqslant v_2 \leqslant v_1$ and that $g \geqslant f \geqslant h$ and if g(x) > h(x), then g(x) > f(x) > h(x).

DEFINITION. If R is a collection of subsets of S, then $W_1(R)$ is the collection to which X belongs if and only if $X = \sum_{n=1}^{\infty} (\prod_{p=1}^{\infty} X'_{np})$ where, for each $n, p, X_{n,p}$ is in R and $X'_{n,p}$ is the complement of $X_{n,p}$.

The next theorem includes a characterization of $B_1(G)$ in terms of $W_1(D)$.

THEOREM 7. Suppose f is a function on S. Each two of the following statements are equivalent:

- (1) f is in $B_1(G)$,
- (2) f is in $US(LSG) \cdot LS(USG)$,
- (3) f is the uniform limit of a sequence each term of which is the difference of two functions in USG,
 - (4) f is in $B_1(USG \cdot LSG)$, and
 - (5) for each segment (a, b), the set (a < f < b) is in $W_1(D)$.

Sierpiński has proved that statements 1 and 2 are equivalent in [1] and Tucker that statements 1 and 3 are equivalent in [2].

Proof that 2 implies 4 and 5. Suppose f is in US(LS G)·LS(US G). Let $\{g_p\}_{p=1}^{\infty}$ be a noincreasing sequence from LS G converging to f and let $\{h_p\}_{p=1}^{\infty}$ be a non-decreasing sequence from US G converging to f. For each p, $g_p \ge f \ge h_p$ and it follows from Theorem 5 that there is a function f_p in US G·LS G between g_p and h_p . The sequence $\{f_p\}_{p=1}^{\infty}$ converges to f. So, f is in $B_1(\text{US }G$ ·LS G) and 2 implies 4. Suppose (a, b) is a segment.

Proof that 4 implies 2. Suppose f is in $B_1(\text{US}G \cdot \text{LS}G)$. Since $\text{US}G \cdot \text{LS}G$ is a linear lattice and statements 1 and 2 are equivalent, f is in $\text{US}[\text{LS}(\text{US}G \cdot \text{LS}G)]$ and in $\text{LS}[\text{US}(\text{US}G \cdot \text{LS}G)]$. But, it is easy to show that $\text{LS}(\text{US}G \cdot \text{LS}G) = \text{LS}G$ and that $\text{US}(\text{US}G \cdot \text{LS}G) = \text{US}G$. So, f is in $\text{US}(\text{LS}G) \cdot \text{LS}(\text{US}G)$. Statements 2 and 4 are equivalent.

Proof that 5 implies 4. Suppose f is a function on S and for each segment (a, b), (a < f < b) is in $W_1(D)$. Let $f' = 2\pi^{-1} \tan^{-1} f$. For each n, let L_n be the collection of all segments of the form $(i-1/2^n, i+1/2^n)$ where, $-2^n+1 \le i \le 2^n+1$. L_n is a collection of segments covering (-1, 1). For each n, let $\{K_{np}\}_{p=1}^{\infty}$ be a sequence such that (1) each K_{np} is the common part of the complements of countably many sets in D, (2) for each p, there is some member (a, b) of L_n such that K_{np} is a subset of (a < f' < b), and (3) for each segment (a, b) of L_n , there is a subsequence $\{K_{npi}\}_{i=1}^{\infty}$ such that $(a < f' < b) = \sum_{i=1}^{\infty} K_{npi}$.

For each positive integer pair n, p, let $q_{np}(x) = 1$, if x is in $S - K_{np}$ and $q_{np}(x) = b$, if x is in K_{np} and K_{np} is a subset of (a < f' < b) and (a, b) is in L_n and let $h_{np}(x) = -1$, if x is in $S - K_{np}$ and $h_{np}(x) = a$, if x is in K_{np} and K_{np} is a subset of (a < f' < b) and (a, b) is in L_n . For each n, p, $(h_{np} < c) = S$, if c > a and $(h_{np} < c) = S - K_{np}$, if $c \leqslant a$. But $S - K_{np}$ is the sum of countably many sets in D. It follows from Theorem 4 that h_{np} is in US G. Similarly, g_{np} is in LS G.

For each n, let $\alpha_n = \min(g_{11}, \dots, g_{1n}, g_{21}, \dots, g_{2n}, \dots, g_{n1}, \dots, g_{nn})$ and let $\beta_n = \max(h_{11}, \dots, h_{1n}, h_{21}, \dots, h_{2n}, \dots, h_{n1}, \dots, h_{nn})$. For each n, α_n is in LSG and β_n is in USG, $\alpha_n \geqslant \alpha_{n+1}$ and $\beta_n \leqslant \beta_{n+1}$. Noting that for each n, p, $h_{np} < f' < g_{np}$, we have that for each n, $\beta_n < f' < a_n$. It can be shown that the sequences $\{\alpha_p\}_{p=1}^{\infty}$ and $\{\beta_p\}_{p=1}^{\infty}$ converge to f'. So, f' is in $B_1(\text{US}G\cdot\text{LS}G)$. Let $\{t_p\}_{p=1}^{\infty}$ be a sequence from USG·LSG converging to f' such that, for each n, $||t_n|| = c_n < 1$. For each n, let $S_n = \tan \pi/2 \ t_n$; it follows from Theorems 2 and 5 that S_n is in USG·LSG. The sequence $\{S_p\}_{p=1}^{\infty}$ converges to f. f is in $B_1(\text{US}G\cdot\text{LS}G)$. This completes the proof of Theorem 7.

Hausdorff in [3] defines an ordinary function system F as a collection of functions which is a linear lattice containing the constant functions such that if f and g are in F, $f \cdot g$ is in F and if there is no x such that f(x) = 0, f^{-1} is in F. A complete ordinary function system is an ordinary system which is closed under uniform limits. In [3] Hausdorff characterized $B_1(F)$ where F is an ordinary function system in terms of associated Baire sets and proved that $B_1(F)$ is a complete ordinary function system. Theorem 7 and the following theorem strengthen these results.

Theorem 8. If G is a linear lattice on S containing the constant functions, then $B_1(G)$ is a complete ordinary function system.

Proof. Certainly $B_1(G)$ is a linear lattice on S containing the constant functions. Sierpiński [1] has shown that $\mathrm{US}\,B_1(G)$ LS $B_1(G)=B_1(G)$. So, by Theorem 5, $B_1(G)$ is closed under uniform limits. Suppose f is in $B_1(G)$. Let $\{f_p\}_{p=1}^\infty$ be a sequence of bounded functions from G converging to f. According to Theorem 2, f_p^2 is in G_n for each g. It follows that f^2 is $\mathrm{in}\,B_1(G)$. If g is in $B_1(G)$, since $2f\cdot g=(f+g)^2-f^2-g^2$, we have $f\cdot g$ is in $B_1(G)$. Suppose there is no g such that g such that g be a sequence from g converging to g such that for each g, g is bounded and g by g for each g in g. Let g is g is in the g such that for each g. Again, according to Theorem 2, g is in the g So, g is in the g So, g is in g in g is a complete ordinary function system.

DEFINITION. Let $W_0(D)=D$ and for each ordinal number $a,\,0<\alpha<\Omega,$ let $W_a(D)$ be $W_1(\sum W_\nu(D)).$

Use of transfinite induction and the fact that the collection $\sum_{\gamma < a} B_{\gamma}(G)$ is a linear lattice containing the constant functions, yields the following theorem.

THEOREM 9. Suppose f is a function on S and $0 < a < \Omega$. In order that f belong to $B_a(G)$ it is necessary and sufficient that, for each segment (a, b), the set (a < f < b) should be in $W_a(D)$.

Remark. In case G is a complete ordinary function system, we have the following relationships between the method presented here and the method given by Hausdorff [3, pp. 292–293]. The functions in $B_{\xi}(G)$ are the functions f^{ξ} , if $0 \leqslant \xi < w$ and are the functions $f^{\xi+1}$, if $w \leqslant \xi < \Omega$. Also, the sets in $W_{\xi}(D)$ are the sets M^{ξ} , if $0 \leqslant \xi < w$ and are the sets $M^{\xi+1}$ if $w \leqslant \xi < \Omega$.

THEOREM 10. Suppose G is USG-LSG. If for each n, A_n is in D, then $\sum_{n=1}^{\infty} A_n$ is in D.

Proof. For each n, $A_n = (a_n < f_n < b_n)$. For each n, let $g_n = (b_n - a_n)^{-1} [\min(b_n, \max(a_n, f_n)) - a_n]$, g_n is in G and $A_n = (0 < g_n < 1)$.

For each n, let $h_n = (1 - g_n) \cdot g_n$. It follows from Theorems 2 and 5 that h_n is in G. Let $h = \sum_{p=1}^{\infty} 2^{-p} h_p$. Again, it follows from Theorem 5 that h in G and $\sum_{n=1}^{\infty} A_p = (0 < h < 2) \text{ is in } D.$

Theorem 10 allows us to make a simplification in describing the collection $W_{a+1}(D)$ where, $0 < a < \Omega$. Since $\mathrm{US}\,B_a(G) \cdot \mathrm{LS}\,B_a(G) = B_a(G)$, it follows from Theorem 10 that the sum of countably many sets in $W_a(D)$. belongs to $W_a(D)$. If X is in $W_{a+1}(D)$, then $X = \sum_{n=1}^{\infty} \prod_{p=1}^{\infty} X'_{pn}$. Since $\prod_{p=1}^{\infty} X'_{pn} = \left(\sum_{p=1}^{\infty} X_{pn}\right)'$ and $\mathrm{US}\,B_a(G) \cdot \mathrm{LS}\,B_a(G) = B_a(G)$ (see Sierpiński [1],

p. 13), it follows from Theorem 10, that $\sum_{p=1}^{\infty} X_{pn}$ is in $W_a(D)$. So, X is in $W_{a+1}(D)$ if and only if $X = \sum_{n=1}^{\infty} X_n$ where, each X_n is in $W_a(D)$.

The preceding results characterize the collection $B_a(G)$ in terms of $W_a(D)$ for each $a, 0 < a < \Omega$. However, $W_0(D) = D$ may not characterize $B_0(G) = G$. For example, let G be the collection of all bounded functions over the interval [0,1] which are continuous except for a countable set and let H be the collection of all function on the interval [0,1] which are continuous except for a countable set. The D sets for the collection G are the D sets for the collection G. The following theorem gives some conditions under which the collection D does characterize G.

Theorem 11. Suppose G is $USG \cdot LSG$. The following statements are equivalent:

- (1) If f is in G and φ is a continuous real function on the range of f, $\varphi[f]$ is in G.
- (2) A function f is in G if and only if for each segment (a, b), (a < f < b) is in D.

Proof. By definition if f is in G, then (a < f < b) is in D for each segment (a, b).

Suppose f is a function on S such that for each segment (a, b), the set (a < f < b) is in D. Let $f' = 2/\pi \tan^{-1} f$. For each n, let

$$g_{n,i}(x) = \begin{cases} 1 \text{ if } x \text{ is in } S - \left(\frac{i-1}{2^n} < f' < \frac{i+1}{2^n}\right), \\ \\ \frac{i+1}{2^n}, \text{ if } x \text{ is in } \left(\frac{i-1}{2^n} < f' < \frac{i+1}{2^n}\right), \end{cases}$$

and

$$h_{n,i}(x) = \begin{cases} -1 & \text{if } x \text{ is in } S - \left(\frac{i-1}{2^n} < f' < \frac{i+1}{2^n}\right), \\ \\ \frac{i-1}{2^n}, & \text{if } x \text{ is in } \left(\frac{i-1}{2^n} < f' < \frac{i+1}{2^n}\right), \end{cases}$$

where $-2^n+1 \le i \le 2^n-1$. It follows from Theorem 4, that $g_{n,i}$ is in USG and $h_{n,i}$ is in LSG and we have $g_{n,i} > f' > h_{n,i}$.

Let $a_1 = \min(g_{1,-1}, g_{1,0}, g_{1,1})$ and $\beta_1 = \max(h_{1,-1}, h_{1,0}, h_{1,1})$, and for each n, $a_{n+1} = \min(g_{n,2}, n_{-1}, g_{n,2}n_{-2}, ..., g_{n,-2}n_{+1}, a_1, ..., a_n)$, and $\beta_{n+1} = \max(h_{n,2}n_{-1}, h_{n,2}n_{-2}, ..., h_{n,-2}n_{+1}, \beta_1, ..., \beta_n)$. For each n, a_n is in USG and β_n is in LSG and it follows that $a_1 \ge a_2 \ge a_3 \ge ... \Rightarrow f' \leftarrow ...$

 $\leq \beta_3 \leq \beta_2 \leq \beta_1$. So, f' is in US G LS G = G. By assumption, $f = \tan\left[\frac{\pi}{2}f'\right]$ is in G. So, statement 1 implies statement 2.

Now, suppose that h is in G if and only if for each segment (a, b), the set (a < h < b) is in D. Suppose f is in G and φ is a continuous real function on Y_f , the range of f.

Suppose (a, b) is a segment. Let $\{(a_p, b_p)\}_{p=1}^{\infty}$ be a sequence of segments such that $(a < \varphi < b) = Y_f \cdot \sum_{p=1}^{\infty} (a_p, b_p)$ so that $(a < \varphi[f] < b)$

 $= \sum_{p=1}^{\infty} (a_p < f < b_p).$ So, the set $(a < \varphi[f] < b)$ is the sum of countably many sets in D. Since US G · LS G = G, it follows from Theorem 10, that $(a < \varphi[f] < b)$ is in D. So, $\varphi[f]$ is in G. Statements 1 and 2 are equivalent.

THEOREM 12. Suppose S is a countable set and F(S) denotes the collection of all real functions on S. In order that F(S) = B(G) it is necessary and sufficient that if x and y are in S, then there be a function f in G such that $f(x) \neq f(y)$. Moreover, if F(S) = B(G), then $F(S) = B_1(G)$.

Proof. Suppose that if x and y are in S, then there is some f in G such that $f(x) \neq f(y)$. Let $\{s_p\}_{p=1}^{\infty}$ be a sequence of all the points of S.

It follows that for each two positive integers n and p, there is a function t_{np} in G such that $||t_{np}|| \le 1$, $t_{np}(s_p) = 0$ and $t_{np}(s_n) = 1$. Let $t_{pp}(x) = 1$ for each p and each x in S.

Let $h_{nq} = \prod_{p=1}^{n} t_{qp}$, for each positive integer pair n, q. It follows from Theorem 2 that h_{nq} is in G_u . If $i \leq n$, then $h_{nq}(s_i) = 0$ if $i \neq q$ and $i \neq q$ and $i \neq q$.

Suppose f is a function on S. For each n, let $f_n = \sum_{q=1}^n f(s_q) h_{nq}$. If $i \leq n$, then $f_n(s_i) = f(s_i)$. So, f is the pointwise limit of a sequence from G_u and f is in $B_1(G)$.

References

- [1] W. Sierpiński, Sur les anneaux de fonctions, Fund. Math. 18 (1932), pp. 1-22.
- [2] C. Tucker, Limit of a sequence of functions with only countably many points of discontinuity, Proc. Amer. Math. Soc. 19 (1968), pp. 118-122.
- [3] F. Hausdorff, Set theory, 2nd ed., Chelsea, New York, 1962.

UNIVERSITY OF FLORIDA Gainesville Florida

Reçu par la Rédaction le 6.2.1969