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Abstract

We provide an explicit invariant formula for the area of intersection of the regions
interior to ellipses and hyperbolas centered at the origin.A further explicit formula
is given for the area of union of the interior of two ellipses centered at the origin.
We construct our regions using nonsingular real quadratic forms f and g, with the
region in question being bounded by potentially four curvesof the form f (x,y) =
±1 andg(x,y) = ±1. Our formulas make use of the following invariants of these
quadratic forms under the group of linear transformations:discriminant, resultant,
and polarization of discriminant. In addition, we provide an invariant upper bound
for the number of lattice points in a region bounded by ellipses. This fills a void
in the literature, as noted in the recent paper [4] by the third author which merely
gives an upper bound for the area computed here in the hyperbolic case. Indeed, the
aforementioned paper specifically states that an exact formula for the area will provide
a route to generalized results.

2010 Mathematics Subject Classification:Primary 51M25; Secondary 11P21

1. Introduction

Conic regions have been studied since the time of the ancient Greeks. The only conic
which forms a bounded region is the ellipse, whose area is given by the wellknown formula
2π/

√
−D, whereD is its discriminant. Despite the long history of conic regions, our main

theorem is the first to provide exact formulas for the area of intersection of elliptic and
hyperbolic regions, such as those in Figure 1 below.

Indeed, a literature search reveals [1], which gives a computational algorithm for com-
puting the area of intersection of specified horizontal or vertical ellipses. Asimilar article,
[2], gives another algorithm with several concrete applications including “simulations for
both the satellite solar calibrator and force-based pedestrian dynamic model”which they
caution requires “efficient calculation of the overlap area between two ellipses;” our exact
formulas should give the best possible efficiency in these applications.

∗E-mail address: rault@geneseo.edu; Website: http://geneseo.edu/∼rault
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Figure 1. Regions interior to ellipses and hyperbolas.

Theorem 1.1. Let f and g be real binary quadratic forms with resultant R, discriminants
D( f ) and D(g), and polarization of the discriminant P. Consider the region of all(x,y) ∈
R

2 such that| f (x,y)| ≤ 1 and |g(x,y)| ≤ 1. If RD( f )D(g) 6= 0, then the area of the region
is equal to the following.

1. If there exist uf ,ug ∈ {−1,1} such that both f(x,y) = uf and g(x,y) = ug represent
ellipses, then the area is

2√
−D( f )

arccos
[

D( f )−uf ugP√
4R

]

+ 2√
−D(g)

arccos
[

D(g)−uf ugP√
4R

]

.

2. If there exists a unit uf ∈ {−1,1} for which f(x,y) = uf is an ellipse and g(x,y) = 1
is a hyperbola, then the area depends on the number of intersection points.

• If there exists a unit ug ∈ {−1,1} for which f(x,y) = uf intersects g(x,y) = ug

but not g(x,y) =−ug, then the area is

2√
−D( f )

arccos
[

D( f )−uf ugP√
4R

]

+ 2√
D(g)

arccosh
∣

∣

∣

D(g)−uf ugP√
4R

∣

∣

∣
.

• If f (x,y) = uf intersects both g(x,y) = 1 and g(x,y) =−1, then the area is

2√
−D( f )

(

arccos
[

D( f )−uf P√
4R

]

−arccos
[

−D( f )+uf P√
4R

])

+ 2√
D(g)

(

arccosh
∣

∣

∣

D(g)−uf P√
4R

∣

∣

∣
+arccosh

∣

∣

∣

D(g)+uf P√
4R

∣

∣

∣

)

.

3. If both f(x,y) = 1 and g(x,y) = 1 are hyperbolas, then the area depends on the num-
ber of intersection points (between the four hyperbolas f(x,y) = ±1 and g(x,y) =
±1) and the arrangement of the asymptotes.

• If there exist uf ,ug ∈ {−1,1} for which the curve f(x,y) = uf intersects the
curve g(x,y) = ug, but f(x,y) =−uf intersects neither g(x,y) = 1 nor g(x,y) =
−1, and the curve g(x,y) = −ug intersects f(x,y) = 1 nor f(x,y) = −1, then
there are 4 intersection points and the area is

2√
D( f )

arccosh
∣

∣

∣

D( f )−uf ugP√
4R

∣

∣

∣
+ 2√

D(g)
arccosh

∣

∣

∣

D(g)−uf ugP√
4R

∣

∣

∣
.



On Invariant Area Formulas and Lattice Point Bounds... 27

• If there exists a unit u∈ {−1,1} such that the curve f(x,y) = u intersects both
g(x,y) = 1 and g(x,y) =−1, but f(x,y) =−u intersects neither g(x,y) = 1 nor
g(x,y) =−1, and if the asymptotes of f(x,y) = 1 lie “between” the asymptotes
of g(x,y) = 1 (i.e. if rotating about the origin we pass in sequence to asymptotes
of g(x,y) =±1 followed by two asymptotes of f(x,y) =±1, then recross those
of g(x,y) =±1), then the area is

2√
D( f )

(

arccosh
∣

∣

∣

D( f )−uP√
4R

∣

∣

∣
−arccosh

∣

∣

∣

D( f )+uP√
4R

∣

∣

∣

)

+ 2√
D(g)

(

arccosh
∣

∣

∣

D(g)−uP√
4R

∣

∣

∣
+arccosh

∣

∣

∣

D(g)+uP√
4R

∣

∣

∣

)

.

• If each of f(x,y) = 1 and f(x,y) = −1 intersect both g(x,y) = 1 and g(x,y) =
−1, then exactly one asymptote of f(x,y)= 1 lies “between” the two asymptotes
of g(x,y) = 1 (any notion of “between” is valid here), and there is some choice
of u1,u2,u3,u4 ∈ {−1,1} for which the area is

2√
|D( f )|

(

arccosh
∣

∣

∣

D( f )+u1P√
4R

∣

∣

∣
+u2arccosh

∣

∣

∣

D( f )−u1P√
4R

∣

∣

∣

)

+ 2√
|D(g)|

(

arccosh
∣

∣

∣

D(g)+u3P√
4R

∣

∣

∣
+u4arccosh

∣

∣

∣

D(g)−u3P√
4R

∣

∣

∣

)

.

A secondary benefit of our technique, most notably the use of Lemma 2.1, isthe area
of union of the interiors of two ellipses. Specifically, the formula is a mere sign-change
from the ellipse intersection formula found in Theorem 1.1 above. Note that the infinitude
of area bounded by a hyperbola prohibits a full generalization of Theorem 1.1 for unions.

Theorem 1.2. Let f and g be real definite binary quadratic forms with resultant R, dis-
criminants D( f ) and D(g), and polarization of the discriminant P. Consider the region of
all (x,y) ∈ R

2 such that either| f (x,y)| ≤ 1 or |g(x,y)| ≤ 1: this is a union of two ellipses.
Assume that RD( f )D(g) 6= 0 and that there exist uf ,ug ∈ {−1,1} for which both uf f (x,y)
and ugg(x,y) are positive definite. Then the area of the region is equal to the following.

2√
−D( f )

arccos
[

−D( f )+uf ugP√
4R

]

+ 2√
−D(g)

arccos
[

−D(g)+uf ugP√
4R

]

.

Note thatD j > 0 for hyperbolas, which arise from indefinite polynomials, andD j < 0
for ellipses, which arise from definite polynomials. Hence we have

2
√

−D j
arccos

[

D j +uP√
4R

]

=
2

√

D j
arccosh

∣

∣

∣

∣

D j +uP√
4R

∣

∣

∣

∣

.

Upper bounds for the areas of, and number of lattice points in, the intersection of hyperbolic
regions are given in the paper [4], which focuses on approximations for the number of
integer lattice points in these regions. The paper left open a question abouta general formula
for the exact area of these regions.

Our result helps to generalize the lattice point approximations of [4]. Indeed, using one
of their results we give the following invariant bound for lattice points in the intersection
and union of the interior of two ellipses:
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Theorem 1.3.Let f and g be real definite binary quadratic forms with resultant R, discrim-
inants D( f ) and D(g), and polarization of the discriminant P. Let Ef denote the region of
all (x,y) ∈ R

2 such that| f (x,y)| ≤ 1 and Eg denote the region of all(x,y) ∈ R
2 such that

|g(x,y)| ≤ 1; each of these is the interior of an ellipse. Assume that RD( f )D(g) 6= 0 and
that there exist uf ,ug ∈ {−1,1} for which both uf f (x,y) and ugg(x,y) are positive definite.
Let N∩ denote the number of integer lattice points inside Ef ∩Eg, and N∪ denote the number
of lattice points inside Ef ∪Eg. Then we have the following two upper bounds:

N∩ ≤ 2+ 4√
−D( f )

arccos
[

D( f )−uf ugP√
4R

]

+ 4√
−D(g)

arccos
[

D(g)−uf ugP√
4R

]

and

N∪ ≤ 2+ 4√
−D( f )

arccos
[

−D( f )+uf ugP√
4R

]

+ 4√
−D(g)

arccos
[

−D(g)+uf ugP√
4R

]

.

The point here is that these upper bounds areinvariant under the action of SL2(Z). It is
conjectured that these formulas could be improved to resemble those found for hyperbolic
regions in [4]. Indeed, the lattice point calculations of [4] serve a higherpurpose of calcu-
lating asymptotic formulas for the height-counting function of the rational curves in [5], in
which the author states that “a strengthening of this prior result would also strengthen [the
main theorem].”

2. Preliminaries

Consider two nonsingular real quadratic forms (i.e. homogenous polynomials) f1 and
f2, written as fi(x,y) = aix2 + bixy+ ciy2. Each of these give rise to one ellipse or two
quadratic curvesC±

i : fi(x,y) = ±1. Note that whenfi is definite only one choice of±
gives rise to an ellipseC±

i (whileC∓
i is empty), but whenfi is indefinite, both choices of±

will give rise to hyperbolasC±
i .

We will use the following invariants throughout our computations.

Definition 1. For i ∈ {1,2}, let fi(x,y) = aix2+bixy+ciy2 denote quadratic forms over any
field.

1. The discriminantDi = D( fi) of fi is the coefficient polynomialDi = b2
i −4aici .

2. The polarization(of the discriminant)P = P( f1, f2) of the forms is the coefficient
polynomialP= b1b2−2a1c2−2a2c1.

3. The resultantR= R( f1, f2) of the forms is the determinant of the Sylvester matrix of
f1 and f2.

The definitions of discriminant and resultant are standard, and the definition of polariza-
tion can be found in [3]. For an alternate formulation in terms of determinants involving the
linear factors off1 and f2, see [4] or [5]. The resultant satisfies the following remarkable
syzygy, which simplifies our calculations:

4R= P2−D1D2.
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Observe that these coefficient polynomials are invariant under a matrix transformationA
acting on[x,y], with weights 2 or 4 as follows:D( fi ◦A)=D( fi)det(A)2, P( f1◦A, f2◦A)=
P( f1, f2)det(A)2, andR( f1◦A, f2◦A) = R( f1, f2)det(A)4. Note further that there is a nice
correspondence under negation.

D(± fi) = D( fi)
P(±1 f1,±2 f2) =±1(±2P( f1, f2))

R(±1 f1,±2 f2) = R( f1, f2)
(2.1)

We note that in order forC+
i orC−

i to be an ellipse we needDi < 0. In order forC+
i andC−

i
to be hyperbolas we needDi > 0.

In polar coordinates our conics are given by the following equations.

Cu1
1 : (r1(θ))2 = u1 sec2 θ

a1+b1 tanθ+c1 tan2 θ
Cu2

2 : (r2(θ))2 = u2 sec2 θ
a2+b2 tanθ+c2 tan2 θ

(2.2)

whereu1 andu2 are discrete variables in{−,+}.
To find the angles at which our conics intersect we set(r1(θ))2,(r2(θ))2 equal giving

us the two quadratic equations

(u2c2−u1c1) tan2 θ+(u2b2−u1b1) tanθ+(u2a2−u1a1) = 0. (2.3)

We simplify this expression by writinga = u2a2−u1a1,b = u2b2−u1b1, andc = u2c2−
u1c1.

Employing the quadratic formula we have at most two pairs of tangent values:

tanθi,± =
−b±

√

(D1+D2)−2u1u2P

2c
.

Each intersection angleφ at which our conics intersect corresponds to another angle
of intersectionφ+π of our two conics because of the periodicity of the tangent function.
Hence at most 8 angles of intersection are possible. Furthermore a glanceat some examples
shows us that our two conics will not always intersect at eight points; in cases where our
conics intersect in four points, the variablesu1 andu2 in Equation 2.3 are constant.

Lemma 2.1. Consider curves C1 and C2 each of which is either an ellipse or hyperbola
centered at the origin. Assume further that C1 and C2 intersect in exactly 4 points. Let Ain

denote the arcs of C1 which intersect C2 at its endpoints and is closer to the origin than C2

(viewed along rays from the origin), and let Aout denote the remaining arcs of U, which are
further from the origin than is C2.

For each i, let fi denote the real quadratic form for which Ci is the curve fi(x,y) = 1.
Let Di denote the discriminant of fi , P the polarization (of the discriminant) of f1 and f2,
and R the resultant of f1 and f2. If R is nonzero, then

1. If C1 is an ellipse, then the area between the arc Ain and the origin, and the area
between Aout and the origin, are respectively

2√
−D1

arccos

[

D1−P√
4R

]
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or
2√
−D1

arccos

[−D1+P√
4R

]

.

2. If C1 is a hyperbola, then exactly one of Ain and Aout is a connected arc; the area
between this arc and the origin is exactly

2√
D1

arccosh

∣

∣

∣

∣

D1−P√
4R

∣

∣

∣

∣

.

Because some of the techniques used within the proof of Lemma 2.1 will be reused, we
now divert our attention to its proof.

3. Proof of Lemma 2.1

For i = 1 andi = 2 let fi = aix2+bixy+ciy2 denote a real quadratic form with nonzero
discriminantDi , and letCi denote the curvefi(x,y) = 1. Assume further that the pairf1 and
f2 have nonzero resultantR and have polarizationP, and that|C1∩C2|= 4.

Let θ1 andθ2 denote a pair of adjacent intersection points ofC1 andC2. Via rotation,
we assume without loss of generality that−π/2< θ1 < 0< θ2 < π/2. We recall Equation
2.2, the formula forC1 in polar coordinates, and manipulate it to yield

(r(θ))2 =

√
|D1|

2
√

c1
(b1sec2 θ+2c1sec2 θ tanθ)(a1+b1 tanθ+c1 tan2 θ)− 3

2

√

|D1|
√

1+ D1
4c1(a1+b1 tanθ+c1 tan2 θ)

.

We rewrite this formula usingv :=

√

|D1|
4c1(a1+b1 tanθ+c1 tan2 θ)

.

Thenr2(θ) dθ =







−2 dv√
−D1(1−v2)

, if C1 is an ellipse;
−2 dv√
D1(1+v2)

, if C1 is a hyperbola.

For simplicity of notation, we setvi as
√

D1/(4c1(a1+b1 tanθi +c1 tan2 θi)) if C1 is an
ellipse or

√

−D1/(4c1(a1+b1 tanθi +c1 tan2 θi)) if C1 is a hyperbola. Then the arc area
betweenC1 and the origin, with angle betweenθ1 andθ2, is exactly the following.

Area =
θ2∫

θ1

r∫

0
ρ dρ dθ = 1

2

θ2∫

θ1

r2 dθ = −1
|D1|

v2∫

v1

dv√
1∓v2

=







− 1√
−D1

arcsinv
∣

∣

∣

v2

v1

, if C1 is an ellipse;

− 1√
D1

arcsinhv
∣

∣

∣

v2

v1

, if C1 is a hyperbola.

(3.4)

Note that our restriction−π/2< θ1 < θ2 < π/2 guarantees thatv 6= 0 and therefore that we
do not cross they-axis branch cut of arcsin; note that arcsinh has no branch cut. Indeed we
avoid using arccos and arccosh due to the branch cuts ofy= −b1x

2c1
.
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Note that arcsinv2 − arcsinv1 = ±arccos

(

v1v2+
√

(1−v2
1)(1−v2

2)

)

allows us to

combine terms in the elliptic case, while in the hyperbolic case we use arcsinhv2 −
arcsinhv1 = ±arccosh

(

√

(v2
1+1)(v2

2+1)−v1v2

)

. Recalling our definitions forv1 and

v2 while noting that areas are necessarily positive, we arrive at two relatedformulas with a
common argument. Specifically, in the case whenC1 is an ellipse we have

Area = 1√
−D1

arccos

(

2c1 tanθ1 tanθ2+b1(tanθ1+tanθ2)+2a1

2
√

(a1+b1 tanθ1+c1 tan2 θ1)(a1+b1 tanθ2+c1 tan2 θ2)

)

, (3.5)

and whenC1 is a hyperbola we have

Area = 1√
−D1

arccosh

(

2c1 tanθ1 tanθ2+b1(tanθ1+tanθ2)+2a1

2
√

(a1+b1 tanθ1+c1 tan2 θ1)(a1+b1 tanθ2+c1 tan2 θ2)

)

. (3.6)

Note thatX = tanθ1 andX = tanθ2 are roots of the polynomial found in Equation 2.3.

(c2−c1)X
2+(b2−b1)X+(a2−a1) = 0 (3.7)

Hence−(b2−b1)
c2−c1

= tanθ1+ tanθ2, anda2−a1
c2−c1

= tanθ1 tanθ2.
Let u denote the sign ofc2− c1. Recalling our assumption thatθ1 < 0 < θ2, we note

that a2−a1
c2−c1

= tanθ1 tanθ2 < 0. Therefore the sign ofa2 − a1 is −u. Since 1/
√

a1 is the
x-intercept ofC1, clearly we know thata1 > 0. Furthermore, ifC2 is closer to the origin on
the arc fromθ1 to θ2 then we know thata2 > a1; in this caseu=−. In the remaining case
we havea1 > a2 and we say thatC1 is closer to the origin (even ifC2 is a hyperbola crossing
an asymptote on this arc); in this caseu= +. We conclude thatu is positive if and only if
C1 is closer to the origin thanC2.

After substitution, the argument of Equations 3.5 and 3.6 becomes

u

(

2c1(a2−a1)−b1(b2−b1)+2a1(c2−c1)

2
√

(c2−c1)2(a1+b1 tanθ1+c1 tan2 θ1)(a1+b1 tanθ2+c1 tan2 θ2)

)

.

After rearrangement and involvement of Definition 1, and doubling for thesymmetric arc
from θ1+π to θ2+π, we come to the following concise formula for the area.

Area=







2√
−D1

arccos
(

uD1−P√
4R

)

, if C1 is an ellipse;

2√
D1

arccosh
(

uD1−P√
4R

)

, if C1 is a hyperbola.

In the hyperbolic case, we note that the real parts of arccosh(x) and arccosh(−x) are equal,
and indeed their real value is exactly arccosh|x|. Hence for the correct real area of a hyper-

bolic arc we choose2√
D1

arccosh
∣

∣

∣

D1−P√
4R

∣

∣

∣
, regardless of the value ofu.

This completes the proof of the desired formula.
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4. Case-by-Case Proof for Each Configuration

Lemma 2.1 is the key ingredient to computing the area for the configurations in Sections
4.1, 4.2, and 4.3. For the alternating asymptote configuration of Section 4.4, we use a
similar method of proof to that found within Lemma 2.1.

The following arccoi notation will provide a convenient way of writing the formulas
for ellipses and hyperbolas in the same form.

Definition 2. The arccoi x= arcco(C±
i ,x) function takes the values of arccos or arccosh

depending, respectively, on whetherC±
i is an ellipse or a pair of hyperbolas.

arccoi x :=

{

arccosx, if C±
i is an ellipse;

arccosh|x|, if C±
i is a hyperbola.

We are ready to complete the proof of the area formulas. We will consider each con-
figuration of curves separately, dividing into four canonical cases. Note that several of our
conclusions are direct corollaries of the lemma.

4.1. Four Intersection Points

Consider the case when the four curvesC±
1 andC±

2 have exactly four intersection
points. These points necessarily come from one curveC±

1 and one curveC±
2 , each with

independently fixed choices of±. This could take the form of two ellipses, an ellipse an
a hyperbola, or two hyperbolas; these configurations are demonstratedin the following
graphs in Figure 2 below.

Figure 2. Configurations intersecting in four points.

Indeed, if both choices are+, then the formulas from Lemma 2.1 hold and the area of
intersection is exactly

2
√

|D1|
arcco1

[

D1−P√
4R

]

+
2

√

|D2|
arcco2

[

D2−P√
4R

]

. (4.8)

where arccoi x is the notational convenience from Definition 2 which represents either
arccos or arccosh depending respectively on whether we are considering an ellipse or a
hyperbola. If any choices are−, then we recall from Equation 2.1 thatP(±1 f1,±2 f2) =
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±1(±2P( f1, f2)) while the invariantsD andR remain unchanged. Hence, if both choices
are−, then Equation 4.8 gives the area, and if the choices are opposite (i.e. oneis + while
the other is−), then and the area is

2
√

|D1|
arcco1

[

D1+P√
4R

]

+
2

√

|D2|
arcco2

[

D2+P√
4R

]

. (4.9)

Furthermore, ifC1 andC2 are both ellipses, then we can calculate the union of their enclosed
areas using Lemma 2.1 by reversing the sign of the argument of arccoi x. Specifically, the
area of the union in the case when both signs are positive or negative (respectively) is

2
√

|D1|
arcco1

[−D1+P√
4R

]

+
2

√

|D2|
arcco2

[−D2+P√
4R

]

, (4.10)

or
2

√

|D1|
arcco1

[−D1−P√
4R

]

+
2

√

|D2|
arcco2

[−D2−P√
4R

]

. (4.11)

This completes the proof of Theorem 1.2. Furthermore, we have proven part 1 and the first
bullets of parts 2 and 3 of Theorem 1.1.

4.2. Eight Intersection Points: Ellipse and Hyperbolas

Consider the case whenC±
1 is a pair of hyperbolas andC+

2 is an ellipse which intersects
C±

1 in 8 points total. This configuration is demonstrated in the following graph in Figure 3.

Figure 3. Ellipse and symmetric hyperbolas, intersecting in 8 points.

As seen previously in Section 4.1, the area of intersection of the regions bounded by the
curvesC+

1 andC+
2 is exactly

2
√

|D1|
arccosh

∣

∣

∣

∣

D1−P√
4R

∣

∣

∣

∣

+
2

√

|D2|
arccos

[

D2−P√
4R

]

,

which overcounts the intended intersection area by the finite arc between theintersection

points ofC−
1 andC+

2 . By Lemma 2.2, the area of this arc alongC+
2 is 2√

|D2|
arccos

[

−D2−P√
4R

]

,
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while the area of the arc alongC−
1 is 2√

|D1|
arccosh

∣

∣

∣

D1+P√
4R

∣

∣

∣
. Hence the total area overcounted

is exactly their difference,

2
√

|D2|
arccos

[−D2−P√
4R

]

− 2
√

|D1|
arccosh

∣

∣

∣

∣

D1+P√
4R

∣

∣

∣

∣

.

The total area of intersection can now be computed as:

2
(

arccosh
∣

∣

∣

D1−P√
4R

∣

∣

∣
+arccosh

∣

∣

∣

−D1−P√
4R

∣

∣

∣

)

√
|D1|

+
2
(

arccos
[

D2−P√
4R

]

−arccos
[−D2−P√

4R

])

√
|D2|

.

If C−
2 is an ellipse then the sign of the polarization is reversed and the area of intersection

can be found similarly.

2
(

arccosh
∣

∣

∣

D1+P√
4R

∣

∣

∣
+arccosh

∣

∣

∣

−D1+P√
4R

∣

∣

∣

)

√
|D1|

+
2
(

arccos
[

D2+P√
4R

]

−arccos
[−D2+P√

4R

])

√
|D2|

This completes the proof of part 2 of Theorem 1.1.

4.3. Eight Intersection Points: Hyperbolas with Adjacent Asymptotes

Consider two hyperbolasC+
1 andC+

2 , for which between two asymptotes ofC+
1 the

curveC+
2 has no asymptotes (note that any sense of “between” applies here). Figure 4

illustrates this configuration.

Figure 4. Hyperbolas, adjacent asymptotes.

We first consider the case when either (a) bothC+
1 andC+

2 or (b) bothC−
1 andC−

2 contain
a bounded region. This configuration is virtually identical to that in the preceding section,
with the ellipse replaced by one hyperbola. Indeed, the area of this regionis the familiar
formula,

2
√

|D1|
arccosh

∣

∣

∣

∣

D1−P√
4R

∣

∣

∣

∣

+
2

√

|D2|
arccosh

∣

∣

∣

∣

D2−P√
4R

∣

∣

∣

∣



On Invariant Area Formulas and Lattice Point Bounds... 35

and the area overcounted is

±
(

2
√

|D1|
arccosh

∣

∣

∣

∣

D1+P√
4R

∣

∣

∣

∣

− 2
√

|D2|
arccosh

∣

∣

∣

∣

D2+P√
4R

∣

∣

∣

∣

)

,

where the choice of± guarantees that this overcounted area is positive; indeed, it is positive
exactly whenC1 is closest to the origin on the overcounted region.

As in the previous section, we note that changing the initial conditions to begin with a
finite region bounded by either (a) bothC−

1 andC+
2 or (b) bothC+

1 andC−
2 merely changes

the sign of the polarizationP in the final result. Thus the area is either the sum of the above
formulas,

2√
|D1|

arccosh
∣

∣

∣

D1−P√
4R

∣

∣

∣
+ 2√

|D2|
arccosh

∣

∣

∣

D2−P√
4R

∣

∣

∣

±
(

2√
|D2|

arccosh
∣

∣

∣

D2+P√
4R

∣

∣

∣
− 2√

|D1|
arccosh

∣

∣

∣

D1+P√
4R

∣

∣

∣

)

,

or the same formula with the sign in front ofP reversed,

2√
|D1|

arccosh
∣

∣

∣

D1+P√
4R

∣

∣

∣
+ 2√

|D2|
arccosh

∣

∣

∣

D2+P√
4R

∣

∣

∣

±
(

2√
|D2|

arccosh
∣

∣

∣

D2−P√
4R

∣

∣

∣
− 2√

|D1|
arccosh

∣

∣

∣

D1−P√
4R

∣

∣

∣

)

.

This completes the proof of the second bullet of part 3 of Theorem 1.1.

4.4. Eight Intersection Points: Hyperbolas with Alternating Asymptotes

Consider two hyperbolasC+
1 andC+

2 , for which between two asymptotes ofC+
1 the

curveC+
2 has exactly one asymptote. We assume further that they-intercepts ofC±

2 are
closer to 0 than those ofC±

1 (via rotation we assume without loss of generality that these
y-intersects exist). This final configuration is shown in Figure 5 below, with the darker
symmetric pair of hyperbolas representingC±

2 .
For this case the results of Lemma 2.1 are not useful: a choice ofC±

1 and a choice of
C±

2 does not yield a bounded region. However, our proof in this case will besimilar to that
of Lemma 2.1.

Consider the increasing sequence of intersection angles in the right half plane,−π/2<
θ1 < θ2 < θ3 < θ4 < π/2, which via rotation we assume without loss of generality that no
angle is equal to±π/2. Note that each angleθ has a corresponding angleθ+π in the left
half-plane. By our assumption that they-intercepts ofC±

2 are closer to 0 than those ofC±
1 ,

we conclude thatC±
1 is closer to the origin thanC±

2 on the arcs fromθ1 to θ2 and fromθ3

to θ4. We assume further thatC+
1 is closest along the arc in question fromθ1 to θ2, and

thus thatC−
1 is closest fromθ3 to θ4. Lastly, we assume thatC+

2 crosses they-axis, and
hence that the relevant arc ofC−

2 is the one fromθ2 to θ3. This configuration is shown in
the following labeled Figure 5.

We now recall Equation 2.2, the polar coordinate representation, to write thearea of the
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Θ1
Θ2

Θ3

Θ4
Θ1+þ

Θ2+þ

Θ3+þ

Θ4+þ

C1
-

C1
+

C2
+

C2
-

Figure 5. Hyperbolas, alternating asymptotes.

two arcs fromθ1 to θ2 andθ3 to θ4:

Area = 1
2

(

θ2∫

θ1

r2 dθ +
θ4∫

θ3

r2 dθ

)

= 1
2

(

θ2∫

θ1

∣

∣

∣

sec2(θ)
a1+b1 tanθ+c1 tan2 θ

∣

∣

∣
dθ +

θ4∫

θ3

∣

∣

∣

sec2(θ)
a1+b1 tanθ+c1 tan2 θ

∣

∣

∣
dθ

)

.

Note that the absolute value leaves the integrand unchanged on the interval[θ1,θ2] alongC+
2

and reverses the sign on the interval[θ3,θ4] alongC−
1 . This, together with the antiderivative

given in Equation 3.4 during the proof of Lemma 2.1, we arrive at the equation

Area=− 1√
D1

arcsinh

(√

D1

4c1(a1+b1 tanθ+c1 tan2 θ)

)∣

∣

∣

∣

∣

θ3

θ1

+
1√
D1

arcsinh

(√

D1

4c1(a1+b1 tanθ+c1 tan2 θ)

)∣

∣

∣

∣

∣

θ2

θ4

.

As in the computation in the proof of Lemma 2.1, we have the difference for-

mula arcsinhvi − arcsinhv j = ±arccosh
(√

(v2
i +1)(v2

j +1)−viv j

)

. Setting vi as
√

−D1/(4c1(a1+b1 tanθi +c1 tan2 θi)) yields

± arccosh

(

2c1 tanθ1 tanθ3+b1(tanθ1+tanθ3)+2a1

2
√

(a1+b1 tanθ1+c1 tan2 θ1)(a1+b1 tanθ3+c1 tan2 θ3)

)

√
D1

(4.12)

for the first term, involvingθ1 andθ3, and a corresponding formula for the second, involving
θ2 andθ4; note that the± is dependent on which of arcsinhvi and arcsinhv j is larger (for
(i, j) ∈ {(1,3),(2,4)}).
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Recall thatC+
1 andC+

2 intersect atθ1 and thatC−
1 andC−

2 intersect atθ3. HenceX =
tanθ1 and X = tanθ3 are roots of the polynomial of Equation 2.3 withu1 = u2: (c2 −
c1)X2 + (b2 − b1)X + (a2 − a1) = 0. Similarly, X = tanθ2 and X = tanθ4 are roots of
the polynomial of Equation 2.3 withu1 = −u2: (c2 + c1)X2 + (b2 + b1)X + (a2 + a1) =

0. Hence tanθ1 + tanθ3 = −(b2−b1)
c2−c1

, tanθ1 tanθ3 = a2−a1
c2−c1

, tanθ2 + tanθ4 = −(b2+b1)
c2+c1

, and
tanθ2 tanθ4 =

a2+a1
c2+c1

.
In the proof of Lemma 2.1 the sign ofc2± c1 was important; by rotation we assume

without loss of generality that it is nonzero. Since they-intercepts ofC+
2 are closer to the

origin than those ofC±
1 , we have|c2| > |c1| andc2 > 0; hencec2± c1 is positive. After

substitution and rearrangement using this newly determined fact, the argument of Equation
4.12 becomes

2c1(a2±a1)−b1(b2±b1)+2a1(c2±c1)

2
√

(c2±c1)2(a1+b1 tanθi +c1 tan2 θi)(a1+b1 tanθ j +c1 tan2 θ j)
,

for (i, j,±) ∈ {(1,3,−),(2,4,+)}. After rearrangement, invoking Definition 1, and dou-
bling for the symmetric arc fromθi +π to θ j +π, we come to the following concise formula
for the area:

Area=± 2√
D1

arccosh

(

D1−P√
4R

)

± 2√
D1

arccosh

(

D1+P√
4R

)

.

Since the area is ultimately positive, it is clear that the formula is truly

Area=
2√
D1

arccosh

(

D1±1 P√
4R

)

±2
2√
D1

arccosh

(

D1∓1 P√
4R

)

.

The area of the arcs alongC±
2 follows the same formula (up to the choice of±), since the

formula is invariant under the group of rotations. Hence the total area follows a similar
formula to that found in the previous section:

2
√

|D1|

(

arccosh

∣

∣

∣

∣

D1±1 P√
4R

∣

∣

∣

∣

±2 arccosh

∣

∣

∣

∣

D1∓1 P√
4R

∣

∣

∣

∣

)

+
2

√

|D2|

(

arccosh

∣

∣

∣

∣

D2±3 P√
4R

∣

∣

∣

∣

±4 arccosh

∣

∣

∣

∣

D2∓3 P√
4R

∣

∣

∣

∣

)

.

Fixing exactly one of±2 or±4 to be positive (while the other is possibly negative), we note
that the authors have found curves with every possible combination of choices of±1 and
±3; indeed replacingf1 by − f1 or f2 by − f2 merely changes the sign of the polarization.
However, it is an open question whether there exist curves with±2 =−=±4.

This completes the proof of the final case of Theorem 1.1.

5. Proof of Theorem 1.3

We return to the case of two ellipses, which we shall denotef = uf andg = ug, for
someuf ,ug ∈ {−1,1}, with respective interiors byEf andEg.

In order to prove Theorem 1.3, we recall a result of the third author: Lemma 2.2 in [4].
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Lemma 5.2. Let P be a closed convex plane region symmetric about the origin with areaA
and containing L primitive integral lattice points. Then L≤ 2A+2.

Recall from Section 4.1 that we computed the areas ofEf ∩Eg andEf ∪Eg in Equations
4.8-4.11. We recall the formulas here.

∣

∣Ef ∩Eg
∣

∣= 2√
−D( f )

arccos
[

D( f )−uf ugP√
4R

]

+ 2√
−D(g)

arccos
[

D(g)−uf ugP√
4R

]

∣

∣Ef ∪Eg
∣

∣= 2√
−D( f )

arccos
[

−D( f )+uf ugP√
4R

]

+ 2√
−D(g)

arccos
[

−D(g)+uf ugP√
4R

]

Coupled with Lemma 5.2, we obtain the desired result.

∣

∣Z
2∩Ef ∩Eg

∣

∣≤ 2+ 4√
−D( f )

arccos
[

D( f )−uf ugP√
4R

]

+ 4√
−D(g)

arccos
[

D(g)−uf ugP√
4R

]

∣

∣Z
2∩ (Ef ∪Eg)

∣

∣≤ 2+ 4√
−D( f )

arccos
[

−D( f )+uf ugP√
4R

]

+ 4√
−D(g)

arccos
[

−D(g)+uf ugP√
4R

]

6. Conclusion

It is interesting that the literature is apparently devoid of exact formulas forintersec-
tions of such simple regions as these ellipses and hyperbolas. Indeed, it isan open question
for the remaining (nonhomogeneous) conic, not considered here: the parabola. The third
author is especially interested in the following open question: given degreed homogenous
polynomialsf (x,y) andg(x,y) with real (respectively integer) coefficients, what is the area
of (resp. number of integer lattice points in) the region formed by the intersection of the
interiors of the regions| f (x,y)| = 1 and|g(x,y)| = 1 (resp, for given realB, | f (x,y)| = B
and |g(x,y)| = B). Indeed, such a result would generalize the results found in [4], which
would in turn improve on the results of [5].

The invariantsD1, D2, andP found within this paper are likely to generate the ring of
invariants for real binary quadratic forms; indeed they generate the fourth invariant found
here via the remarkable syzygyR=P2−4D1D2. While Hilbert’s Basis Theorem guarantees
a finite basis (with a higher dimension expected upon increasing the degree), it is an open
question what the actual basis is.

As mentioned in the introduction, there is apparent need of quick algorithms (such as the
one found in [2]) for computing the area bounded by multiple ellipses. Our exact formulas
are likely to be more efficient than an algorithm. However, an explicit formula isunknown
for the area of intersection of ellipses with arbitrary centers. Furthermore,intersection
formulas for three or more conic regions may also be applicable.
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