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Abstract. We use a theorem of Bishop in [Bis15] to construct several func-

tions in the Eremenko-Lyubich class B. First it is verified, that in Bishop’s
initial construction [Bis15] of a wandering domain in B, all wandering Fatou

components must be bounded. Next we modify this construction to produce
a function in B with wandering domain and uncountable singular set. Finally

we construct a function in B with unbounded wandering Fatou components.

It is shown that these constructions answer two questions posed in [OS16].
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1. Introduction

From the dynamical viewpoint, an entire function f : C→ C partitions the plane
into two sets. There is the Fatou set, denoted F(f), that consists of the points where
the family (fn)n≥1 is normal. And there is the Julia set - the complement of the
Fatou set, denoted J (f). The Fatou set is open, and its components are called the
Fatou components of f . The Fatou components are the regions of the plane where
the dynamics of f are non-chaotic.

It is not difficult to see that F(f) is invariant under iteration by f . If we denote
U as a component of the Fatou set, it is natural to study the behavior of the forward
iterates fn(U). We use the following definition: U is called periodic if fn(U) ⊆ U
for some n, and preperiodic if U is eventually mapped into a periodic component.
On the other hand U is called a wandering domain if fn(U) ∩ fm(U) = ∅ over all
n 6= m.

Dennis Sullivan proved in [Sul85] that wandering domains do not occur for poly-
nomials. On the other hand for more general entire functions, wandering domains
are known to exist. We call a function f : C→ C transcendental if f is entire but is
not a polynomial. The first example of a transcendental function with a wandering
domain was in fact produced before Sullivans’ result - this was given by Baker in
[Bak76].
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One can prove no-wandering domain theorems also for certain subclasses of tran-
scendental functions. We introduce several new terms to define such subclasses.
Given an entire function f : C→ C, the singular values of f are defined as the set
of critical values together with the asymptotic values: w ∈ C is called an asymptotic
value if there is a curve γ : [0,∞) → C approaching ∞ so that f(γ(t)) → w as
t → ∞. The singular set of f , denoted S(f) is the closure of the set of singular
values of f .

Now we define the subclass of transcendental functions as promised: the Speiser
class, denoted S, is the collection of transcendental functions with finite singular set.
This class is supposed to mimic in some sense the polynomials. Indeed, shortly after
Sullivan’s theorem, two groups of mathematicians (Goldberg and Keen [GK86],
Eremenko and Lyubich [EL92]) proved the no-wandering domain theorem in the
Speiser class.

A slightly more general subclass of transcendental functions is defined to be the
collection of transcendental functions where the singular set is bounded, but not
necessarily finite. This is called the Eremenko-Lyubich class and is denoted B. The
question of whether wandering domains existed in B was open until recently. In
[Bis15] Bishop constructs functions in B with wandering domain.

Much of the theory for the class B was developed in [EL92]. There it was
proven that in class B, Fatou components can not escape uniformly to infinity. In
particular this implies that in order for a wandering domain to occur in class B it
would have to oscillate - i.e. return to some compact subset of the plane infinitely
often. The first example of such an oscillating wandering domain was indeed given
in [EL87], however this function was not in class B. [EL87] also contains other
interesting constructions of transcendental functions with specified dynamics that
are built using approximation theory. Similar work is done in [Her84] where an
entire function is built with a simply connected wandering domain.

Bishop’s construction [Bis15], on the other hand, relies on the folding theorem,
proven in the same paper, that we would like to spend some time discussing.

A Shabat polynomial is a complex polynomial p(z) with two critical values, nor-
malized to be ±1. If we look at the preimage p−1[−1, 1] of any such polynomial,
we see a tree in the complex plane - with vertices corresponding to preimages

of ±1. For example the preimage under p(z) = 3z4

8 −
z3

2 −
3z2

4 + 3z
2 + 3

8 with

p′(z) = 3
2 (z − 1)2(z + 1) is shown in Figure 1.

On the other hand, if we specify any tree T in the plane, we can produce a Shabat
polynomial so that p−1[−1, 1] is equivalent to T , that is, there is a homeomorphism
of C taking p−1[−1, 1] onto T . This was first proven by Grothendieck - see for
example [SZ93].

This establishes a correspondence between finite trees in the plane and Shabat
polynomials. The theorem of Bishop we would like to discuss is a sort of generaliza-
tion of this correspondence to the ‘infinite case’. Namely, this theorem establishes
a similar correspondence between a certain subclass of infinite trees and a subclass
of transcendental functions.

An illustrative example is the transcendental function cosh(z). The hyperbolic
cosine has two critical values ±1, and one may verify that cosh−1[−1, 1] is the
imaginary axis, with vertices corresponding to multiples of πi. This is illustrated
in Figure 2.
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Figure 1. The preimage p−1[−1, 1] of the shabat polynomial
given by p(z) = 3z4/8− z3/2− 3z2/4 + 3z/2 + 3/8.
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πi

2πi
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+1cosh

Figure 2. The preimage of [−1, 1] under the hyperbolic cosine.

Indeed, if one takes any transcendental function f with two critical values ±1
and no asymptotic values, f−1[−1, 1] is an infinite tree in C. The collection of such
functions with two critical values and no asymptotic values is a subclass of the
Speiser class S and is denoted S2,0.

Bishop’s theorem, on the other hand, starts with an infinite tree T satisfying
certain geometric properties, and then produces an f ∈ S2,0 so that f−1[−1, 1]
is a quasiconformal perturbation of T ∗, where T ∗ is T with some vertices and
branches added. Before giving a rigorous formulation of the theorem’s statement,
it is instructive to outline some of the strategy in its proof.

If we start with an infinite tree T with alternate vertices labeled ±1, we can
denote the components of C\T by Ωj . We would like to keep in mind our goal is to
produce f ∈ S2,0 so that f−1[−1, 1] approximates T . Well each Ωj can be mapped
conformally to the right half-plane Hr by a map τj . We define τ on ∪Ωj to be τj
in each Ωj . In turn, Hr can be mapped holomorphically onto C \ [−1, 1] by cosh.
This is illustrated in Figure 3.
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Ωj

τj

T

Hr

C− [−1, 1]

cosh

Figure 3. A definition of f on a component Ωj of C \ T .

There are several problems to be addressed - first of all, under this composition
the vertices of T are not necessarily sent to ±1. Moreover, one would like to define
f globally on C as cosh ◦τj on each region Ωj - but there is no reason to expect
that the continuous extensions of cosh ◦τj on either side of a branch of T match up.
The technical work done in [Bis15] is in replacing the map τ by a map η that agrees
with τ outside a small neighborhood of T , so that cosh ◦η is continuous across T
and maps vertices of T to ±1. Moreover, in the course of this construction the
tree T is modified by adding extra branches and vertices, and we call this new tree
T ∗. Once this is achieved, one has a quasiregular map cosh ◦η whose preimage of
[−1, 1] is the tree T ∗. Subsequently, one applies the measurable Riemann mapping
theorem to obtain a quasiconformal φ so that cosh ◦η ◦ φ is holomorphic. We take
f = cosh ◦η ◦ φ as shown in Figure 4.

Notice that it is no longer the case that f−1[−1, 1] is T or even T ∗, but rather
a quasiconformal image of T ∗. But in fact, the support of the dilatation of the
quasiconformal maps may be taken so as to be concentrated in small areas of the
plane. Consequently, this quasiconformal image of T ∗ is in fact a good geometric
approximation of T ∗ and hence also T .

Moreover, it is not essential that T be a tree - many of the arguments will still
hold as long as T is a bipartite graph and no two bounded components of C\T share
a boundary edge. We call such a bounded component of C\T a D-component and an
unbounded component (mapping first to Hr then to C\[−1, 1]) an R-component. In
the case of a D-component we take τ to map conformally to the unit disc D rather
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η
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Hr

C− [−1, 1]

cosh

φ

f

φ−1(T ∗)

Figure 4. Bishop’s strategy in constructing an entire f .

than Hr. Then rather than following τ by cosh, we post-compose with z → zd,
followed by a quasiconformal map ρ which is the identity in a neighborhood of the
boundary of D and perturbs the critical value 0. This is illustrated in Figure 5.

τj

T

D

D

D

0

0

p(0)

z → zd

ρ

Ωj

Figure 5. The map f on a D-component.
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For such a graph T we define σ ◦ τ as above for D-components and as cosh ◦τ
for R-components.

It is in this slightly more general setting that we first present a statement of the
theorem more carefully (we will present an alternate version in Section 4). We start
by introducing a restriction on the infinite trees we will look at. We say that T has
uniformly bounded geometry if:

(1) The edges of T are C2 with uniform bounds.
(2) The angles between adjacent edges are bounded uniformly away from zero.
(3) Adjacent edges have uniformly comparable lengths.
(4) For non-adjacent edges e and f , diam(e)/dist(e, f) is uniformly bounded

from above.

We also need to place some restrictions on the conformal maps τ we described
above. For any edge e in the graph T , there are two τ images of e corresponding
to the two sides of e. The τ -size of e is defined as the minimum of the two lengths
of the τ images of e.

Lastly, we define for any r > 0 a neighborhood of T in which the definition of τ
is adjusted, so that we may obtain continuity across the edges of T :

T (r) :=
⋃

e an edge of T

{z ∈ C|dist(z, e) < rdiam(e)}

It is only in this neighborhood of T (for a choice of r) that new branches and
vertices are added in the construction to yield T ∗.

Now we are ready to state Theorem 7.1 from [Bis15]:

Theorem 1.1. Let T be an unbounded connected graph and let τ be a conformal
map defined on each complementary domain C \ T as above. Assume that:

(i) No two D-components of C \ T share a common edge.
(ii) T is bipartite with uniformly bounded geometry.
(iii) The map τ on a D-component with 2n edges maps the vertices to 2nth roots

of unity.
(iv) On R-components the τ -sizes of all edges is uniformly bounded from below.

Then there is an r0 > 0, a transcendental f , and a K-quasiconformal map φ
of the plane, with K depending only on the uniformly bounded geometry constants,
so that f = σ ◦ τ ◦ φ off T (r0). Moreover the only critical values of f are ±1
- corresponding to the vertices of T , and those critical values assigned by the D-
components.

Indeed Bishop’s example of an f ∈ B with wandering domain is built by applying
the above theorem to a particular graph shown in Figure 8 on page 10 whose vertices
and other features we will discuss in the next section. Our discussion will mimic
closely [FGJ15] which contains a lucid exposition of this construction. The singular
set in this example is ±1, 1/2, and a sequence of complex numbers converging
to 1/2. In section two we will present this construction following the exposition
in [FGJ15], modifying some details so as to provide an example of f ∈ B with
wandering domain and an uncountable singular set.

In the third section of this paper we will verify that the Fatou components of
Bishop’s original construction are indeed bounded. The last section of this paper is
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dedicated to modifying this graph in order to construct an f ∈ B whose wandering
Fatou components are unbounded. This last example is also interesting because this
f has only two critical values - the other singular values are all asymptotic.

We conclude the introduction by describing a motivation for these constructions
coming from the paper [OS16]. In [OS16] the authors study an alternative partition
of the plane. Rather than partitioning C = J (f)∪F(f) for a given entire function
f , one partitions the plane into those points which stay bounded, escape to infinity,
or do neither. More precisely define the escaping set as I(f) = {z : fn(z) →
∞ as n → ∞}, the set K(f) as those points which stay bounded under iteration
by f , and

BU(f) = C \ [I(f) ∪K(f)]

In other words for any z ∈ BU(f), the orbit (fn(z))n≥1 contains both bounded and
unbounded subsequences. [OS16] contains several theorems about the set BU(f)
for general transcendental functions. They also ask the following (called question
3 in [OS16]):

Is there a transcendental entire function with an unbounded wander-
ing domain in BU(f), all of whose iterates are unbounded?

The answer is yes, and we provide such a construction in section 4 of this paper.
[OS16] also studies the ω-limit set Λ(z, f) of a point z in a wandering domain U .
Λ(z, f) is defined as the accumulation set of the orbit (fn(z))n≥1. Indeed it turns
out that for any z1, z2 ∈ U it is the case that Λ(z1, f) = Λ(z2, f) [Fat20]. Thus we
can write Λ(U, f) unambiguously. The authors of [OS16] ask the following (called
question 2 in [OS16])

Is there a transcendental entire function f with a wandering domain
U so that Λ(U, f) is uncountable?

We will detail the construction of such a function in Section 2. Indeed, Λ(U, f)
will contain the uncountable singular set of the function f .

The author would like to thank his advisor Chris Bishop for his extensive help.
He would also like to give thanks to Simon Albrecht, Nuria Fagella, Xavier Jarque
and David Sixsmith for carefully reading through preprints and sending helpful
suggestions/corrections. Thanks to Malik Younsi, Simon Albrecht and Raanan
Schul for listening to the author present the arguments of this paper. Lastly, thanks
to the referee for many helpful comments.



8 KIRILL LAZEBNIK

2. A Transcendental Function with Uncountable Singular Set

We will now detail Bishop’s original procedure to produce f ∈ B with wandering
domain - but we will introduce some slight modifications to ensure that the singular
set S(f) is uncountable, answering a question in [OS16]. As already mentioned -
[FGJ15] is an excellent resource that contains an exposition of Bishop’s original
construction. We follow [FGJ15] quite closely.

We first build the graph to which we will apply Bishop’s theorem. There are
no adjustments to be made here - we merely summarize the material contained in
[FGJ15]. Consider the half strip:

S+ := {x+ iy ∈ C : x > 0, |y| < π/2}

For any λ ∈ πN+, we have a Riemann map from S+ to the right half plane
Hr given by z → λ · sinh(z). λ is a parameter we will fix later. We may follow
this Riemann map by cosh so that the composition σ ◦ τ(z) := cosh(λ sinh(z)) is
holomorphic and maps ∂S+ onto [−1, 1]. This is illustrated in Figure 6.

Hr

C− [−1, 1]

cosh

λ sinhπi
2

0

−πi2

−λi

λi
S+

Figure 6. The definition of f in S+.

Recall, we would like the alternating vertices of our graph to be sent to ±1.
So we will choose ±iπ/2 as two vertices, and we will choose some special vertices
(an ± iπ/2) along the lines y = ±π/2. The real parts an (n ≥ 1) are defined as

an := cosh−1
(
π

λ

⌈
λ

π
cosh(nπ)

⌉)
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where dxe denotes the integer part of the real number x. One may verify that
nπ − 10−1 < an ≤ nπ. In fact we will add all preimages of ±1 on S+ under the
map σ ◦ τ :{
i sin−1

(π
λ
k
)

: k ∈ Z and
−λ
π
≤ k ≤ λ

π

} ⋃ {
cosh−1

(π
λ
k
)
± iπ

2
: k ∈ Z and k ≥ π

λ

}
Next we build the D-components of our graph. We consider for all n ≥ 1:

Dn := {z ∈ C : |z − zn| < 1} where zn := an + iπ

Each such Dn is mapped conformally to D by z → z − zn. As explained in our
exposition of Bishop’s theorem, in Dn we define σ ◦ τ(z) := ρn((z − zn)dn) where
dn ∈ 2N∗ is a parameter to be fixed later, and ρn is a quasiconformal map. This is
illustrated in Figure 7.

D

D

D

0

0

p2(0)

z → zd2

ρ2

πi
2

0

−πi
2

a1 + iπ2 a2 + iπ2

D1 D2

z2

Figure 7. The definition of f on D-components.

We fix these quasiconformal maps ρn so that they fix the boundary of D and
ρn(0) = wn where wn is a parameter to be fixed later in a small neighborhood N1/2

of 1/2. Furthermore we ensure ρn is conformal in 3
4D and ρn is Kρ-quasiconformal

where Kρ does not depend on n. The precise definition of ρn is given in [FGJ15].
Notice that the dilatation of ρn is supported on{

z ∈ C :

(
3

4

)1/dn

< |z − zn| < 1

}

which shrinks in area exponentially as dn → ∞. The vertices on ∂Dn are defined
to be the preimages of ±1 under σ ◦τ , namely the translated (2dn)th roots of unity.
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Next we define vertical segments on our graph connecting each an + iπ/2 to
zn − iπ, and from zn + iπ to infinity. We also define a vertical segment connecting
iπ/2 to infinity. We refer the reader to [FGJ15] for the definitions of vertices along
these vertical segments - we will not need them. Finally, we reflect this construction
along the real and imaginary axes to obtain our final graph pictured in Figure 8.

πi
2

0

−πi2

..

.. ....

..

Figure 8. The graph to which we will apply Bishop’s folding theorem.

We omit the argument that this graph satisfies the bounded geometry conditions
needed in order to apply Bishop’s theorem - this is contained in the proof of Theorem
3.1 from [FGJ15]:

Theorem 2.1. For every choice of the parameters (λ, (dn)n≥1, (wn)n≥1) so that
λ ∈ πN∗, dn ∈ 2N∗, and wn ∈ N1/2 for all n ≥ 1, there exists a transcendental
entire function f and a quasiconformal map φ : C→ C so that:

(a) for every z ∈ C, f(z) = f(z) and f(−z) = f(z);

(b) f ◦ φ−1 extends the maps (σ ◦ τ)|S+ and (σ ◦ τ)|Dn
for every n ≥ 1:

(2.1) f(z) =

{
cosh(λ sinh(φ(z))) if φ(z) ∈ S+

ρn((φ(z)− zn)dn) if φ(z) ∈ Dn

(c) f has no asymptotic values; and its set of critical values is
{±1} ∪ {wn : n ≥ 1} (hence f is in class B).

(d) φ(0) = 0, φ(R) = R, φ is conformal in S+ and its dilatation is uniformly
bounded above by a universal constant K > 1 which does not depend on the
parameters.

In the original construction of [Bis15] exposited in [FGJ15], it is shown how
the parameters in the above theorem may be chosen so as to produce f ∈ B with
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wandering domain. In the original construction {wn : n ≥ 1} accumulates only
on 1/2, so that the singular set S(f) is countable (this is clear from Lemma 3.2
of [FGJ15]). We proceed in modifying the construction so as to ensure that {wn :
n ≥ 1} accumulates on an uncountable set so that S(f) is uncountable. We still
continue however to follow the line of argument in [FGJ15], making adjustments as
needed.

Let’s give a sketch of our argument before we begin with details. One should
keep in mind that the map f(z) inside S+ is roughly exp(exp(z)), expanding out
to infinity quickly, whereas f returns the discs Dn back to D. If we look at two
discs we call Dp1 , Dp2 , we can see that f maps Dp1 near the origin, but also there
is a preimage f−2(Dp2) of Dp2 near the origin. This is illustrated in Figure 9.

πi
2

-πi2

0

Dp1

f(Dp1)

f−2(Dp2)

Dp2

Figure 9. The map f before carefully choosing the parameters.

We will do two things:

(a) shrink f(Dp1) so that it is small enough to fit inside f−2(Dp2)
(b) move f(Dp1) inside f−2(Dp2).

We will complete (a) and (b) over an entire subsequence Dpn of the discs Dn.
Then sub-discs of this subsequence Dpn will be part of our wandering domains -
a disc is moved near the origin, then is iterated towards another disc farther from
the origin, which is again returned near the origin, etc...

(a) is accomplished by adjusting the parameters (dn) - the powers that ‘crush’ the
size of the disc Dn, and (b) is accomplished by adjusting the parameters (wn) - the
centers of f(Dn). This takes some work as one needs parameters that accomplish
(a) and (b) simultaneously over this entire subsequence Dpn .
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Now we begin constructing a transcendental function with uncountable singular
set and a wandering domain. Fix some choice of the parameters (λ, (dn)n≥1, (wn)n≥1)
as in Theorem 2.1. We notice that the real line is preserved under the map f . We
will need the following estimates to establish the existence of the discs f−n(Dpn) we
discussed informally above. We note that the proof of the following Lemma is quite
close to that of Lemma 3.2 in [FGJ15]. It is included because the author feels the
notation and constructions introduced therein are essential to the understanding of
this section.

Lemma 2.2. Let f, φ, (λ, (dn)n≥1, (wn)n≥1) be as in Theorem 2.1, and t ∈ [1/2, 5/8].
Suppose the following estimate holds:

(2.2) ∀x ≥ 0,
dφ

dx
(x) ≥ 10

λ

Then the orbit of t under iteration of f escapes to infinity. Moreover there
exists a sequence of Euclidean discs (U tn)n≥1, together with a subsequence of positive
integers (ptn)n≥1, so that for every n ≥ 1:

(a) U tn has radius .009( d
dxf

n(t))−1 with ( d
dxf

n(t))−1 ≤ 50−n

(b) U tn is contained in the disc centered at t and of radius 20( d
dxf

n(t))−1

(c) fk(U tn) ⊆ S+ ∩H+ for every 0 ≤ k ≤ n− 1, and

(d) fn(U tn) ⊆ 1
4D̃

t
n where 1

4D̃
t
n := {z ∈ C||z − zptn | ≤ 1/4}

Proof. Let (xtk = fk(t))k≥1 denote the iteration of t under f . We have the following
computation:

d

dx
f(x) =

d

dx
cosh(λ sinh(φ(x))) =

sinh(λ sinh(φ(x)))λ cosh(φ(x))
d

dx
φ(x) ≥

λφ(x)λ
d

dx
φ(x)

where we have used the fact that sinh(r) ≥ r and cosh(r) ≥ 1 for r ≥ 0. Integrating
our assumption (2.2) we have that φ(x)− φ(0) = φ(x) ≥ 10

λ x so that:

(2.3)
d

dx
f(x) ≥ 100x and f(x) ≥ 50x2 − 1

In particular one may verify the orbit (xtk)k≥0 escapes to infinity. Moreover from
(2.3) one may compute that:

∀k ≥ 0, xtk+1 − xtk ≥ 11 and
d

dx
f(xtk) ≥ 100 · 1

2
= 50
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Now it follows inductively that d
dxf

n(t) ≥ 50n. We define the sequence (ptn)
so that for every n, |xtn − aptn | is minimal. (Recall an is the real part of a vertex

along ∂S+). We define D̃t
n := Dptn

. Now we state the geometric facts that 1
4D̃

t
n ⊆

D(xtn, 5) and that D(xtn, 10) does not intersect D. So then D(xtn, 10) doesn’t contain
any singular values of f . This means that f−1 has an injective inverse branch on
D(xtn, 10) mapping D(xtn, 5) onto a neighborhood of xtn−1.

We would like to estimate a radius in which this neighborhood of xtn−1 is con-
tained. Recall some of Koebe’s distortion estimates that for a univalent function F
in the unit disc with F (0) = 0, F ′(0) = 1, that for any z ∈ D:

(a) |F (z)| ≤ |z|
(1− |z|)2

(b)
1− |z|

(1 + |z|)3
≤ |F ′(z)|

Using (a) with

F (z) =
f−1(10z + xtn)− f−1(xtn)

10 · ddxf−1(xtn)

gives us that f−1 maps D(xtn, 5) onto a neighborhood of xtn−1 contained in a
disk of radius

10
1/2

(1− 1/2)2
d

dx
f−1(xtn) ≤ 20/50 ≤ π/2

Hence, 1
4D̃n has a preimage under f in S+ ∩D(xn−1, 5). One may iterate this

process n times to obtain a preimage of 1
4D̃n under fn close to xt0 = t. Again one

uses (a) from Koebe’s theorem with the function

F (z) =
(fn)−1(10z + xtn)− (fn)−1(xtn)

10 d
dx (fn)−1(xtn)

to estimate that this nth preimage is contained in a disc centered at t of radius:

20(
d

dx
fn(t))−1 ≤ 20

50n

Now one may use (b) of Koebe’s theorem to prove that the nth preimage of 1
4D̃n

contains a disc of radius:

1

4
· 1

4
·
(
d

dz
(fn)−1(zptn)

)
≥ 1

16

1− 5/10

(1 + 5/10)3

(
d

dx
(fn)−1(xtn)

)
≥ .009

(
d

dx
fn (t)

)−1
�

Next we lift a lemma from [FGJ15] whose proof we will omit (a very similar
statement Lemma 4.6 is proven in Section 4). This lemma states that there are
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universal parameters that satisfy the hypotheses in our previous lemma about the
derivative of φ.

Lemma 2.3. There exist a positive real number λ0 ∈ πN∗ and an exponentially
increasing sequence (d0n)n≥1 in 2N∗ so that for every choice of parameters
(λ, (dn)n≥1, (wn)n≥1) with λ ≥ λ0 and dn ≥ d0n over all n, condition (2.2) of Lemma
2.2 holds, so that the discs (U tn)n≥1 specified in lemma 2.2 exist.

So by taking parameters (λ0, (d0n)n≥1, (w
0
n := 1/2)n≥1) as in the above lemma,

and any t ∈ [1/2, 5/8], we have this sequence of discs U tn so that fk(U tn) stays

in S+ for k < n and fn(U tn) ⊆ 1
4D̃

t
n. Moreover since φ is close to the identity,

φ(fn(U tn)) ⊆ 1
2D̃

t
n. So from our definitions of f in the disc components, we know

fn+1(U tn) ⊆ D(w0
ptn

= 1/2, (1/2)
dptn ).

What we do not have control over yet are the further iterates fk(U tn) for k >
n + 1. In [Bis15] and [FGJ15] the procedure taken is to further adjust f so that
fn+1(U tn) ⊆ U tn+1. One achieves this by carefully adjusting the critical values (wn).
In this way it is understood how all iterates of the discs U tn behave and indeed it
is not difficult to show then that they belong to a wandering domain. In this case
the singular set would be ±1, t and a sequence converging to t. We will achieve
an uncountable S(f) by instead repeatedly adjusting f so that fn+1(U tn) ⊆ U t

′

n+1

for some t′ ∈ [1/2, 5/8], t′ 6= t. Namely we fix now some (any) dense sequence (tn)

in [1/2, 5/8], and we will work to ensure that fn+1(U tnn ) ⊆ U
tn+1

n+1 . We will need
two more lemmas to do this. The first lemma enables us to choose (dn)n≥1 large

enough so that fn+1(U tnn ) is crushed sufficiently small to be able to fit into U
tn+1

n+1

(without compromising the rest of the construction):

Lemma 2.4. Fix (λ0, (d0n)n≥1, (w
0
n := 1/2)n≥1). Then there exists a sequence of

positive real numbers (rn)n≥1 not depending on t so that for every new choice of
parameters (dn)n≥1 with dn ≥ d0n for every n ≥ 1, the corresponding maps f and φ
satisfy the condition of Lemma 2.2 as well, and

∀n ≥ 1, .009

(
d

dx
fn (t)

)−1
≥ rn

In particular, we may assume that for all such parameters and all t ∈ [1/2, 5/8],
every Euclidean disc U tn in Lemma 2.2 has radius larger or equal than rn, and
consequently we may choose (dn) so that for all t:(

1

2

)dptn
< rn+1

We omit the proof since it is nearly identical to that of Lemma 3.4 in [FGJ15]
after observing that it suffices to establish the estimate for t = 5/8. We will now
need to let pn := ptnn to simplify notation (In words, pn is the index of the disc Dpn

which is iterated into by f in n steps from U tnn .)
We have established that we may choose the sequence (dn) sufficiently large so

that fn+1(U tnn ) is crushed small enough to be able to fit inside U
tn+1

n+1 . Namely
fn(U tnn ) is contained in a disc of radius 1/4, φ(U tnn ) is contained in a disc of radius
1/2, which is then sent inside a disc of radius (1/2)dpn by σ◦η(z) = ρpn((z−zpn)dpn ),
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and (1/2)dpn is less than the radius of the next disc U
tn+1

n+1 . The last thing we have

to do is adjust the critical values (wn)n≥1 so that fn+1(U tnn ) actually does land

inside U
tn+1

n+1 . Namely if we denote w′n to be the center of U tnn , we need to make
sure:

fn+1(U tnn ) ⊆ D(w′n+1, (1/2)dpn )

From which it will be clear by our previous work that:

fn+1(U tnn ) ⊆ D(w′n+1, (1/2)dpn ) ⊆ D(w′n+1, rn+1) ⊆ U tn+1

n+1

For this we need the following lemma:

Lemma 2.5. There is a choice of the parameters (λ, (dn)n≥1, (wn)n≥1) satisfying
the hypotheses of Lemma 2.2, so that for large enough n we have:

fn+1(U tnn ) ⊂ U tn+1

n+1

Proof. Let (λ0, (d0n)n≥1, (w
0
n := 1/2)n≥1) as in Lemma 2.4. We have that f(U t11 ) ⊆

1
4D̃

t1
1 . We will adjust f so that ρp1(0) = w′2 (recall that w′2 is defined to be the

center of U t22 ) rather than ρp1(0) = 1/2. We call this new function f1. We note
that there is a corresponding correction in φ to ensure that f1 is still holomorphic.
However, even though now we have that f1(D̃t1

1 ) ⊆ U t22 it may no longer be the

case that f1(U t11 ) ⊆ 1
4D̃

t1
1 because of the correction in φ. But indeed we can fix dp1

as large as we like by Lemma 2.4 so that the dilatation of φ is concentrated on an
annulus with as small of an area as we wish. For example, choose this area so small
so that:

sup{|f1(z)− f(z)| : z ∈ D(t1, 1)} < s1 << 1

Here we are using a fact we formulate more precisely at the beginning of Section
4 - namely that a quasiconformal map whose dilatation is supported on a small
set is close to the identity. In any case, now we know that f1(U t11 ) ⊆ 1

4D̃
t1
1 and

f21 (U t11 ) ⊆ U t22 .
Indeed we may proceed iteratively in this way. At step n we adjust ρpn so that

ρpn(0) = w′n+1. By choosing large enough (dpn), one may ensure that the correction
of f in discs centered at {xt0, xt1, ..., xtn+1} of radius 1 is less than sn << 1, over all
t ∈ {t1, ..., tn+1}. Doing this we can see that for k ≤ n,

fk+1(U tkk ) ⊂ U tk+1

k+1

We choose the sequence (sn) so that it will sum to be less than some ε > 0. This
ensures that the limit function under this iterative procedure satisfies:

fn+1(U tnn ) ⊂ U tn+1

n+1

over all n, as needed.
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�

We conclude this section by arguing that the domains Un := U tnn are contained
in the Fatou set, and that they are contained in different Fatou components. This
will establish that the function f ∈ B we have constructed above has a wandering
domain. It is not so hard to see that the domains Un are contained in the Fatou
set - for any subsequence (fnk) defined on some Un there will be a subsequence
converging to infinity, or if (fnk) does not contain such a subsequence, there will
be a further subsequence converging to a constant function.

Now suppose by way of contradiction that two of the domains Un1
, Un2

were
contained in the same Fatou component, with n1 < n2. But then fn1(Un1) would
be above the horizontal line y = π, whereas fn1(Un2) would be contained in S+

(below the line y = π). Thus the Fatou component containing Un1
, Un2

would have
to cross y = π (which belongs to the Julia set of f since f(y = π) ⊂ R), and this is
a contradiction.

So we have constructed f ∈ B with wandering domain U and uncountable S(f).
It is also clear that Λ(U, f) is uncountable since Λ(U, f) contains the accumulation
set of any critical point of f . Our next section will prove that the Fatou compo-
nents in this construction (or those constructions in [Bis15] or [FGJ15]) must all
be bounded.
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3. Boundedness of Fatou Components in Bishop’s Construction

Lemma 3.1. The Julia set of f contains the real line: R ⊆ J (f).

Proof. : In the Eremenko-Lyubich class B it is always true that the Julia set is the
closure of the escaping set ([EL92]). Since f ∈ B, it suffices to show that for x > 0,
fn(x) → ∞. We show this by first assuming x > 1 is fixed and establishing that
cosh(λ sinh(φ(x)))− x is always bigger than some fixed constant so that x iterates
to infinity.

cosh(λ sinh(φ(x)))− x
λ>1
> cosh(sinh(φ(x)))− x

sinh(x)>x
>

cosh(φ(x))− x
φ′(x)>1
> cosh(x)− x

Now we estimate the derivative of cosh(x)− x:

d

dx
(cosh(x)− x) = sinh(x)− 1 > x− 1 > 0

This establishes that for fixed x > 1, cosh(λ sinh(φ(x))) − x is always big-
ger than some fixed constant, so fn(x) iterates to infinity, as needed. If x > 0,
cosh(λ sinh(φ(x))) > 1 which then iterates to infinity.

�

J (f) is forwards and backwards invariant. This will help us establish which parts
of the graph belong to J (f). One must be careful however, since the previously
pictured graph (with straight euclidean lines) is not sent to R. Rather pieces of a
quasiconformally distorted graph are sent to R by f .

But one should keep in mind the quasiconformal distortion is uniformly close to
the identity. Notice that in particular the parts of the graph which correspond to
straight lines are sent to R by f . This means these straight lines (quasiconformally
distorted) are part of the Julia set. We begin to establish that the wandering Fatou
components of f must be bounded (note that this is not a proposition about the
orbits of these Fatou components which are certainly unbounded):

Proposition 3.2. Any wandering domain of f must be bounded (as a set).

Proof. : Recall we have already somewhat described the wandering domains of f
in Section 2 - the wandering domains contain the discs Un and their iterates under
f . [FGJ15] establishes that this wandering domain, and its reflections, are the
only wandering domains for f . However a priori it is possible that the wandering
domains are not bounded discs but rather unbounded domains containing these
discs. But our previous lemma about J (f) tells us any such unbounded Fatou
component can not cross the ‘straight-line’ portions of our graph (although it may
cross the ‘disc’ portions of the graph which are not mapped into R by f). This
leaves only a few possibilities (Illustrated in Figure 10) and we will show one-by-one
that each possibility can’t exist.

First of all, suppose we had an unbounded Fatou component contained inside
S+ (as in Figure 10a). We will argue that this unbounded Fatou component would
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eventually map to an unbounded component containing a small disk around some
an + iπ. Suppose not, namely assume we have an unbounded Fatou component
U ⊂ S+ so that f(U) is bounded. Recall that in S+, we know our map is f(z) =
cosh(λ(sinh(φ(z)))). There are two ways that f(U) could be bounded, either (1)
λ(sinh(φ(U))) is vertically unbounded (i.e. has nonempty intersection with |y| > n
for all n > 0) or (2) λ(sinh(φ(U))) is unbounded to the left (i.e. has nonempty
intersection with x < −n for all n > 0). But in case (1) it must then be the case that
cosh(λ(sinh(φ(U)))) has nonempty intersection with the real and imaginary axes
(a contradiction since R ⊂ J (f)) and iR ⊂ J (f)). As for case (2), if λ(sinh(φ(U)))
is unbounded to the left, we know that for all n ≥ 1, fn(U) must have nonempty
intersection with any open neighborhood of 0. On the other hand, fn(U) leaves S+

for some n, so that some iterate of such a Fatou component U would have to cross
the boundary of S+, a contradiction, since the boundary of S+ belongs to J (f).

So we only need to consider the case when our unbounded Fatou component
contains a small disk around an + iπ. Here there are two possibilities. (Remember
a Fatou component can’t cross the ‘straight-line’ segments of the graph). Either
the Fatou component crosses infinitely many discs Dn (Figure 10b), or the Fatou
component is vertically unbounded (Figure 10c).

πi
2

-πi2

0

(a) unbounded inside S+

πi
2

-πi2

0

(b) horizontally unbounded

πi
2

-πi2

0

(c) vertically unbounded

Figure 10

Consider one of the vertically unbounded components V of the plane with the
graph removed (illustrated in Figure 11). The construction of f relies on the Rie-
mann map from V to the right half plane. Before arguing that cases (B) and (C)
can not occur, we will need to understand how this Riemann map behaves. No-
tice that if we replace the two half-discs of the boundary of V with straight line
segments, we can write down explicitly the Riemann map. After a rotation and
translation, the Riemann map is z → λ sinh(z). It is sensible therefore that this
slight geometric perturbation of the boundary of V does not affect the Riemann
map near infinity. We give a more rigorous argument for this.

Lemma 3.3. Consider the Riemann map g from V to the half-strip obtained by
replacing the half-discs in the boundary of V with straight line segments. Normalize
g so that the corners of the half strip are fixed and infinity is fixed. Then g is
uniformly close to the identity near infinity. (See Figure 12).

Proof. : We use an argument based on the theory of harmonic measure. Assume
the width of the strip is 1 and the two corners are 0, 1. Define w(x, y) = x on
∂V ∩R, w(x, y) = 0 on the left portion of ∂V and w(x, y) = 1 on the right portion
of ∂V . Let g = u+ iv. Let w also denote the harmonic extension inside V . We first
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πi
2

-πi2

0

V

Figure 11. The vertically unbounded component V .

V g

Figure 12. The map g from V to a half-strip.

estimate (w − u)(z) for z ∈ V . We denote bottom as the part of the boundary of
V lying on the line y = π/2, and top as the rest of the boundary of V . dωz denotes
harmonic measure on ∂V at the point z ∈ V .

|(w − u)(z)| ≤
∫
bottom

|w − u| (ζ)dωz(ζ) +

∫
top

|w − u| (ζ)dωz(ζ)

as z → ∞, dωz(bottom) → 0 so that the left summand above vanishes. On the
other hand the summand on the right also vanishes because w, u agree on top.
This establishes that u(z) → real(z) as z → ∞. It remains to be shown that
v(z)→ imag(z) as z →∞.

To establish this we recall the following estimate for harmonic functions h:

|∇h(z)| ≤ C

r

∫
D(z,r)

|h|

Now letting h = u− w we have that
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|∇(u− w)(z)| ≤ C

r

∫
D(z,r)

|u− w|

and we just finished proving that the integrand tends to zero as z →∞. Then the
Cauchy-Riemann equations allow us to deduce that v(z)→ imag(z) as z →∞, as
needed.

�

Now we understand how our map f behaves in each region of the plane. In
particular in the region V , the Riemann map discussed above is applied, followed
by a rotation/dilation, followed by z → cosh(λ sinh(z)) (up to a quasiconformal
perturbation).

We return to our argument that the Fatou components of f must be bounded,
picking up with case (B). Consider a disc Dn, and let Vn be the vertical R-
component neighboring Dn and Dn+1. Notice that in Vn there is a preimage curve
of (+1,∞) tending to infinity vertically. Moreover, there are dn preimage segments
of [−1, 1] in the disc Dn, and one of these preimage segments has as one of its
endpoints an + i(π − 1) (the bottom of the disc Dn). Thus, by continuity, there is
a preimage of [−1,∞) connecting an + i(π − 1) to ∞ contained in Dn ∪ Vn. Since
any Fatou component can not cross this curve, case (B) can not happen.

What we are left to show is that a vertically unbounded Fatou component U
(Figure 10c) can not exist. Again, we proceed by way of contradiction, using a
hyperbolic geometry argument. We know that all forward iterates fn(U) remain in
the upper half plane. This allows us to estimate the hyperbolic distance in fn(U)
in terms of the hyperbolic distance in the upper half plane:

(3.1) dfn(U)(f
n(z), fn(w)) > dH(fn(z), fn(w))

Schwarz’s lemma indicates that the left hand side is bounded above by the hy-
perbolic distance in the Fatou component U , and so:

(3.2) dU (z, w) > dH(fn(z), fn(w)) over all n

Our contradiction will consist of showing in fact the right hand side is not
bounded, namely by showing the sequence of euclidean distances |fn(z)− fn(w)|
is unbounded. Indeed in S+ our function f acts as exp ◦ exp which increases |z−w|
under iteration, and we have just finished showing that in the half strip V our
function f essentially rotates/dilates V into S+ and exponentiates.

To be more precise, we can consider x, y ∈ R with 0 < x < y and consider how
|x− y| behaves under iteration of the exponential. Let g(x) := ex. Then:

(3.3) |g(x)− g(y)| =
∫ y

x

etdt >

∫ y

x

exdt > ex |x− y|
So indeed

(3.4) |gn(x)− gn(y)| > enx |x− y| → ∞ as n→∞
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Similar estimates hold if we replace 0 < x < y with z, w ∈ S+ and replace g(z) :=
ez with g(z) := cosh(λ sinh(z)) - namely the euclidean distance |fn(z)− fn(w)| is
increasing by a definite factor with n provided z, w ∈ S+. We claim that the image
f(U) ⊂ S+ must be unbounded to the right (i.e. has nonempty intersection with
|x| > n over all n > 0). Indeed, the argument is similar to the one given in case (B)
that f can not map an unbounded domain in S+ to a bounded one. Since the map
f differs in definitions on V and S+ only by a dilation, rotation and the Riemann
map g, the same arguments apply.

So we may choose z ∈ D̃n ∩U and w ∈ V ∩U so that real(f(w)) >> real(f(z)).
It is clear that for the first n iterations

∣∣fk(z)− fk(w)
∣∣ increases by a definite

factor. But fn(z), fn(w) lie in a vertical half-strip. However we know that fn+1(z)
returns near 1/2, whereas lemma 3.3 indicates fn+1(w) ≈ fn+1(|w|), so again∣∣fn+1(z)− fn+1(w)

∣∣ is increased by a definite factor.

Together these estimates indicate that as k →∞, |fk(z)−fk(w)| → ∞, and this
is our needed contradiction. This concludes our proof that the wandering Fatou
components of f must be bounded.

�
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4. A Transcendental Function with Unbounded Wandering Fatou
Components

Our goal in this section will be to produce a function f ∈ B with unbounded
wandering Fatou components. This function will have finitely many critical values
but infinitely many asymptotic values. But before we begin we need two results - the
first is a variant of Bishop’s theorem [Bis15] that we discussed in the introduction.

Suppose as before that we have some infinite tree T with alternate vertices
labeled ±1, and we denote the components of C \ T by Ωj . Instead of mapping
each Ωj conformally to the right half-plane Hr by a map τj followed by cosh, let
us map certain components Ωj conformally to the left-half plane Hl followed by
the exponential map onto D, and then a quasiconformal self-map of D shifting the
asymptotic value 0. This procedure is illustrated in Figure 13.

Hl

exp

ρ

0

ρ(0)

Ωj

T

Figure 13. The map f on an L-component.

These components that are mapped to Hl will be called L-components and those
that are mapped to Hr as before are called R-components. The L-components play
the role of the D-components in the previously stated version of the theorem. With
this we can state the version of theorem 7.1 from [Bis15] we need:

Theorem 4.1. Let T be an unbounded connected graph and let τ be a conformal
map defined on each complementary domain C \ T as above. Assume that:

(i) No two L-components of C \ T share a common edge.
(ii) T is bipartite with uniformly bounded geometry.
(iii) The map τ on a L-component maps edges to intervals of length 2π on Hl

with vertices in 2πiZ
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(iv) On R-components the τ -sizes of all edges is uniformly bounded from below.

Then there is an r0 > 0, a transcendental f , and a K-quasiconformal map φ of
the plane, with K depending only on the uniformly bounded geometry constants, so
that f = σ ◦ τ ◦ φ off T (r0). Moreover the only singular values of f are the critical
values ±1 - corresponding to the vertices of T , and those asymptotic values assigned
by the L-components.

The second result we need before beginning our construction is a precise formu-
lation of the fact (we have already used) that if the dilatation of a quasiconformal
map φ is supported on a ‘small set’, then φ should be close to the identity. First
we formulate precisely what we mean by a ‘small set’.

Definition 4.2. A measurable set E ⊆ R2 is said to be (ε, h) thin if

area(E ∩D(z, 1)) ≤ ε · h(|z|)

over all z ∈ C, where h : [0,∞)→ [0, π2] is a decreasing function so that:∫ ∞
0

h(r)rndr <∞

over all n.

For our purposes we will be able to take ε = 1, h = exp. This definition is used
in the following result:

Lemma 4.3. (Bishop, personal communication) Suppose φ : C→ C is K-quasiconformal
and φ fixes 0, 1, and φ(R) ⊆ R. Furthermore suppose φ is conformal in the strip
{x + iy : |y| < π/2}. Let E = {z : µ(z) 6= 0} where µ is the dilatation of φ and
suppose E is (ε, h)-thin. If ε is sufficiently small (depending on K,h), then:

1

C
≤ |f ′(x)| ≤ C

for all x ∈ R where C depends on K,h and ε is otherwise independent of f . If
we fix K,h and let ε→ 0, then C → 1.

We return to the task of producing a function f ∈ B with unbounded wandering
Fatou components. Our strategy will be to apply Bishop’s theorem to a tree that
we now construct. We start with the region S+ as before:

S+ := {x+ iy ∈ C : x > 0, |y| < π/2}

that is mapped conformally to Hr by z → λ sinh(z), and then holomorphically to
C \ [−1, 1] by cosh as illustrated in Figure 6. The vertices on this strip are defined
in Section 1. In particular we still have the vertices (an ± iπ/2) where:

nπ − 10−1 < an ≤ nπ

But we will replace the regions Dn by half-strips Hn:
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Hn := {x+ iy ∈ C : an − 1 < |x| < an + 1 and |y| > π − 1}

The domains Hn are just rotations/translations/scalings of the domain S+. So
in particular we already have vertices defined on Hn. Moreover Hn is mapped
conformally to Hr by z → λn sinh(similarity(z)) where similarity(z) is a rota-
tion/translation/scale, and λn > 0. But in fact we will want the Hn domains
to play the role of L-components in applying Bishop’s theorem. So we use in-
stead the fact that Hn is mapped conformally to the left half-plane Hl by z →
−λn sinh(similarity(z)). Then by post-composing with the exponential, Hn is
mapped inside the unit disc D. This procedure is illustrated in Figure 14.

πi
2

a1 + iπ2 a2 + iπ2

−πi2
Hl

λ2 sinh

−λ2i

λ2i

H2H1

exp

ρ2

0

ρ2(0)

0
0

similarity

Figure 14. The map f on an L-component in our construction.

Exactly as in Section 1 we will further postcompose with a quasiconformal map
ρn of the unit disc. We fix these quasiconformal maps ρn so that they fix the
boundary of D and ρn(0) = wn where wn is a parameter to be fixed later in a
neighborhood N1/2 of 1/2. Furthermore we ensure ρn is conformal in 3

4D and ρn is
Kρ-quasiconformal where Kρ does not depend on n.

We let σ ◦ τ |Hn
denote the composition z → ρn(exp(−λn sinh(similarity(z))))

mapping Hn to D. Notice that this map has the asymptotic value ρn(0) coming
from applying σ ◦ τ to the curve γ(t) = an + iπt approaching ∞ in Hn. It is also
important to note that the dilatation of the map σ ◦ τ is supported on smaller sets
with increasing λn.

Lastly we construct vertical segments connecting Hn to S+ and a vertical seg-
ment connecting iπ/2 to ∞. These are the same segments constructed in Section
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1 and have the same vertices. This whole construction is reflected in the real and
imaginary axes to produce the tree pictured in Figure 15.

πi
2

0

−πi2

..

..

..

..

..

Figure 15. The graph to which we apply Bishop’s folding theorem.

We invoke Bishop’s theorem to produce an entire function that extends the above
definitions on S+ and Hn up to a quasiconformal perturbation:

Theorem 4.4. For every choice of the parameters (λ, (λn)n≥1, (wn)n≥1) so that
λ, λn ∈ πN∗, wn ∈ N1/2 over all n, there exists a transcendental entire function f
and a quasiconformal map φ : C→ C so that:

(a) for every z ∈ C, f(z) = f(z) and f(−z) = f(z);

(b) f ◦ φ−1 extends the maps (σ ◦ τ)|S+ and (σ ◦ τ)|Hn for every n ≥ 1:

(4.1) f(z) =

{
cosh(λ sinh(φ(z))) if φ(z) ∈ S+

ρn(exp(sinh(similarity(z))) if φ(z) ∈ Hn

(c) f has two critical values ±1; and its set of asymptotic values is
{wn : n ≥ 1} (hence f is in class B).

(d) φ(0) = 0, φ(R) = R, φ is conformal in S+ and its dilatation is uniformly
bounded above by a universal constant K > 1 which does not depend on the
parameters.
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The proof of this theorem would consist of verifying that this tree satisfies the
uniformly bounded geometry conditions. But indeed, this work has already been
done - this tree is obtained by copying-and-pasting various parts of the graph in
Section 2.

Our strategy will be to choose parameters (λ, (λn)n≥1, (wn)n≥1) so that we can
guarantee there will be a wandering domain, and we will mostly follow the logic
given in Section 1. Let’s talk informally about our strategy before we begin any
proof. Our wandering domains will contain thin strips in a subsequence of the
domains Hn.

Each of these thin strips is mapped to a bounded domain by σ◦τ near 1/2 inside
D. Moreover, there is the disc Dn in each thin strip that has an nth preimage near
1/2 under σ ◦ τ . This is illustrated in Figure 16.

πi
2

..

0

f(Stripn)

f−n(Dn)

Figure 16. The map f before carefully choosing the parameters.

As in Section 2, we need to be able to do two things:

(a) shrink the image f(Stripn) so that it is small enough to fit inside f−n(Dn)
(b) perturb f(Stripn) so that it actually lies inside f−n(Dn).

(a) is accomplished by choosing the parameters (λn) sufficiently large - notice
that as λn →∞, the image of the strip shrinks to the point ρn(0). So in fact (λn)
plays the role of the exponential powers (dn) in Section 2. On the other hand (b)
is accomplished by adjusting the values ρn(0) as in Section 2. And as in Section 2,
the difficulty is that these choices are interdependent.

We proceed more rigorously with the following adaptation of Lemma 2.2 whose
proof remains unchanged in our current setting by taking t = 1/2:
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Lemma 4.5. Let f, φ, (λ, (λn)n≥1, (wn)n≥1) as in Theorem 3.1. If the following
estimates hold:

(4.2) ∀x ≥ 0,
dφ

dx
(x) ≥ 10

λ

Then the orbit of 1/2 under iteration of f escapes to infinity, and there exists a
sequence of Euclidean discs (Un)n≥1, together with a subsequence of positive integers
(pn)n≥1 so that for every n ≥ 1:

(a) Un has radius .009( d
dxf

n(1/2))−1 with ( d
dxf

n(1/2))−1 ≤ 50−n

(b) Un is contained in the disc centered at 1/2 and of radius 20( d
dxf

n(t))−1

(c) fk(Un) ⊆ S+ ∩H+ for every 0 ≤ k ≤ n− 1, and

(d) fn(Un) ⊆ 1
4D̃n ⊆ Dn ⊆ Hn where 1

4D̃n := {z ∈ C||z − zpn | ≤ 1/4}

Next we prove the analogue of Lemma 2.3 establishing that there are universal
parameters satisfying the hypotheses of the previous lemma:

Lemma 4.6. There exists a positive real number λ0 ∈ πN∗ and an increasing
sequence (λ0n) in πN∗ so that for every choice of parameters (λ, (λn)n≥1, (wn)n≥1)
with λ ≥ λ0, λn ≥ λ0n condition (4.2) of Lemma 4.2 holds, and hence the euclidean
disks Un exist.

Proof. This is a consequence of Lemma 4.3. Notice that as λ, (λn) increase, the
vertices in the tree move closer together, so that the neighborhood T (r) where the
quasiconformal folding takes place converges to the tree T in the Hausdorff metric.
This means that we may take λ0, (λ0n) large enough so that T (r) is (1, h(x) =
exp(−x)) thin. Lemma 4.3 then applies to tell us that there is a constant C so
that φ′(x) > 1/C. By taking λ0 larger than max {10C, λ0}, we are assured that
condition (4.2) of Lemma 4.5 holds.

�

We now define the strips Stripn ⊆ Hn that we discussed informally at the be-
ginning of this section. The domains Stripn will turn out to be contained in our
unbounded wandering domains. We choose any such unbounded domain Stripn
that contains 1

2Dn and so that

−λn(sinh(similarity(Stripn))) ∩ {x+ iy ∈ C : x > −n}

is bounded for all n ∈ N. This means that −λn(sinh(similarity(Stripn))) is hori-
zontally unbounded but not vertically. Recall that similarity(z) here is a similarity
from Hn to S+. We are ensured then that

as λn →∞, diam (exp(−λn(sinh(similarity(Stripn)))))→ 0.

Let us consider a choice of parameters (λ0, (λ0n)n≥1, (wn := 1/2)n≥1) coming
from Lemma 4.6. Lemma 4.5 applies then to tell us there exist these discs Un near
1/2 so that fk(Un) ⊆ S+ for 1 ≤ k ≤ n − 1, and fn(Un) ⊆ 1

4D̃n ⊆ Hpn . In fact
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since φ is close to the identity (we can ensure this by perhaps taking λ0n larger) we
know φ(fn(Un)) ⊆ 1

2Dn, and so fn+1(Un) ⊆ f(Strippn) ⊆ D(w0
pn = 1/2, r) where

the radius r tends to zero as λ0n tends to∞. We need to ensure we can take λ0n large
enough so that this radius r is less than the radius of the next disc Un+1 without
compromising the rest of the construction. This is the purpose of the next lemma
which establishes universal lower bounds on the radii of Un+1.

Lemma 4.7. Fix the parameters (λ0, (λ0n)n≥1, (wn := 1/2)n≥1). Then there exists
a sequence of positive real numbers (rn) so that for every new choice of parameters
(λn) ≥ (λ0n) the corresponding maps f, φ satisfy equation (4.2) and:

∀n ≥ 1, .009

(
d

dx
fn
(

1

2

))−1
≥ rn

In particular, we may assume that for all such parameters, every Euclidean disk
Un in Lemma 4.2 has radius larger than or equal to rn, and consequently we may
choose λn so that the image f(Strippn) has diameter less than rn+1.

Proof. For every n ≥ 1, let (λjn)j≥1 denote any sequence of increasing sequences
of positive integers with (λjn) ≥ (λ0n) for all j ≥ 1. For each fixed j, the sequence
(λjn)n≥1 yields a quasiconformal φj according to Theorem 4.4. But notice that the
dilatation constant of φj does not depend on j, also by Theorem 4.4. This means
by compactness that there is a subsequence φjl converging to some φ in compact
subsets of C. And since fj(z) = (cosh(λ sinh(φj(z)))) in S+, we know that (fjl)
converges in compact subsets of S+ to f(z) = (cosh(λ sinh(φ(z)))). This means

that the radii rn =
(
d
dxf

n
(
1
2

))−1
of the discs Un must have a positive lower bound

for each fixed n ≥ 1.
�

Now we have to adjust the quasiconformal maps ρn so that the image f(Strippn)
actually lands inside the next disc Un+1. We let w′n denote the center of the disc
Un. So namely we need to adjust f so that:

f(Strippn) ⊂ D(w′n+1, rn+1)

From which we will deduce by the above lemma that

fn+1(Un) ⊂ f(Strippn) ⊂ D(w′n+1, rn+1) ⊂ Un+1

We do so in the following lemma:

Lemma 4.8. There is a choice of the parameters (λ, (λn)n≥1, (wn)n≥1) satisfying
the hypotheses of Lemma 4.2, so that for large enough n we have:

fn+1(Un) ⊂ f(Strippn) ⊂ Un+1
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Proof. Let (λ0, (λ0n)n≥1, (w
0
n := 1/2)n≥1) as in Lemma 2.4. We have that f(U1) ⊆

1
4D̃1. We will adjust f so that ρp1(0) = w′2 (recall that w′2 is defined to be the
center of U2) rather than ρp1(0) = 1/2. We call this new function f1. We note
that there is a corresponding correction in φ to ensure that f1 is still holomorphic.
However even though now we have that f1(Stripp1) ⊆ U2 it may no longer be the

case that f1(U1) ⊆ 1
4D̃1 because of the correction in φ. But indeed we can fix λp1

as large as we like by Lemma 2.4 so that the dilatation of φ is concentrated on a
region with as small of an area as we wish (small in the sense of definition 4.2). For
example choose this area so small that:

sup{|f1(z)− f(z)| : z ∈ D(1/2, 1)} < s1 << 1

Now we know that f1(U1) ⊆ 1
4D̃1 and f21 (U1) ⊆ f(Strippn) ⊆ U2.

Indeed we may proceed iteratively in this way. At step n we adjust ρpn so that
ρpn(0) = w′n+1. By choosing large enough (λn), one may ensure that the correction
of f in discs centered at {1/2, f(1/2), ..., fn(1/2)} of radius 1 is less than sn << 1.
Doing this we can see that for k ≤ n,

fk+1(Uk) ⊂ f(Strippk) ⊆ Uk+1

We choose the sequence (sn) so that it will sum to be less than some ε > 0. This
ensures that the limit function under this iterative procedure satisfies:

fn+1(Un) ⊂ f(Stripn) ⊂ Un+1

over all n, as needed.
�

We remark that the domains Strippn are contained in the Fatou set, and that
they are contained in different Fatou components. Indeed the reasoning is nearly
identical to the analogous proof given in Section 2 so we omit it. This establishes
that the function f ∈ B we have constructed above has unbounded wandering
domains.

We also would like to remark that according to [Her98] the image of a Fatou
component can miss at most one point in the image Fatou component. This means
that the strips Strippn are contained in a Fatou component but do not comprise
the entire Fatou component. Let Upn be the Fatou component containing Strippn .
Indeed Strippn maps to only a bounded subset of Strippn+1

, so that there must
be an unbounded preimage of Strippn+1

inside Upn . In fact Upn must contain an
unbounded preimage of Strippk for each k > n.

Lastly, a word about why this answers question 3 of [OS16]. Namely we claim
that for this function f there is an unbounded wandering domain in BU(f), all
of whose iterates are unbounded. Indeed it is clear that the Fatou components
Upn are unbounded since they contain the unbounded sets Strippn . Moreover since
Strippn ⊂ BU(f), by Theorem 1.1 of [OS16] it is true that Upn ⊂ BU(f). Also
by the aforementioned result of [Her98] we know that f(Upn) can miss at most one
point of the image Fatou component. It follows then that the function f we have
constructed answers question 3 of [OS16].
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