MATH 1190.00 (Business Cal)

Exam-3

Full Marks: 100

Instructor: - Koshal Dahal

Date: 4/20/2011

# Each questions carry equal points:

Q.N.1: How old is a Chinese artifact that has lost 60% of its carbon-14?

Hint: 
$$P(t) = pe^{-kt}$$
, k= 0.0001205

prefer amount of Carson-14 is 
$$40^{\circ}/_{0}$$
 So,  $0.40 P_{0} = P_{0} e^{-0.0001205} t$ 
 $0.40 = e^{-0.0001205} t$ 
 $10.40 = -0.0001205 t$ 
 $10.40 = t$ 
 $10.40 =$ 

Q.N. 2: A home owner wants to have \$15,000 available in 5 years to pay for new siding. Interest is 6.1%, compounded continuously. How much money should be invested?

Hint: 
$$P(t) = pe^{rt}$$
  
 $15,000 = P_0 e^{0.061(5)} = P_0 e^{0.305}$   
 $\frac{1500}{e^{0.305}} = P_0 = P_0$   $\Rightarrow P_0 = 11,05$ 

Q.N.3: find the derivative of the following functions w.r.to x,

a) 
$$f(x) = 7^{x} (\log_{4} x)^{9}$$
b)  $f(x) = 3^{x-1}$ 

Product rule

 $f'(x) = 7^{x} \left[ 9 (\log_{4} x)^{8} + \frac{1}{2} \log_{4} x \right] + (\log_{4} x)^{9} + 7^{x} \ln 7$ 
 $= 9.7^{x} (\log_{4} x)^{8} + 7^{x} \ln 7 \cdot (\log_{4} x)^{9}$ 
 $= \frac{9.7^{x} (\log_{4} x)^{8}}{x \cdot \ln 4} + 7^{x} \ln 7 \cdot (\log_{4} x)^{9}$ 
 $= \frac{9.7^{x} (\log_{4} x)^{8}}{x \cdot \ln 4} + 7^{x} \ln 7 \cdot (\log_{4} x)^{9}$ 
 $= \frac{9.7^{x} (\log_{4} x)^{8}}{x \cdot \ln 4} + \frac{1}{2} \ln 7 \cdot (\log_{4} x)^{9}$ 
 $= \frac{9.7^{x} (\log_{4} x)^{8}}{x \cdot \ln 4} + \frac{1}{2} \ln 7 \cdot (\log_{4} x)^{9}$ 
 $= \frac{9.7^{x} (\log_{4} x)^{9}}{x \cdot \ln 4} + \frac{1}{2} \ln 7 \cdot (\log_{4} x)^{9}$ 
 $= \frac{9.7^{x} (\log_{4} x)^{9}}{x \cdot \ln 4} + \frac{1}{2} \ln 7 \cdot (\log_{4} x)^{9}$ 
 $= \frac{9.7^{x} (\log_{4} x)^{9}}{x \cdot \ln 4} + \frac{1}{2} \ln 7 \cdot (\log_{4} x)^{9}$ 

$$I'(x) = 3^{x-1} \ln(3).$$

Q.N.4: An Apple company has a marginal profit function P(x) = -2x+40, where P(x) is in dollars per unit. Then find the total profit from the productions and sale of the first 20 units.

Hint: use area of trapezoid or triangle

#### Q.N.5: Find the anti-derivative of:

a) 
$$\frac{5}{x^2} + \frac{3}{x}$$

$$\int \left(\frac{5}{x^2} + \frac{3}{x}\right) dx$$

$$= \int 5 \cdot x^2 dx + 3 \int \frac{1}{x} dx$$

$$= \int \frac{5}{x^2} + \frac{3}{x} dx + C$$

b) 
$$2e^{5x}$$

$$\int 2e^{5x} dx$$

$$= 2 + C$$

Q.N.6: Find the area of given function over the given interval

(b) Find the area of the region that is bounded by the graphs of following functions: f(x)=2x+1 and  $g(x)=x^2+1$ 

Point of interestion
$$2x+1 = x^{2}+1$$

$$0 = x^{2}+1-2x-1$$

$$= x^{2}-2x$$

$$= x(x-1)$$

Eine 
$$x=0, ax=2$$
.

At  $x=0, ax=2$ .

$$= \int_{0}^{2} (2x-x^{2}) dx = \left[x^{2}-x^{2}\right]_{0}^{2} dx$$

$$= \int_{0}^{2} (2x-x^{2}) dx = \left[x^{2}-x^{2}\right]_{0}^{2} dx$$

$$= 4-8/3 = 4/2 + 4$$

### Q.N.7: Evaluate by substitution:

PW X= 4

(b)  $\int 3x^2(x^3+1)^5 dx$ 

 $\int_{3}^{3} y^{2} dx = d4. \left( \frac{d^{2}}{d^{2}} \right)$   $\int_{3}^{5} \int_{3}^{4} u^{5} d4 = \int_{6}^{6} \int_{6}^{6} d4$ 

## Q.N.8: Evaluate using integration by parts

a) 
$$\int x^{3} \ln(2x) dx$$
 $V = \ln(2x)$ 
 $\int du = x^{3} dx$ 
 $\int u = x^{3$ 

b)  $\int (x^3+4) (3x^2) dx$ x+4= 4 Idle= 3xdx of gute. & Part  $1 = (x^3 + 4) x^3 - \int x^3 3 x^2 dx$ 

#### Bonus: [10]

Approximate the area under the graph of  $f(x) = 1/x^2$  over the interval [1,7] by computing the area of each rectangle to four decimal places and then adding.

 $\Delta X = \frac{b-9}{1} = \frac{7-1}{C} = 1$ . X(x)

The area of reclarge I is

Azf(2). 0x = = 1

Grewite,

A2=f(2). DX= 7x1=0.2500

 $A_3 = f(3) \cdot \Delta x = \frac{1}{3} + 1 = 0.1111$ 

 $A4 = f(4) \cdot \Delta X = f_6 x_1 = 0.0625$   $A5 = f(5) \cdot \Delta X = f_2 x_1 = 0.0400$   $A6 = f(6) \cdot \Delta X = f_3 x_1 = 0.0278$ 

214914.

The End!!!