Formula-Sheet for Test 3(Math 1190_5W2):
 Instructor: Koshal Dahal

$\frac{d}{d x} a^{x}=(\ln a) a^{x} \quad$ and $\quad \frac{d}{d x} \log _{a} x=\frac{1}{\ln a} \cdot \frac{1}{x}$

Elasticity: $\quad E(x)=-\frac{x \cdot D^{\prime}(x)}{D(x)}$.

Total revenue is increasing at those x-values for which $E(x)<1$. Total revenue is decreasing at those x-values for which $E(x)>1$. Total revenue is maximized at the value(s) for which $E(x)=1$. Again, the demand is inelastic if $E(x)<1$. The demand has unit elasticity if $E(x)=1$. The demand has unit elasticity when revenue is at a maximum. The demand is elastic if $E(x)>1$.

Revenue function: $\quad R(x)=x \cdot D(x)$.

Basic Integration Formulas:

- The Constant Rule of Antidifferentiation is $\int k \cdot d x=k x+C$.
- The Power Rule of Antidifferentiation is $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$, for $n \neq-1$.
- The Natural Logarithm Rule of Antidifferentiation is
- The Exponential Rule (base e) of Antidifferentiation is

$$
\int \frac{1}{x} d x=\ln x+C, \text { for } x>0
$$

$$
\int e^{a x}=\frac{1}{a} e^{a x}+C, \text { for } a \neq 0
$$

P1. $\int k f(x) d x=k \int f(x) d x$
P2. $\int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x$

The Area of a trapezoid is $\mathrm{A}=1 / 2 \mathrm{~h}\left(\mathrm{~b}_{1}+\mathrm{b}_{2}\right)$ where h is the height of the trapezoid and b_{1} and b_{2} are the lengths of (parallel sides) the respective bases.

Definite Integral: $\int_{a}^{b} f(x) d x=F(b)-F(a)$ where F is an antiderivative of f.

Riemann Sums: The area of the region under the curve is approximately the sum of the areas of the rectangles.

Note: Be familiar on how to calculate Riemann Sum!

