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Abstract

Koch curve is known as a typical self-similar set on Euclidean plane. Koch island is a closed set
surrounded by three copies of Koch curve. We investigate them from the viewpoint of computabil-
ity. In this paper, we define computability of a curve and that of a closed set as an application of
classical computable analisys to Euclidean spaces and show that Koch curve is a computable curve
and both Koch curve and Koch island are computable closed sets.

1 Introduction we should define computability of a curve and com-
putability of a closed set by using the terms on classical

Our aim in this paper is finding fundamental math&omputable analysis.
matical tools to investigate self-similar sets from the Defining computability of a curve is a straightfor-
viewpoint of computability. ward task. A curve is (or can be identified with) a con-
First of all, we should determine what “comdiinuous function from an interval. We define a curve to
putability” means. We have already obtained a mathe computable if it is a computable function from the
ematical theory to investigate computability of rednterval[o, 1].
functions[6][7], which is often referred as “classi- For example, any segment with computable end-
cal computable analysis”. To investigate curves apaints is constructed from a computable curve since it
closed sets in Euclidean spaces from the viewpointisfconstructed from a computable functign [0, 1] —
computability, we should apply classical computabl®? such thatf(t) = (1 — t)a + tb wherea andb are
analysis to curves and closed sets. In other wordse endpoints.



There is no loss of generality in the restrictiothat terminates with returningalse for an input
of the domain to[0,1]. If [a,b] is an interval with (n1,...,n,) € N9 if and only if (z1,...,2,) ¢ X
computable endpoints, then the computabilityfot wherez,...,z, are the same as above since “there
[a,b] — R? is equivalent to the computability ofexists a computable real that is indexed withis not
f :[0,1] — R? defined byf(t) = f(a+ (b—a)t) arecursively enumerable predicatemon
fort € [0,1]. In case ofX = {(z1,72) € R? : 12 + z5% = 1},

On the other hand, it is not so straightforward iandg : R?> — R defined byg(z1, z2) = 212 + 222 -1,
case of closed sets. L&t be a closed set oR?4. De- the closed seX is a Jordan closed curve and the com-

fine fx : R? — R by putable functiory satisfies a stronger condition:
0 ifzeX, g(z) =0 if zisonX,
Ix@=93, @) 0 ifzisinsideX 3
if z ¢ X. g(z) < if z is insideX, (3)

g(z) >0 if z is outsideX .
Since any computable function is continuoys; is

not computable unlesX is either® or R9. This func- Similarly to the case of condition (2), finding a
tion fx is useless for our aim. function satisfying the stronger condition (3) has the
Rather than (1), we may find, for a closed &bn following application. LetX be a Jordan closed curve
RY, a computable functiop : R? — R satisfying such that there exists a functign: R? — R sat-
isfying (3) andz a computable point ofR?. If z
g(z) =0 ifz € X, 5 is not on X, then there exists an effective procedure
g(z) #0 ifz ¢ X. (2) that determines whether is inside X or outsideX.

More precisely, there exists a semi-algorithm that ter-
For example, for{(z1,z2) € R? : z,% + 2,2 = 1}, minates with returninginside or outside for an
the functiong : R? — R defined byg(z;,z2) = input(nq,...,ng) € N?if (zq,...,2,) is insideX or
z12 + 222 — 1is such a function. outsideX respectively wherey, ..., z, are the com-

It may thus be useful for our aim to define a closeglitable reals indexed withy, . . ., ny respectively.
setX on R? to be computable if there exists a com- The next thing we should do is recalling what “self-
putable function satisfying the condition (2). similarity” means. A set iself-similarif it is con-

Be careful that these definitions are positiorstructed from some miniatures of the whole[3][4][5].
sensitive. In other words, all of the curves (closed setdpre precisely, for any finitely many contractions
congruent to a computable curve (closed set) are dat . . ., Fi, onR?, the set equation
computable. For example, latbe an uncomputable
real. Then{(z1,22) € R? : (z; — a)® + 252 = 1} X =F(X)U---UFn(X)
is not a computable closed set although it is congry

2 .
zni f;hf c?r}nputable closed sflwr1,z2) € B : 52 Solution of a set equation of this form is called a
1 2" = 1y. - cimi
Finding a function satisfying the condition (2) hagelf S|m||e_1r §et[4][5].
> . We will introduce three closed sets named Koch
the following application. LetX be a closed set on ; :

. . curve, Koch coastline, and Koch island. Koch curve
R? such that there exists a functign: R? — R . lf-simil h i q h island

satisfying (2) andz a computable point oR?. If is a self-similar set. Koch coastline and Koch islan
. . ) are closed sets constructed from Koch curve. The
z ¢ X, then there exists an effective procedurfe

. . . irst closed set we introduce koch curve In Fig-
that shows this. More precisely, there exists a semi- 9

. ; ; . ure 1, letAabc be an isosceles triangle with lengths
algorithm that terminates with returninfalse for la—bl| = la—c| = 1/v3and|b— c| = 1. Leta
. 0 bl =la=1c|| = —cll =1. 1
fmépgm (n1, ... ,Z?()e tieNcorI; (uxt;’b'lé' ’rz(él)ls %nd)éxe nda, be the points trisecting the edge Let T, and
with xl""’zrqes ectivel P 1 be the similarity transformations that mapabc
Tﬁle,r‘e‘ ‘i;nﬁowep\)/er no )gemi-al orithm that '[ermQnto Aaiba and Lazac respectively. Koch curveis
: . -alg the unigue nonempty compact solution of the set equa-
nates with returning rue for aninput(ny,...,n,) €
: tion
N? if (z1,...,2,) € X wherez,...,z, are the
same as above since there is no semi-algorithm that X = To(X) UTi(X).
terminates with returningrue for an inputn € N
if n indexes0. There is either no semi-algorithmFigure 2 illustrates Koch curve.

as a unique nonempty compact solution. Any set that



X The last closed set we introduce Kech island
Denote Koch coastline by and the inner domain of
by D. Koch island is defined to bguU D.
We can easily show that a segment with com-
. putable endpoints is constructed from a computable
b ax a2 “ curve. Then a question arises; how about Koch curve?
Both a segment and Koch curve are Jordan arcs. One
of the major differences between a segment and Koch
Qurve is that Koch curve is a totally non-differentiable
Koch curve : . . .
curve while a segment is a differentiable curve. An-
We now briefly recall some of the properties obther is that Koch curve has an infinite length while a
Koch curve. Koch curve is a self-similar nonemptgegment has a finite length. Do these differences affect
compact set. Although Koch curve has a null areg the computability of Koch curve? The same ques-
it has an infinite length. Koch curve is a Jordan artion arises on Koch coastline comparing with a circle.
There is no differentiable curve that constructs Koghsimilar question on computability of closed sets also
curve. These properties can be easily checked fraimses on Koch island comparing with a closed disc.
the definition. We have obtained the answers to these questions.
The second closed set we introduc&ach coast- koch curve is constructed from a computable curve.
line. Koch coastline is a closed set constructed frogy, js Koch coastline. Koch island is a computable
three copies of Koch curve as Figure 3. Koch coastliggysed set. One of the most important facts in showing
is a Jordan closed curve. this is that each of these closed sets is a limit of unions
of computable segments or computable triangles.

Figure 1: Similarity transformations for constructin

w5 .57 2 Preliminary

We use the terminology on classical computable anal-
Figure 2: Koch curve ysis in [6]. We will identify a point(z, y) and a vector

z throughout this paper. We write:

cosf —sind 1 0
Re_(sin@ (:050)’ T _<0 —1)’
(1
€] = 0/

First, we will define Koch curve.

Definition 2.1. With Ty, Ty : R? — R? defined by

1
To(z) = ﬁRw/ng,

1
= —=R_,/6J(z —e1) +eu,

V3

Koch curveis the uniqgue nonempty compact solution
of the equation

T1 (37)

Figure 3: Koch coastline X =To(X) UT1(X).



There are many ways to construct Koch curve. We
will introduce one which starts with a segment. With
the transformation%, and7; in Definition 2.1, we de-
fine I, recursively by

~

FO:{(taO):tE [0,1]}, 0

L1 =To(0y) UTH (1)

Then Koch curve coincides Wi~ ; Ur— In.

Calculation of some of the beginning terms yields
the following. 1

/

e Ip is a segment connectir{@, 0) and(1,0).

%

e It is a polygonal line connecting0,0),
(1/2,1/2+/3), and(1,0) in this order.

!

2

e Iy is a polygonal line connecting0,0),
(1/3,0), (1/2,1/24/3), (2/3,0), and (1,0) in
this order.

?

e

3

e I3 is a polygonal line connecting0,0),
(1/6,1/6v3),  (1/3,0),  (1/3,1/3V3),
(1/2,1/2v3),  (2/3,1/3v3),  (2/3,0),

(5/6,1/6+/3), and(1,0) in this order.

:

ry

e Iy is a polygonal line connecting0,0),
1/9,0), (1/6,1/6\/3), (2/9,0), (1/3,0), . ) . .
(7/18,1/6v3), (1/3,1/3v3), (4/9,1/9V/3), Eguhre 4: Some beginning steps of construction of
(1/2,1/2v3), (5/9,1/9v/3), (2/3,1/3v/3), "Oocn Ve
(11/18,1/6v/3), (2/3,0), (7/9,0), Koch coastline is a Jordan closed curve. Thus the
(5/6,1/6v/3), (8/9,0), and (1,0) in this following is well-defined.
order.

Definition 2.3. Denote the inner domain of Koch

Figure 4 illustrate these steps. coastline byD. Then,Koch islandis D.

By using Koch curve, we will establish the follow-
ing definition. 3 Computability of curves and

closed sets
Definition 2.2. With T, T’ : R? — R? defined by
3.1 general results

T(z) = R_op/3x + €1, . . . . ) : '
() 2m/3% T €1 As explained in the introduction, our first task is defin-

T'(z) = Rar/s(z — €1), ing the computability of curves and closed sets on an
Euclidean space. We proceed this task by using the tra-
Koch coastlings v U T'(y) U T'(y) where~ denotes ditional definitions on the computability of real func-
Koch curve. tions.



In this paper, we consider a curve &4 to be a Proof. Let f : [0,1] — R? be a computable function.
continuous function from an interval &?. We say a We will show thatd, , ,}) is @ computable function
curve f constructs a set if f(I) = v wherel is the satisfying the condition in Definition 3.2.

domain off. It is immediate fromf([0,1]) being a closed set
In addition, we define computable curves and cortiatd; i 1) (z) = 0iff 2 € £([0, 1]). We easily obtain
putable closed sets as follows. thatdy (0,1 is effectively uniformly continuous as a

special case of Lemma 3.1. The remaining is sequen-
tial computability ofd g 17
Let {z,} be an arbitrary computable sequence of
Definition 3.2. A computable closed sen R? is a Points onR?. We will check that{dy (o 1)) (#n) nen
subset ofR? such that there exists a computable funés @ computable sequence of reals in order to show
tion g : R — R satisfying thatd; jo,q)) is sequentially computable. Defingg :
[0,1] = Rforn € Nby

Definition 3.1. A computable curven R? is a com-
putable functiory : [0, 1] — R?.

(£)=0 ifzeX,
) 20 fogx (0 =l =70k

A computable closed set is a closed set since itis $r OPvious that{g,} is a computable sequence of

inverse image of a closed set by a continuous functidctions. By using the effective version of Max-
For a nonempty subset of R?, we defineds : MIN Theorem, we obtain thafmin;c(o,1) gn(t) nen

R? s R by is a computable sequence of reals. Namely,
{d¢(o,1))(zn)} is a computable sequence of reals.
dg(z) = inf{|lz —y|| : y € S} Henced; ;o 4)) is sequentially computable.

Now we have established thd} |, 1)) is a com-
The functiond is well-defined since the séllz—y|| : putable function satisfying the condition in Defini-
y € S} is nonempty and bounded below. tion 3.2. Thusf([0,1]) is a computable closed set.

O
Lemma 3.1. Let {S,,} be an arbitrary sequence of

nonempty subsets &¢. Then, the sequence of func- .
tions{ds_} is effectively uniformly continuous. 3.2 Koch curve and Koch coastline

We are now ready to investigate computability of Koch

Proof. Let z andy be arbitrary points ofiR9.
curve, etc.

For anyn € N and any > 0, there exista € S,

such thatly — u|| < dg, (y) + €. Then we have Lemma 3.2. In the notation of Definition 2.1, define

fr : [0,1] = R2 recursively by
ds. (¢) — ds, () < lle — ull — |ly - ul] +< 0.1}

<z -yl +e. wor = (8).

From the arbitrariness af, we obtain
Fron(t) = To(fr(2t)) if t €[0,1/2],
ds, (z) —ds, (y) < llz —yl|. YT T (a2t — 1)) it € [1/2,1].

By exchanging: andy in this argument, we obtain - Then (¢ 1 is a computable sequence of functions.

ds, (y) — ds, (z) < [z —yl|. Proof. By induction o, it is straightforward to show
that eachy,, is well-defined and satisfies
Hence we have
s, (@) — ds, ()] < llz ~ . Folt) = [Ty 0200 Tao) o278~ K))
ift € [K/2", (K +1)/2™]
This implies that{dg_} is effectively uniformly con-

tinuous. 0 where bo,...,bp—1 € {0,1} and 2°by + --- +
2”711)”_1 =K.

Theorem 3.1. Any computable curve ofR? con- Clearly, {f,.} is effectively uniformly continuous.

structs a computable closed set. We however find a difficulty here in showing th, }



is sequentially computable. Calculation of an inte- Forinduction step, suppose for ahg¢ [0, 1],

ger K and a bit stringbg,...,b,_1 from a realt is N
not effective. 1 ( 1 )
n(t) — fonr1@)|| < —4=| —= ] .
Take any computable sequenée,} < [0,1]. 1£2(®) = fsr (O 2v/3 \V/3

There exists a double sequence of ratioqalg } such |
thatr;;, — ¢ effectively inn, j, andk asj — oo. To a}nd r:eva usw'f"“(tr)]_ Frt2 (O]l
overcome the difficulty, we shall investigate the tripIIalon ypothesis, we have

sequence of pointsf, (r;x)}. i (6) = Frra @)

From the induc-

We have )
= /3 | fn(2t) = fry1(2t) ||
In(rjp) = (T, _, 0+ 0 Ty, ) (fo(2"rj — K)) _
if i, € [K/2", (K +1)/2"] if ¢ €[0,1/2],
| frr1(t) = Frr2 @)l
where by, ...,b, 1 € {0,1} and 25 + --- + 1
2n=1p,_; = K. In this case, computation ok =7 | fn(2t = 1) — fria(2t = 1)
and bg,...,b,_1 from n, j and k is effective since i 1/2.1]

the relation< in Q is effective. More precisely,
we can construct a recursive function that computeg s for anyt € [0, 1]
)

(K,bg,...,b,_1) fromn, j, andk by using a recur-
sive function that corresponds to the relatignin Q. 1 1\
Hence{f,(r;x)} is a computable triple sequence of [lfn+1(t) = fat2(®)ll < W («/5)
points.
We are ready to show sequential continuity of We have finished the preparation.
{fn(tx)}. Sincerj, — t; effectively inj andk as The result above implies thdtf,,} converges uni-

j — oo and{f,} is effectively uniformly continuous, formly to a continuous function as — oo. Using f
we obtain thatf,(r;z) — f.(tx) effectively inn, j, for the limit, we have
andk asj — oo. We conclude thaf f,, (tx)} is a com-

putable double sequence of points since it is a limit of O — £ < = £ — ‘
a computable and effectively convergent sequence of 1/ (8) = £ < kz:; 1f8) = s (D]

points. O oo i
1 1
Lemma 3.3. In the notation of Lemma 3.2, the se- < Z (Ng <\/§) )
quence of function§f,} is effectively uniformly con- k=n n
vergent ag — oo. _V3+1 <i> ‘
4 \V3

Proof. As a preparation, we show, by induction an
that for anyn € N and anyt € [0, 1], We hence conclude thdtf,,} is effectively uniformly

convergent ags — oo. O

[ fn(t) = forr (@) < % <%> : Theorem 3.2. Koch curve is constructed from a com-

putable curve.

For induction base, evalualeo(t) — f1(t)||. We

Proof. In the notation of Lemma 3.2, defing :
have

[0,1] — R? by
I5o0) = ABI = Sz ifte 0,172 F#) = lTm fa(t).
I fo(t) — fr(®)|| = 1=t if t €[1/2,1]. From Lemmas 3.2 and 3.3, we obtain ttfais well-
V3 defined and computable. Furthermoy&[0, 1]) con-
Thus, for allt € [0, 1], structs Koch curve since
1 fo([0,1]) ={(£,0) : t € [0,1]},
1fo®) = 0= 5 75 Foa ([0,1)) = To(£((0, 1)) Ui (£a([0,1]),



and In the notation of Definition 2.2 and Lemma 3.2,
definewy,, by

£(0,1)) = () U £a((0,1]). Yn = fan([0,1]) U T (f2n ([0, 1])) U T' (f2n ([0, 1])).
k=1n=k
o It is straightforward from the definition that eagh
is a Jordan closed curve. We denote the inner domain
We obtain the following two corollaries of TheoOf ¥ by Dn.

rem 3.2. Lemma 3.5. {d,, }isacomputable sequence of func-

Corollary 3.2.1. Koch coastline is constructed from éuons.

computable curve. Proof. Some tedious manipulation yields that there ex-
. _ ist three sequences of poids, }, {b,}, and{c, } and

Proof. By using Patching Theorem. [ arecursive functior : N — N such that

Corollary 3.2.2. Both Koch curve and Koch coastline D, = U Aapbycnp.

are computable closed sets. k<e(n)

Proof. By using Theorem 3.1. g Thus

an (.’L‘) = kr<nel(rrl7,) dAan bpcCn ($)

3.3 Koch island and the Jordan domains

of Koch coastline From Lemma 3.4 and some manipulation on

“ming<.(n)”, We obtain that{d, } is a computable
For arbitrary pointsz, b, ¢ € R?, we denote byAabc Sequence of functions. O
the interior of the triangle whose vertexes aré, and

c We denote Koch coastline by and the inner do-

main ofy by D.

Lemma 3.4. If {a,.}, {b, }, and{c, } are computable | emma 3.6. The sequence of functiorfg,, } con-

sequence of points oR?, then{dx,,s,., }nen IS @ verges tai,, uniformly and effectively in asn — oo.
computable sequence of functions. ) o
Proof. Letn be an arbitrary nonnegative integer and

Proof. It is immediate from Lemma 3.1 thatan arbitrary point.
{dra,b,c, } 18 effectively uniformly continuous. It  Some tedious calculation yields thab =
remains to show thaftd ., , . } is sequentially com- {J;”, Dy. Thus

putable.
Since dp(z) < dp, ().
Some tedious calculation again yields that for any
Aapbpcn, = {an +t(bp — an) +u(cn —an) : y € D,.1, there exists € D,, such that
t,u € [0,1]}, 1/ 1\"
—2|<—(—=]) .
we have Iy = 23 <\/§)
d (z) For anyz € R? and any > 0, there existy € D
Fhanbnen such that

= min {||a, + t(b, — an) +u(c, —a,) — x| :
(t,u) € [0,1] x [0,1]}. Iz —yll < dp(z) +e.

o . For thisy, sincey € .-, D», there existsy € N
From an argument similar to that in the proof oych thay ¢ D,,.

Theorem 3.1, we obtain that {fz;,} is a computable

sequence of points oR?, then,{d, , . (zx)}is a e Incase ofng < n, we havey € D,,. Thus
computable double sequence of reals. Thus we have dp (z) < ||z — o]
established thafld ., , . }is a computable sequence “Da =
of functions. o O <dp(z) +e.



e In case ofng > n, we construcyy, forn < k <
ng such agy, € Dy, as follows.

— Definey,, =y.

— If we have already definegk, ;1 € Dy,
then there i € Dy, such that

s — 2l < == (1)
Y41 23 \V3 .
Choose one of suchto beyy,.

Then, we have

dp, (2) < ||z = ynl|

no—1

< e =yl + D lyess — gl

k=n
Tl 1\
<dp(z) +e+ — (—) .
In both cases, we have

dp, (2) < dp(c) +¢+

V3+1 < 1 )"
4 v3) -
Then, the arbitrariness efimplies

52 (5"

Now we have established that

dp, (z) < dp(z) +

V3+1 < 1 )"
d —d <=1 .
dp, (2) —dp(@)] < == ( 7
This concludes thafd, } converges tay, uniformly
and effectively iln asn — oo. O

As an immediate consequence of Lemma 3.5 an[iE]

Lemma 3.6, we obtain the following theorem.
Theorem 3.3. d, is a computable function.

The following corollaries hold.

Proof. Immediate fromd,(z) = 0iff z € D. O

Corollary 3.3.2. Koch coastliney is a computable
closed set with a functiog satisfying the condition:

g(z) =0 if z is on~,
g(z) <0 if z is insidery,
g(z) >0 if z is outsidey.

Proof. Setg(z) = 2dp(z) — d

=

(z). O

4 Conclusion

Both Koch curve and koch Coastline are constructed
from computable curves. All of Koch curve, koch
Coastline and Koch island are computable closed sets.
Furthermore, there is a computable function which
separates inner and outer domains of Koch coastline.
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