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Preface

What is it that we might expect from a theory of di�erential equations� Let us
look �rst at ordinary di�erential equations�

Theorem �� Suppose that n is a positive integer and G is an open subset of
R�Rn containing a point �c� x� � R�Rn� Suppose also that f is a continuous
function on G for which there is M �  such that

kf�t� x�� f�t� y�k �Mkx� yk� �t� x�� �t� y� � G� ����

Then there is an open interval �a� b� containing c for which there is a unique
function y on �a� b� so that

y�c� � x� y��t� � f�t� y�t��� t � �a� b��
This result can be proved in several constructive ways which yield
 along the

way
 error estimates which give a basis for numerical computation of solutions�
Now this existence and uniqueness result certainly does not solve all problems
�for example
 two point boundary value problems� in ordinary di�erential equa�
tions� Nevertheless
 it provides a position of strength from which to study a wide
variety of di�erential equations� First of all the fact of existence of a solution
gives us something to study in a qualitative
 numerical or algebraic setting� The
constructive nature of arguments for the above result gives one a good start
toward discerning properties of solutions�

It would generally be agreed that ��� one would want a similar position of
strength for partial di�erential equations and ��� there is not such a theory� It
is sometimes argued that there cannot be such a theory since partial di�erential
equations show such great variety� To such an argument one might reply that
the same opinion about ordinary di�erential equations was probably held not so
much longer than a century ago�

This monograph is devoted to a description of Sobolev gradients for a wide
variety of problems in di�erential equations� These gradients are used in descent
processes to �nd zeros or critical points of real�valued functions� these zeros or
critical points provide solutions to underlying di�erential equations� Our gra�
dients are generally given constructively� We do not require that full boundary
conditions �i�e�
 conditions which are necessary and su�cient for existence and
uniqueness� be known beforehand� The processes tend to converge in some �per�
haps noneuclidean� sense to the nearest solution� The methods apply in cases

v



vi PREFACE

which are mixed hyperbolic and elliptic � even cases in which regions of hy�
perbolicity and ellipticity are determined by nonlinearities� Applications to the
problem of transonic �ow will illustrate this� We emphasize numerical emulation
of function space processes as well as theoretical convergence results�

So
 do we arrive at a position of strength for fairly general partial di�erential
equations� We claim to have only a shadow of such a theory� In particular
 there
is a great deal of work to be done in �nding convergence results for descent pro�
cesses using Sobolev gradients and showing how even the abstract convergence
results given here actually apply to concrete systems of partial di�erential equa�
tions� My main hope for this work is that some who are really good at hard
estimates for partial di�erential equations will �nd some interesting problems
here and consequently will contribute to this program� I will try to learn enough
to be able to join you in such activity when this book is �nished� What we
o�er here is mainly constructions of gradients which have shown themselves to
be viable numerically� Our computational practice is considerably ahead of our
theory at present�

Several people have read portions of this monograph
 have found a number
of errors and have suggested improvements� Simeon Reich has been particularly
helpful as have been a number of this writer�s colleagues and former students�
The in�uence of Robert Renka on this work is more than what is indicated in
our joint work represented in several chapters�



CHAPTER �

Several Gradients

These notes contain an introduction to the idea of Sobolev gradients and how
they are of use in di�erential equations� Numerical considerations are at once a
motivation
 an investigative tool and an application for this work�

First recall some facts about ordinary gradients� Suppose that for some
positive integer n
 � is a real�valued C��� function on Rn� It is customary to
de�ne r� as the function on Rn so that if x � �x�� x�� ���� xn� � Rn
 then

�r���x� � ����x�� � � � � xn�� � � � � �n�x�� � � � � xn�� �����

where we write �i�x�� ���� xn� in place of ����xi
 i � �� �� ���� n�A property of r�
�or an equivalent de�nition� is that if x � Rn
 then �r���x� is the element of
Rn so that

���x�h � hh� �r���x�i� h � Rn� �����

where ���x�h � limt�����x � th� � ��x���t
 x� h � Rn and h � i denotes the
standard inner product onRn�Another property �and again a possible equivalent

de�nition� is that for x � Rn
 �r���x� is the element h � Rn for which

���x�h is maximum subject to khk � j���x�j� �����

where j���x�j � supk�Rn�kkk�� ���x�k � In Hilbert spaces other thanRn
 �����
�����

provide equivalent de�nitions for a gradient� For some Banach spaces X without
an inner product
 ����� is available even though ����� is not �see comments on du�
ality in ������ Moreover
 ����� generalizes to some cases in which �r���x� may be
de�ned as the element h � X which provides a critical point to ���x�h subject to
the constraint ��h� x��c � �where � is some speci�ed function� We will see that
if � is de�ned in terms of � itself
 �more speci�cally ��h� x� � ��x�h�� x� h � X�
then this process leads to Newton�s method�

A central theme in these notes is that a given function � has a variety
of gradients depending on choice of metric� More to the point
 these various
gradients have vastly di�erent numerical and analytical properties even when
arising from the same function� Related ideas have appeared in several places�
In ���� there is the idea of variable metrics in which in a descent process
 di�erent
metrics are chosen as the process develops� More recently
 Karmarkar ���� has
used the idea with great success in a linear programming algorithm� In ���� and
others
 Karmarkar�s ideas are developed further� This writer has developed this
idea �with di�erential equations in mind� in a series of papers starting in ����

�



� �� SEVERAL GRADIENTS

�or maybe in ����� and leading to ����
����
����� Variable metrics are closely
related to the conjugate gradient method �	��� Some other classical references
to steepest descent are ����
����
����� The present work contains an exposition
of some of the earlier work of this writer� It also contains some results which
ordinarily would have been published separately�

For some quick insight into our point of view
 recall how various inner prod�
uct norms on Rn are related� Recall that Q is a positive de�nite symmetric
bilinear function on Rn�Rn if and only if there is a positive de�nite symmetric
matrix A � L�Rn� Rn� so that

Q�x� y� � hAx� yi� x� y � Rn� �����

Such bilinear functions constitute the totality of all possible inner products
which may be associated with the linear space Rn� If Q satis�es �����
 we denote
Q�x� y� by hx� yiA� x� y � Rn�

The following question gives our �rst look at a Sobolev gradient� Suppose for
a given function we substitute h � iA for h � i in ������ To what sort of gradient
are we led� Given x � Rn
 what member �rA���x� gives us the identity�

���x�h � hh� �rA���x�iA � h � Rn� �����

We think of Rn made into two di�erent normed linear spaces
 one with

the standard Euclidean norm k k
 and the other with kxkA � hx� xi���A � x �
Rn� We calculate
 for x � Rn� ���x�h � hh� �rA���x�iA � hAh� �rA���x�i �
hh�A�rA���x�i� for all h in Rn� But this implies that A�rA���x� � �r���x�
and hence

�rA���x� � A���r���x�� x � Rn� �����

since

���x�h � hh� �r���x�i� x� h � Rn�

The inverse in ����� exists since A is positive de�nite�

The relationship ����� is typical of our development although in some in�
stances A is nonlinear� in others there is a separate �A� for each x� in still others

these two are combined� These will all be investigated in what follows�

To continue our introduction
 we point out two related versions of steepest
descent� The earliest reference we know to steepest descent is Cauchy �����
The �rst version is discrete steepest descent
 the second is continuous steepest
descent� By discrete steepest descent we mean an iterative process

xn � xn�� � �n���rA���xn���� n � �� �� �� ���� �����

where x� is given and �n�� is chosen optimally to minimize
 if possible


��xn�� � ��rA���xn����� � � R�

On the other hand
 continuous steepest descent consists of �nding a function
z � ����� R so that

z�� � x � Rn� z��t� � ��rA���z�t��� t � � �����
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Continuous steepest descent may be interpreted as a limiting case of ����� in
which
 roughly speaking
 various �n tend to zero �rather than being chosen opti�
mally�� Conversely
 ����� might be considered �without the optimality condition
on �� as a numerical method �Euler�s method� for approximating solutions to
������

Using ����� we seek u � limn�� xn so that

��u� �  ���	�

or

�rA���u� � � �����

Using ����� we seek u � limt�� z�t� so that ���	� or ����� holds� Before we con�
sider more general forms of gradients �for example where A in ����� is nonlinear�

we give in Chapter � an example which we hope convinces the reader that there
are substantial issues concerning Sobolev gradients� We hope that Chapter �
provides motivation for further reading even though later development�s do not
depend logically upon Chapter �� We close this introduction by recalling two
applications of steepest descent�

��� Many di�erential equations have a variational principal
 i�e� there is a func�
tion � such that x satis�es the di�erential equation if and only if x is a critical
point of �� In such cases we try to use steepest descent to �nd a zero of a
gradient of ��

��� In other problems we write a system of nonlinear di�erential equations in
the form

F �x� �  ������

where F maps a Banach space H of functions into another such space K� In
some cases one might de�ne for some p � �
 � � H � R by

��x� � kF �x�kp�p� x � H�

Then one might seek x satisfying this equation by means of steepest descent�

Problems of both kinds are considered� The following chapter contains an
example of the second kind�
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CHAPTER �

Comparison of Two Gradients

This chapter gives a comparison between conventional and Sobolev gradients for
a �nite dimensional problem associated with a simple di�erential equation� On
�rst reading one might examine just enough to understand the statements of the
two theorems� Nothing in the following chapters depends on the techniques of
the proofs of these results�

Suppose that � is a C��� real�valued function on Rn and rA� is the gradient
associated with � by means of the positive de�nite symmetric matrix A� A
measure of the worth of rA� in regard to a descent process �similar comments
apply to ascent problems associated with a maximization process� is

sup
x�Rn���x����

��x� �x�rA���x�����x� �����

where
 for each x � Rn
 �x � R is chosen optimally
 i�e� to minimize

��x� ��rA���x��� � � � �����

Generally
 the smaller the value in �����
 the greater the worst case improvement
in each discrete steepest descent step� We remark that �rA���x� is a descent
direction at x �unless �rA���x� � �
 since if f��� � ��x � ��rA���x��
 � � 

then f ��� � �k�rA���x�k�A � � We will use ����� to compare two gradients
arising from the same function �� We choose � which arises from a discretization
of a di�erential equation into a �nite di�erence problem� We pick the simple
problem

y� � y on �� ��� �����

For each positive integer n and 	n � ��n
 de�ne �n � R
n	� � R so that if

x � �x�� x�� ���� xn� � Rn	��

then

�n�x� �
nX
i��

��xi � xi����	n � �xi � xi������
���� �����

Consider �rst the conventional gradient r�n of �n� Pick y � C��� so that at
least one of the following hold�

y���� y�� �� � y����� y��� �� � �����
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Condition ����� amounts to the requirement that y�� y not be in the domain of
the formal adjoint of

L � Lz � z� � z� z absolutely continuous on �
�� �����

�cf� ������ We de�ne a sequence of points fwng�n��
 wn � Rn	�
 n � �� �� ��� 

which are taken from y in the sense that for each positive integer n
 wn is the
member of Rn	� so that

wn
i � y�i�n�� i � � �� ���� n� �����

What we will show is that our measure of worth ����� deteriorates badly if we
in succession choose � � �n and x � wn� More speci�cally we have�

Theorem ��

lim
n��

��n�w
n � �n�r�n��wn����n�w

n� � ��

where for each positive integer n� �n is chosen optimally in the sense of ������

This theorem expresses what many must have sensed in using straight�
forward steepest descent on di�erential equations� If one makes a de�nite choice
for y with
 say y��� � y�� �� 
 then one �nds that the gradients �r�n��wn�

even for n quite small
 have very large �rst component relative to all the others
�except possibly the last one if y�����y��� �� �� This in itself renders �r�n��wn�
an unpromising object with which to perturb wn in order that

wn � ��r�n��wn�

should be a substantially better approximation to a zero of �n than is wn�

Proof� �Theorem �� Denote by n a positive integer� Denote ��n by 	n

���	n � ���� by c
 ���	n � ���� by d� Denote by Qn the transformation from
Rn	� to Rn so that if x � �x�� x�� ���� xn�
 then

Qnx � �r�� ���� rn�
 where ri � �cxi�� � dxi� i � �� ���� n�

Observe that in terms of Qn�

�n�x� � kQnxk���� x � Rn	�� �����

so that if x� h � Rn	� then

��n�x�h � hQnh�Qnxi � hh�Qt
nQnxi

and hence

r�n � Qt
nQn� ���	�

Thus if � � 
 x � Rn	� and Qnx �� �

��n�x� ��r�n��x�����n�x� � kQn�x� �Qt
nQnx�k����

This expression is a quadratic in � and has its minimum at

�n � hQnx�QnQ
t
nQnxi�kQnQ

t
nQnxk��
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In particular

�n�w
n � �n�r�n��wn����n�w

n� � �� kQt
ngnk���kQnQ

t
ngnk�k � kgnk��

where gn � Qnw
n� Inspection yields that the following limits all exist and

are positive� limn�� kQt
ngnk��n� 
 limn�� kQnQ

t
ngnk��n�
 limn�� kgnk��n It

follows that �n�wn � �n�r�n��wn����n�wn� � �
 and the argument is �nished�

Suppose that � is de�ned so that

��z� � kLzk���� z � L���� ���� z absolutely continuous�

Now suppose in addition that z is C��� but z is not in the domain of the
formal adjoint of L �i�e�
 either z���� z�� ��  or z����� z��� �� �� Then there
is no v � L� so that

���z�h � hh� viL������� for all h � C���� ����

Hence
 in a sense
 there is nothing that the gradients

f�r�n��wn�g�n��
are approximating� One should expect really bad numerical performance of these
gradients �and one is not at all disappointed��

This example represents something common� Sobolev gradients give us an
organized way to modify these poorly performing gradients in order to obtain
gradients with good numerical and analytical properties� We give now a con�
struction of Sobolev gradients corresponding to the ones above� We then give a
theorem which indicates how they are judged by ������ Choose a positive integer
n� We indicate a second gradient for �n which will be our �rst Sobolev gradient
for a di�erential equation� For Rn	� we choose the following norm�

kxkAn � �
nX
i��

���xi � xi����	n�
� � ��xi � xi������

������� x � Rn	�

�����

It is easy to see that this norm carries with it an inner product

h � iAn
on Rn	�� This inner product is related to the standard inner product h � i on
Rn	� by

hx� yiAn � hAnx� yi
where if x � �xo� x�� ���� xn� then

Anx � z

so that

z� � ��c� � d�����x� � cdx��

zi � �cdxi�� � �c� � d��xi � cdxi	�� i � �� ���� n� ��

zn � �cdxn�� � ��c� � d�����xn�
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in which c � ���	n � ����
 d � ���	n � ����� Accordingly
 using ����� we have
that the gradient rAn�n of �n is given by

�rAn�n��x� � A��n �r�n��x�� ������

In contrast to Theorem � we have

Theorem �� If x � Rn	� then

�n�x� �n�rAn�n��x�� � �n�x��	� n � �� �� ���

This indicates that rAn�n performs much better numerically than r�n�
Before a proof is given we have

Lemma �� Suppose n is a positive integer� 
 � � v � Rn� v �� � Suppose
also that M � L�Rn� Rn� is so that Mv � 
v and Mx � x ifhx� vi � � Then
hMy� yi���kMyk�kyk�� � �
��� � 
��y � Rn� y �� �

Proof� Pick y � Rn
 y ��  and write y � x � r where r is a multiple of
v andhx� ri � � Then

hMy� yi���kMyk�kyk�� � �hx� 
r� x� ri��kx� 
rk��kx� rk�� �

�kxk� � 
krk������kxk� � 
�krk���kxk� � krk��� �
�sin� � � 
cos������sin� � � 
� cos� ��� ������

where

sin� � � kxk���kxk� � krk��� cos� � � krk���kxk� � krk���
Expression ������ is seen to have its minimum for cos� � � �����
�� The lemma
readily follows�

Proof� �Theorem ��� Denote QnA
��
n Qt

n by Mn� Using �����
 ���	�
 ������

for x � Rn	�
 � � �

�n�x� ��rAn�n��x�� � kgk� � ��hg�Mngi � ��kMngk��
where g � Qnx� This expression is minimized by choosing

� � �n � hg�Mngi�kMngk��
so that with this choice of ��

�n�x� �n�rAn�n��x����n�x� � �� hg�Mngi���kMngk�kgk���
To get an expression for Mng
 we �rst calculate u � A��n Qt

ng� To accomplish
this we intend to solve

Anu � Qt
ng ������

for u � �u�� u�� ���� un�� Writing �g�� ���� gn� for g
 ������ becomes the system

��c� � d�����u� � cdu� � �cg��
� cdui�� � �c� � d��ui � cdui	� � dgi � cgi	�� i � �� ���� n� ��

� cdun�� � ��c� � d�����un � dgn� ������
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From equations �� ���� n�� it follows
 using standard di�erence equation methods

that there must be � and � so that

u� � �r� � �s�

ui � �ri � �si � ���d�
iX

k��

ri�kgk� i � �� ���� n� ������

where r � c�d
 s � d�c� The �rst equation of ������ implies that � � �� The
last equation in ������ may then be solved for �
 leaving us with

u� � ��r� � s��

ui � ��ri � si� � ���d��
iX

k��

ri�kgk�� i � �� ���� n� ������

where  � �
Pn

k�� r
n�kgk���d�rn � sn�� Note that Mng � Qnu� After some

simpli�cation of ������
 we are led to the fact that

Mng � hg� z�n�iz�n� � g

where z�n� � �z�� ���� zn� is de�ned by

zi � �
n��X
k��

s�k�����si��� i � �� ���� n�

Note that kz�n�k � � and that Mn satis�es the conditions of the Lemma with

 � �� Accordingly


�� hg�Mngi���kMngk�kgk�� � �� �
��� � 
��

� �
� �����
 � ��� � ��	�

Hence

�n�x� �n�rAn�n��x����n�x� � ��	�

so our argument is complete�

The above follows an argument in ���� for a slightly di�erent case�

The inequality in Theorem � implies a good rate of convergence for discrete
steepest descent since it indicates that the ratio of the norm of a new residual
and the norm of the old residual is no more than ���� We will see that Theorem
� can be extended by continuity to a function space setting� No such extension
of Theorem � seems possible� Actual programming of the process in Theorem
� leads to a very slowly converging iteration� The number of steps required to
reach a �xed accuracy increases very fast as n increases with perhaps �

iterations required for n � �� By contrast
 the process in Theorem � requires
about � steps
 independently of the choice of n� A computer code connected with
Theorem � is given in Chapter ��� The results of the present chapter illustrates
the observation that for a given problem
 analytical and numerical di�culties
always come in pairs�
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CHAPTER �

Continuous Steepest Sescent in Hilbert Space�

Linear Case

In this chapter we consider continuous steepest descent for linear operator equa�
tions in Hilbert space�

Suppose G � L�H�K�
 g � K and Fx � Gx � g
 x � H� The following
shows that if there is a solution v to Fv � 
 then a solution may be found by
means of continuous steepest descent�

Theorem �� Suppose there is v � H so that Gv � g and

��y� � kGy � gk�K��� y � H�

Suppose also that x � H and z is the function on ���� so that

z�� � x� z��t� � ��r���z�t��� t � � �����

Then u � limt�� z�t� exists and Gu � g�

Proof� First note that

���y�h � hGh�Gy � giK � hh�G��Gy � g�iH
so that

�r���y� � G��Gy � g�� y � H� �����

Restating ����� we have that

z�� � x� z��t� � �G�Gz�t� � G�g� t � �

From the theory of ordinary di�erential equations in a Banach space we have
that

z�t� � exp��tG�G�x�
Z t

�

exp���t � s�G�G�G�g ds� t � � �����

Now by hypothesis
 v is such that Gv � g� Replacing g in the preceding by Gv
and using the fact thatZ t

�

exp���t � s�G�G�G�Gv ds � exp���t � s�G�G�v
��s�t
s�� � v � exp��tG�G�v

we have that z�t� � exp��tG�G�x � v � exp��tG�G�v� Now since G�G is
symmetric and nonnegative
 exp�tG

�G converges strongly
 as t � �
 to the
orthogonal projection P onto the null space of G �see the discussion of the

��
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spectral theorem in ����
 Chap� VII�� Accordingly
 u 	 limt�� z�t� � Px� v�
Pv� But then

Gu � GPx� Gv � GPv � Gv � g

since Px� Pv � N �G��

Notice that abstract existence of a solution v to Gv � g leads to a concrete
function z whose asymptotic limit is a solution u to

Gu � g�

The reader might see ���� in connection with these problems� In case g is
not in the range of G there is the following�

Theorem 	� Suppose G � L�H�K�� g � K� x � H and z satis�es ������
Then

lim
t��

Gz�t� � g �Qg

where Q is the orthogonal projection of K onto R�G���

Proof� Using �����

Gz�t� � G�exp��tG�G�x� �G�

Z t

�

exp���t� s�G�G�G�g ds�� t � 

� exp��tGG��Gx�
Z t

�

exp���t � s�GG��GG�g ds

� exp��tGG��Gx� exp���t� s�GG��g
��s�t
s��

� exp��tGG��Gx� g � exp��tGG��g � g � Qg

since exp��tGG�� converges strongly to Q
 the orthogonal projection of K onto
N �G�� � R�G��
 as t���

Next we note the following characterization of the solution u obtained in
Theorem �

Theorem �� Under the hypothesis of Theorem �� if x � H and z is the
function from ���� to H so that ����� holds� then u 	 limt�� z�t� has the
property that

ku� z�t�kH � ky � z�t�kH � t � � y � H such that Gy � g� y �� u�

Proof� Suppose w � H and Gw � g� For u as in the argument for Theorem
�
 notice that u�w � N �G� and x�u � �I�P ��x�v�� Hence hx�u� u�wiH � 
since I�P is the orthogonal projection onto N �G�� � Consequently kx�wk�H �
kx�uk�H �ku�wk� and so u is the nearest element to x which has the property
that Gu � g� Now if t � 
 then x� z�t� � �I � exp��t�GG���x� v�� Since

Pe�tG
�G � P�

�����
 Chap VII� it follows that P �x � z�t�� �  and hence u is the also the
nearest element to x which has the property that Gu � g�
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Another way to express Theorem � is that P 
 the orthogonal projection onto
N �G� provides an invariant for steepest descent generated by �r� in the sense
that Px � Pz�t�
 t � � An invariant �or a set of invariants� for steepest descent
in nonlinear cases would be very interesting� More about this problem will be
indicated in chapter ���
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CHAPTER �

Continuous Steepest Descent in Hilbert Spaces�

Nonlinear Case

Denote by H a real Hilbert space and suppose that � is a C��� function on all
of H� For this chapter denote by r� the function on H so that if x � H
 then

���x�h � hh� �r���x�iH � h � H�

where �� denotes the Fr�echet derivative of �� Here we have adopted ����� as our
point of view on gradients� ����� is equivalent but ����� is not adequate� Here
we will seek zeros of � by means of continuous steepest descent
 i�e�
 we seek

u � lim
t��

z�t� exists and ��u� � � �����

�
 Global Existence

We �rst want to establish global existence for the steepest descent in this
setting�

Theorem �� Suppose that � is a nonnegative C��� function on H� If x � H�
there is a unique function z from ���� to H such that

z�� � x� z��t� � ��r���z�t��� t � � �����

Proof� Since � is a C��� function
 it follows that r� is a C��� function�
From basic ordinary di�erential equation theory there is d� �  so that the
equation in ����� has a solution on �� d��� Suppose that the set of all such
numbers d� is bounded and denote by d its least upper bound�

Denote by z the solution to the equation in ����� on �� d�� We intend to
show that limt�d z�t� exists� To this end note that if  � a � b � d then

kz�b�� z�a�k�H � k
Z b

a

z�k�H � �

Z b

a

kz�kH�� � �b� a�

Z b

a

kz�k�H
�����

Note also that

��z���t� � ���z�t��z��t� � hz��t�� �r���z�t�iH � �k�r���z�t��k�H
�����

so

��z�b��� ��z�a�� �

Z b

a

��z�� � �
Z b

a

kz�k�H
�
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Hence Z b

a

kz�k�H � ��z�a��� b � a� �����

Using ����� and �����

kz�b�� z�a�k �
Z b

a

kz�kH � �d��a������ a � b � d�

But this implies that
R d�
a kz�kH exists and so q 	 limt�d z�t� exists� But again

by the basic existence for ordinary di�erential equations
 there is c � d for which
there is a function y on �d� c� such that

y�d� � q� y��t� � ��r���y�t��� t � �d� c��
But the function w on �� c� so that w�t� � z�t�� t � �� d�� w�d� � q� w�t� �
y�t�� t � �d� c�
 satis�es

w�� � x�w��t� � ��r���w�t��� t � �� c��
contradicting the nature of d since d � c� Hence there is a solution to ����� on
����� Uniqueness follows from the basic existence and uniqueness theorem for
ordinary di�erential equations�

Note that in the above result and in some others to follow in this chapter

the hypothesis that � � C��� can be replaced with the weaker assumption that
r� is locally lipschitian on H� See ��� for another discussion of steepest descent
in Hilbert spaces�

A function � as in the hypothesis of Theorem � generates a one parameter
semigroup of transformations on H� Speci�cally
 de�ne T� so that if s � 
 then
T��s� is the transformation from H to H such that

T��s�x � z�s�� where z satis�es ������

Theorem 
� T��t�T��s� � T��t � s�� t� s �  where T��t�T��s� indicates
composition of the transformations T��t� and T��s��

Proof� Suppose x � H and s � � De�ne z satisfying ����� and de�ne y so
that y�s� � T��s�x
 y��t� � ��r���y�t��
 t � s� Since y�s� � z�s� and y� z satisfy
the same di�erential equation on �s���
 we have by uniqueness that y�t� � z�t�

t � s and so have the truth of the theorem�

�
 Gradient Inequality

Note that our proof of Theorem � yields thatZ �

�

k�r���z�k�H �� �����

under the hypothesis of that theorem� Now the conclusionZ �

�

k�r���z�kH �� �����
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implies
 as in the argument for Theorem �
 that limt�� z�t� exists� Clearly �����
does not imply ������ For an example
 take ��x� � e�x
 x � R� Note also that
under the hypothesis of Theorem �

f��z�t�� � t � g is bounded �����

since ��z�t�� � ��x�� t � � Following are some propositions which lead to the
conclusion ������

Definition �� � is said to satisfy a gradient inequality on � 
 H provided
there is c �  such that

k�r���x�kH � c��x����� x � �� ���	�

We will see that this condition gives compactness in some instances and
leads to ����� holding �Theorems ���
���
���
�����

Theorem �� Suppose � is a nonnegative C��� function on � 
 H and �
satis�es ���	�� If x � � and z satis�es ����� then ����� holds provided that
R�z� 
 ��

Proof� Suppose z satis�es �����
 ���	� holds on � and R�z� 
 �� Note
that if �r���x� � 
 then the conclusion holds� Suppose that �r���x� ��  and
note that then �r���z�t�� ��  for all t �  �for if �r���z�t��� �  for some
t� � 
 then the function w on ���� de�ned by w�t� � z�t��
 t � 
 would
satisfy w� � �r���w� and w�t�� � z�t��
 the same conditions as z� but z �� w
and so uniqueness would be violated�� Now by �����


��z�� � �k�r���z�k�H
and so
 using ���	�

��z���t� � �c���z�t��
and

��z���t����z�t�� � �c�� t � �

Accordingly


ln���z�t�����x�� � �c�t
and

��z�t�� � ��x� exp��c�t�� t � �

Therefore

lim
t��

��z�t�� � �

Moreover if n is a positive integer


�

Z n	�

n

kz�kH�� �
Z n	�

n

kz�k�H � ��z�n�� � ��z�n � ��� � ��x� exp��c�n�
and soZ �

�
kz�kH � ��x����

�X
n��

exp��c�n��� � ��x�������� exp��c������
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Consequently
 kz�kH � L������� and so u � limt�� z�t� exists� Moreover
��u� �  since  � limt�� ��z�t���

The following lemma leads to short arguments for Theorems � and ���

Lemma �� Suppose � is a nonnegative C��� function on H� c �  and � is
an open subset of H so that ���	� holds� Suppose that x � H and z satis�es
������ Then there does not exist � �  and sequences fsig�i��� frig�i�� so that
f�si� ri�g�i�� is a sequence of pairwise disjoint intervals with the property that

��� si � ri � si	��

��� si� ri �� as i���

��� kz�ri�� z�si�kH � �

��� z�t� � � if t � �si� ti�� for i � �� �� � � � �

Proof� Suppose that the hypothesis holds but that the conclusion does
not� Denote by � a positive number and by

fsig�i��� frig�i��
sequences so that f�ri� si�g�i�� is a sequence of pairwise disjoint intervals so that
������� hold� Note that �r���z�t�� ��  for t �  since if not then �r���z�t�� � 
for all t �  and hence z is constant and consequently
 ��� is violated� Now for
each positive integer i�

�� � kz�ri�� z�si�k�H � �

Z ri

si

kz�kH ��

� �

Z ri

si

kz�kH �� � �ri � si�

Z ri

si

kz�k�H �

As in the proof for Theorem �
 if  � a � b�

��z�a�� � ��z�b�� �

Z b

a

kz�k�H �

Hence
R�
� kz�k�H exists and therefore

lim
i��

Z ri

si

kz�k�H � �

Consequently
 limi���ri � si� �� since

�� � �ri � si�

Z ri

si

kz�k�H � i � �� �� � � � �

Since ��z���t� � �k�r���z�t�k�H � �c���z�t��� t � 
 it follows that

��z���t����z�t�� � �c�� t � 

and so for each positive integer i�

��z�t�� � ��z�si�� exp��c��t� si��� t � �si� ri� and in particular
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��z�ri�� � ��z�si�� exp��c��ri � si���

Therefore
 since ��z�ri�� � ��z�si	���� i � �� �� � � � 
 it follows that

lim
i��

��z�si�� � �

Denote by i a positive integer so that ri�si � �
 denote �ri�si� by k and denote
si� si � �� ���� si� k� ri by q�� q�� ���� qk	�� Then

� � kz�ri� � z�si�kH �
kX
j��

kz�qj	�� � z�qj�kH �
kX

j��

Z si	j	�

si	j
kz�kH

�
kX

j��

�

Z si	j	�

si	j

kz�k�H���� �
kX

j��

���z�si � j�� � ��z�si � j � �������

�
kX
j��

��z�si � j����� �
kX

j��

���z�si�� exp��c�j����

� ���z�si��
kX

j��

exp��c�j�����

� ��z�si��
���

kX
j��

exp��jc����

� ��z�si��
������ exp��c�������

since ��z�a � ��� � ��z�a�� exp��c��� a � si� si � �� � � � si � k � � under our
hypothesis� But since ��z�si���  as i�� and one arrives at a contradiction�

The following rules out some conceivable alternatives�

Theorem ��� Suppose that � is a nonnegative C��� function on all of H
which satis�es ���	� for every bounded subset � of H� If z satis�es ����� then
either

�i� ����� holds

or else

�ii� lim
t��

kz�t�kH ���

Proof� Suppose that x � H
 z satis�es ����� and ���	� holds for every
bounded subset � of H� Suppose furthermore that R�z� is not bounded but
nevertheless does not satisfy �ii� of the theorem� Then there are r� s �  so that
 � s � r
 and two unbounded increasing sequences frig�i��� fsig�i�� so that �i�
si � ri � si	�
 �ii� kz�si�kH � s
 kz�ri�kH � r
 �iii� s � kz�t�kH � r� t �
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�si� ri�� i � �� �� ��� But by the Lemma �
 this is impossible and the theorem is
established�

A similar phenomenon has been indicated in ��� for semigroups related to mono�
tone operators�

Theorem ��� Under the hypothesis of Theorem ��� suppose that x � H
and z satis�es ������ Suppose also that u is an ��limit point of z� i�e��

u � lim
i��

z�ti�

for some increasing unbounded sequence of positive numbers ftig�i��� Then �����
holds�

Proof� If z has an ��limit point then �ii� of Theorem � can not hold and
hence �i� must hold�

We remind the reader of the Palais�Smale condition �see ����� on � � � satis�es
the Palais�Smale condition provided it is true that if fxig�i�� is a sequence for
which limi���r���xi� �  and f��xi�g�i�� is bounded
 then fxig�i�� has a
convergent subsequence� This leads us to the following�

Theorem ��� Suppose that � is a nonnegative C��� function on H which
satis�es the Palais�Smale condition and also satis�es ���	� for every bounded
subset � of H� Then ����� holds�

Proof� Since by the proof of Theorem �
 ����� holds
 it follows that there
is an unbounded increasing sequence ftig�i�� of positive numbers such that

lim
i��

�r���z�ti�� � �

Note also that

��x� � ��z�t�� � � t � 

holds� It follows from the �PS� condition that there is an increasing sequence
fnig�i�� of positive integers such that fz�tni�g�i�� converges� But this rules out
�ii� of Theorem � so that �i� of that theorem must hold�

We note that in the above
 we do not use the full strength of the �PS�
condition� the conclusion �fxig�i�� has a bounded subsequence� is su�cient for
the purpose of Theorem ����

Suppose now that K is a second real Hilbert space and that F is a C���

function from H to K� De�ne � by

��x� � kF �x�k�K��� x � H� �����

In this case we have

���x�h � hF ��x�h� F �x�iK � hh� F ��x��F �x�iH � x� h��H�

so that

�r���x� � F ��x��F �x�� x � H� ������
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where F ��x�� denotes the Hilbert space adjoint of F ��x�� x � H� We see that
if � 
 H so that F ��x�� is uniformly bounded below for x � �
 i�e�
 there is
d �  so that kF ��x��gkH � dkgkK� x � �� g � K� then � satis�es ����� with
c � �����d� One can do a little better with

Theorem ��� Suppose there exist M� b �  so that if g � K and x � ��
then for some h � H� khkH �M�

hF ��x�h� giK � bkgkK �
Then ����� holds with c � �����b�M�

Proof� Suppose x � �� Then

k�r���x�kH � sup
h�H�khkH�M

hh� F ��x��F �x�iH�M �

sup
h�H�khkH�M

hF ��x�h� F �x�iK�M � �b�M �kF �x�kK

since by hypothesis there is h � H such that khkH �M and hF ��x�h� F �x�iK �
bkF �x�kK�

Applications of Theorem �� may be as follows� Many systems of nonlinear
di�erential equations may be written �for appropriate H and K� as the problem
of �nding u � H such that F �u� � � The problem of �nding h given g � K

u � H such that

F ��u�h � g

then becomes a systems of linear di�erential equations� An abundant literature
exists concerning existence of �and estimates for� solutions of such equations �cf
�	��
������ Thus linear theory holds the hope of providing gradient inequalities
in speci�c cases�

Another general result on continuous steepest descent is

Theorem ��� Suppose that F is a C��� function from H to K� x � K and
r� c �  exist so that

k�r���y�kH � ckF �y�kK � ky � xkH � r�

where � is de�ned by ������ Suppose also that ����� holds� Then ����� holds if
kF �x�kK � cr�

Proof� Suppose x � H and denote by z the function so that ����� holds�
If �r���x� � 
 then z�t� � x for all t �  and so ����� holds� Suppose now that
�r���x� �� � Note that

�r���z�t�� �� � t � �

since if there were t� �  such that �r���z�t��� � 
 then the function w so that
w�t� � z�t��
 t �  would satisfy

w�t�� � z�t��� w
��t� � ��r���w�t��� t � �
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a contradiction to uniqueness since z also satis�es the above� De�ne � as the
function which satis�es

��� � � ���t� � ��k�r���z���t���kH � t � �� d�� ������

where d is as large as possible
 possibly d ���
De�ne v so that

v�t� � z���t��� t � D���� ������

Then

v��t� � ���t�z����t�� � ����t��r���z���t���

� ����k�r���z���t���kH ��r���z���t���
and so

v�� � x� v��t� � ����k�r���v�t��kH ��r���v�t��� t � D�v� � D���
������

Note that

kv�t� � xkH � kv�t� � v��kH � k
Z t

�

v�kH �
Z t

�

kv�kH � t� t � D�v��

Hence

��v�� � ���v�v� � �h�r���v�� �r���v�iH�k�r���v�kH � �k�r���v�kH �
������

and so if t � D�v� and t � r
 then

��v���t� � �k�r���v�t��kH � �ckF �v�t��kK � �c����v�t�������

and thus

��v���t����v�t����� � �c�����
This di�erential inequality is solved to yield

���v�t����� � ���v������ � �����ct� t � D�v� t � r�

But this is equivalent to

kF �v�t��kK � kF �x�kK � ct � c�r � t�� t � D�v�� t � r� ������

It follows from ������ that d � r since if not
 there would be t � �� r� such that
F �v�t��� �  and hence �r���v�t��� �  and consequently
 �r���z�����t���� �

 a contradiction� From this it follows that R�v� 
 Br�x�� Since D��� is a
bounded set
 and � is increasing
 it must be that limt�d ��t� �� since R��� is
not bounded� Therefore

R�z� � R�v������ 
 Br�x��

It follows then from Theorem 	 that ����� holds�

As an application of Theorem �� there is the following implicit function
theorem due to A� Castro and this writer �����
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Theorem �	� Suppose that each of H and K is a Hilbert space� r�Q � � G
is a C��� function from H to K which has a locally lipschitzian derivative and
G�� � � Suppose also that there is c� �  so that if u � H� kukH � r� and
g � K� kgkK � �� then

hG��u�v� giK � c� for some v � H with kvkH � Q� ������

If y � K and kykK � rc��Q then

u � lim
t��

z�t� exists and satis�es G�u� � y and kukH � r

where z is the unique function from ���� to H so that

z�� � � z��t� � ��G��z�t�����G�z�t�� � y�� t � � ������

�

Proof� De�ne c � c��Q� Pick y � K such that kykK � rc and de�ne
F � H � K by F �x� � G�x� � y� x � H� Then kF ��kK � kykK � rc� Noting
that F � � G� we have by Theorem ��
 for z satisfying ������


u � lim
t��

z�t� exist and F �u� � � i�e�� G�u� � y�

By the argument for Theorem �� it is clear that kukH � r�

	
 Convexity

It has long been recognized that convexity of � is an important consideration
in the study of steepest descent� For the next theorem we take � to be
 at each
point of H
 convex in the gradient direction at that point� More speci�cally
there is

Theorem ��� Suppose � is a nonnegative C��� function on H so that there
is � �  such that

����x���r���x�� �r���x�� � �k�r���x�k�H � x � H� ����	�

Suppose also that x � H� �r���x� ��  and ����� holds� Then

u � lim
t��

z�t� exists and �r���u� � �

Proof� De�ne g � ��z� where for x � H
 z satis�es ������ Note that
g� � ���z�z� � �k�r���z�k�H and

g�� � h�r����z�z�� z�iH �
Note that if each of h� k� y � H then

����y��h� k� � h�r����y�h� kiH �
Using ����	�


g���t� � �h�r����z�t��z��t�� z��t�iH � �kz��t�k�H � ��g��t�� t � �

we have that

�g���t��g��t� � ��� t � 
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and hence

� ln��g��t����g���� � ��t� t � �

and consequently


 � �g��t� � �g��� exp����t�� t �  �����

and so

lim
t��

g��t� � �

From ����� it follows that if  � a � b
 then

g�a� � g�b� � ��g�����exp����a�� exp����b��������
i�e�

g�a� � �g��� exp����a�������

But g��t� � �kz��t�k�H 
 t � 
 and so � R b
a
g� �

R b
a
kz�k�H 
  � a � b� Therefore

g�a� � g�b� �

Z b

a

kz�k�H and hence

Z b

a

kz�k�H � ��g�����exp����a�� exp����b��������

Therefore


�g����exp���a������ �
Z a	�

a

kz�k�H � �

Z a	�

a

kz�kH ���

Hence

R�
� kz�kH exists and consequently

u � lim
t��

z�t�

exists� Since limt�� g��t� �  and �k�r���z�t��k�H � g��t�
 it follows that

�r���u� � lim
t��

�r���z�t�� � �

The above is close to arguments found in ����� Relationships between convexity
and gradient following are extensive� Even without di�erentiability assumptions
on �
 a subgradient of � may be de�ned� This subgradient becomes a monotone
operator� The theory of one parameter semigroups of nonlinear contraction
mappings on Hilbert space then applies� The interested reader might see ����
for such developments� We emphasize here that for many problems of interest in
the present context
 � is not convex� The preceding theorem is included mainly
for comparison�

We note
 however
 the following connection between convexity conditions
and gradient inequalities�
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Theorem ��� Suppose F is a C��� function from H to K� u � H� F �u� � 
and s� d �  so that

kF ��x��F �x�kH � dkF �x�kK� if kx� ukH � s�

Then there exist r� � �  so that

����x��r���x�� �r���x�� � �k�r���x�k�H if kx� ukH � r�

Lemma �� Suppose that T � L�H�K�� y � K� y �� � d �  and kT �ykH �
dkykK � Then kTT �ykK � �d��jT �j�kT �ykH �

Proof� �Lemma �� First note that

kTT �ykK � sup
kkkK��

hTT �y� kiK

� hTT �y� ���kykK�yiK � kT �yk�H�kykK � d�kykK �
Hence

kTT �ykK�kT �ykH � �kTT �ykK�kykK���kT �ykH�kykK� � d��jT �j
since kT �ykH�kykK � jT �j�

Proof� �Of Theorem ��� Note that if x� h � H then

����x��h� h� � kF ��x�hk�K � hF ���x��h� h�� F �x�iK�
Choose r��M��M� �  so that if kx� ukH � r�
 then

jF ��x�j �M� and jF ���x�j �M��

Pick r �  so that r � min�s� r�� and

kF �x�kK � � 	 d����M�M�� if kx� ukH � r�

Then using the lemma and taking x� h so that

kx� ukH � r and h � �r���x��
we have

kF ��x�hkK � �d��M��k�r���x�k�H
and

jhF ���x��h� h�� F �x�iKk �M��k�r���x�k�H
so that

����h� h� � ��d��M�� �M���k�r���x�k�H � �k�r���x�k�H�
where � 	 �d��M���M�� � d����M�� � �

In this next section we give some examples of instances in which a gradient
inequality ���	� is satis�ed for some ordinary di�erential equations� First note
that if F � H � K is a C��� function
 � is a bounded subset of H
 c � �

kF ��x��kkH � ckkkK� k � K�x � � ������

and

��x� � kF �x�k�K��� x � K�
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then it follows that

k�r���x�kH � ����c��x����� x � ��
i�e�
 ���	� holds�

Another result for which existence of an ��limit point implies convergence
is the following� The chapter on convexity in ���� in�uenced the formulation of
this result�

Theorem �
� Under the hypothesis of Theorem �� suppose that x � H and
z satis�es ������ Suppose also that u is an ��limit point of z at which � is locally
convex� Then

u � limn��z�t� exists

and �r���u� � �

Proof� Suppose that ftig�i�� is an increasing sequence of positive numbers
so that

u � lim
i��

z�ti� ������

but that it is not true that

u � lim
t��

z�t�� ������

Then z is not constant and it must be that ��z� is decreasing� De�ne � so that

��t� � kz�t�� uk�H��� t � �

Note that

���t� � hz��t�� z�t� � uiH � �h�r���z�t��� z�t� � uiH
� h�r���z�t��� u� z�t�iH � t � �

If for some t� � � ���t� �  for all t � t�
 then ������ would follow in light of
������� So suppose that for each t� �  there is t � t� so that ���t� � � For
each positive integer n
 denote by sn the least number so that sn � tn and so
that if � �  there is t � �sn� sn � �� such that ���t� � � Note that

��z�sn�� � ��z�tn��� n � �� �� � � ��

� Denote by fqng�n�� a sequence so that qn � sn� �
��qn� �  and kz�sn� �

z�qn�k � ��n� n � �� �� � � � and note that limn�� z�qn� � u since

kz�sn� � ukH � kz�tn� � ukH � kz�sn� � z�qn�kH � ��n� n � �� �� � � �

and limn��z�tn� � u�

Now if n is a positive integer


 � ���qn� � h�r���z�qn��� u� z�qn�iH � ���z�qn���u� z�qn��

and so there is pn � �z�qn�� u� so that ��pn� � ��z�qn��� But ��z�qn�� � ��u�
since ��z� is decreasing and ������ holds� Thus ��z�qn�� � ��pn� � ��u�� Since
pn is between z�qn� and u
 it follows that � is not convex in the ball with center
u and radius kz�qn� � ukH � But limn�� kz�qn� � ukH �  so � is not locally
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convex at u
 a contradiction� Thus the assumption that ������ does not hold is
false and so ������ holds� SinceZ �

�

k�r���z�k� ��

it follows that �r���u� � �

�
 Examples

The next two theorems show that ������ holds for a family of ordinary dif�
ferential operators�

Theorem ��� Suppose H � H������ ��� and g is a continuous real�valued
function on R� Suppose also that Q is a bounded subset of H� There is c �  so
that

k�P �g�y�kk �kH � ckkkK� k � K � L���� ���� y � Q�

where P is the orthogonal projection of L���� ���� onto

f�uu�� � u � Hg
and

��fg � � f� f� g � K�

Proof� We give an argument by contradiction� Suppose there is y�� y�� ���
� H
 k�� k�� ��� � K such that kknkK � � and

k�P �g�yn�knkn
�kH � ��n� n � �� �� � � � ������

Denote

�P �
g�yn�kn

kn
� by un� n � �� �� � � �

For each positive integer n
 denote by vn that element of H so that

un � v�n � g�yn�kn� u
�
n � vn � kn� vn�� �  � vn��� ������

�such a decomposition is possible since

f�uu�� � u � Hg� � f�v�v � � v � H� v�� �  � v���g��
Then ������ may be restated as

kunkH � ��n� n � �� �� ���

which implies that Z �

�

u�n�

Z �

�

u�n
� �  as n��� ������

From ������ it follows that if n is a positive integer thenZ �

�

un � vn�t� �

Z t

�

g�yn�kn
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and so

vn�t� � �kn � u�n��t� � �
Z t

�
un �

Z t

�
g�yn�u

�
n �

Z t

�
g�yn�vn� t � �

i�e��

vn�t� �

Z t

�

hn �

Z t

�

g�yn�vn� t �  ������

where hn � �un � g�yn�u�n�

From ������ we have
 using Gronwall�s inequality


jvn�t�j � j
Z t

�
hnj�

Z t

�
exp

R
t

s
g�yn�jhn�s�jds� t � �� ��� n � �� �� � � � �

������

Using ������ and ������ together we see that if t � �� ��
lim
n��

vn�t� �  since lim
n��

khnkK � 

inasmuch as fyng�n�� is uniformly bounded in H� We thus arrive at a contra�
diction

� � kknkK � ku�nkK � kvnkK �  as n���

Theorem ��� Suppose G is a C��� real�valued function on R and Q is a
bounded subset of H � H������ ���� Suppose furthermore that F � H � K �
L���� ��� is de�ned by

F �y� � y� �G�y�� y � H�

There is c �  so that

kF ��y��kkH � ckkkK � y � Q� k � K�

Proof� For y � Q
 h � H we have that

F ��y�h � h� � G��y�h

and hence if k � K�

hF ��y�h� kiK � hh� � G��y�h� kiK � h�hh� �� �G
��y�k
k �iK�K

and so

F ��y��k � �P �
G��y�k
k ��

The conclusion then follows from the preceding theorem� One can envision
higher order generalizations of this theorem�
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�
 Higher Order Sobolev Spaces for Lower Order Problems

Sometimes it may be interesting to carry out steepest descent in a Sobolev
space of higher order than absolutely required for formulation of a problem�
What follows is an indication of how that might come about� This work is taken
from ��	�

Suppose m is a positive integer
 � is a bounded open subset of Rm and
� is a C��� function from H������ to ���� which has a locally lipschitzian
derivative� For each positive integer k we denote the Sobolev space Hk�����
by Hk� We assume that � satis�es the cone condition �see ��� for this term as
well as other matters concerning Sobolev spaces� in order to have that Hk is

compactly embedded in C
���
B ��� for �k � m� ��

If k is a positive integer then denote by rk� the function on H� so that

���y�h � hh� �rk���y�iHk
� y � H�� h � Hk� ����	�

We may do this since for each y � H�� �
��y� is a continuous linear functional on

H� and hence its restriction to Hk is a continuous linear functional on Hk� Each
of the functions
 rk�� k � �� �� � � � is called a Sobolev gradient of ��

Lemma �� If k is a positive integer then rk� is locally lipschitzian on Hk

as a function from H� to Hk�

Proof� Suppose w � Hk� Denote by each of r and L a positive number so
that if x� y � H� and kx� wkH� � ky �wkH� � r
 then

k�r����x�� �r����y�kH� � Lkx� ykH� � �����

Now suppose that x� y � H� and

kx� wkH� � ky � wkH� � r�

Then

k�rk���x�� �rk���y�kHk

� suph�Hk �khkHk��
h�rk���x�� �rk���y�� hiHk

� suph�Hk�khkHk��
����x�h� ���y�h�

� suph�Hk�khkHk��
h�r����x�� �r����y�� hiH�

� suph�Hk �khkHk��
khkH�kr����x�� �r����y�kH�

� suph�Hk�khkHk��
khkHk

kr����x�� �r����y�kH� � Lkx� ykH� �

In particular
 rk� is continuous as a function from H� to Hk�

Theorem ��� In addition to the above assumptions about �� suppose that

���y�y � � y � H�� ������

If k is a positive integer� x � Hk and

z�� � x� z��t� � ��rk���z�t��� t � � ������



�� �� CONTINUOUS STEEPEST DESCENT IN HILBERT SPACES� NONLINEAR CASE

then R�z�� the range of z� is a subset Hk and is bounded in Hk�

Proof� First note that one has existence and uniqueness for ������ since
the restriction of rk� is locally lipschitzian as a function from Hk to Hk and �
is bounded below �see ������ Since x � Hk
 for z as in ������
 it must be that
R�z� 
 Hk and

�kzk�Hk
�����t� � hz��t�� z�t�iHk

� �h�rk���z�t��� z�t�iHk
� ����z�t��z�t� � � t � �

Thus kzk�Hk
is nonincreasing and so R�z� is bounded in Hk�

Assume for the remainder of this section that �k � m� �� Observe that for
z as in Theorem �
 R�z� is precompact in C

���
B and hence also in H�� For x � Hk

and z satisfying ������ denote by Qx the H� �� limit set of z
 i�e�


Qx � fy � H� � y � H� � lim
n��

z�tn�� ftng�n��increasing
 unboundedg�

Theorem ��� If x � Hk and y � Qx� then �rk���y� � �

Proof� Note that

���z����t� � ���z�t��z��t� � �k�rk���z�t�k�Hk

and so

��z���� ��z�t�� �

Z t

�

k�rk���z�t�k�Hk

and hence Z �

�

k�rk���z�t��k�Hk
��� ������

Thus if

u � H� � lim
t��

z�t�

exists
 then by ������
 �rk���u� �  since rk� is continuous as a function
from H� to Hk and z is continuous as a function from ���� to H�� Thus the
conclusion holds in this case�

Suppose now that

H� � lim
t��

z�t� does not exist

and that y � Qx but �rk���y� �� � Then �r����y� ��  also� Denote by each
of ��M a positive number so that k�rk���x�kH� �M if kx� wkH� � �� Then
there are

 � t� � s� � t� � s� � � � �
such that limi��ti �� and

kz�ti�� ykH� � �� kz�si�� ykH� � �� i � �� �� � � ��

Thus there are positive unbounded increasing sequences kaik�i��� kbik�i�� so that
ai � bi � ai	�� i � �� �� � � � and so that if � �  then there are t � �ai� �� ai�� s �
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�bi� bi � �� so that kz�t� � ykH� � �� kz�s� � ykH� � �� Since ������ holds it
follows that

R�
� k�rk���z�t�k�H�

��� Hence

� � kz�bi�� z�ai�k�H�
� k

Z bi

ai

z�k�H�

� �

Z bi

ai

kz�kH��
� � �bi � ai��

Z bi

ai

kz�k�H�
� � �bi � ai��

Z bi

ai

kz�k�Hk
��

Hence bi� ai � ���
R bi
ai
kz�k�Hk

� and so limi���bi� ai� �� since
R�
� kz�k�Hk

�

�� But

k�rk���z�t��kH� �M� t � �ai� bi�� i � �� �� � � �

and thus

� �

Z �

�
kz�k�H�

�
�X
i��

Z bi

ai

kz�k�H�
���

a contradiction� Thus �rk���y� � �

Possible applications are to problems in which either a zero or a critical
point of � is sought� In ���� there is a family of problems of the form

��x� � kF �x�k�H�
� x � H��

where F is a function from H� to L���� which has a locally lipschitzian deriva�
tive� In these problems a system of partial di�erential equations is represented
by the problem of �nding u � H� so that

F �u� � �

In ���� conditions are given under which critical points of � are also zeros of ��

Condition ������ is too strong to apply to most systems of partial di�erential
equations� We note however
 that this condition does not imply convexity� We
hope that Theorem �� will lead to results in which ������ is weakened while still
allowing our conclusions�
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CHAPTER �

Orthogonal Projections� Adjoints and Laplacians

Adjoints as in ������ have a major place in construction of Sobolev gradients

both in function space and in �nite dimensional settings� In this chapter we
develop some background useful in understanding these adjonts�

Suppose H
 K are Hilbert spaces and T � L�H�K�
 the space of all bounded
linear transformations fromH toK� It is customary to denote by T � the member
of L�K�H� so that

hTx� yiK � hx� T �yiH � x � H� y � K� �����

For applications to di�erential equations
 we will often take H to be a
Sobolev space �which is also a Hilbert space� and K to be an L� space� In
order to illustrate how gradient calculations depend upon adjoint calculations

we deal �rst with the simplest setting for a Sobolev space� Our general reference
for linear transformations on Hilbert spaces is �����

In �����
 Weyl deals with the problem of determining when a vector �eld is
the gradient of some function� He introduces a method of orthogonal projections
to solve this problem for all square integrable �but not necessarily di�erentiable�
vector �elds� Our construction of Sobolev gradients is related to Weyl�s work�

�
 A Construction of a Sobolev Space


We rely heavily on ��� for references to Sobolev spaces� In this section we
give
 however
 a construction of the simplest Sobolev space� Take K � L���� ���
and de�ne H � H������ ��� to be the set of all �rst terms of members of Q where

Q � f�uu�� � u � C���� ���g �����

and the closure cl�Q� is taken in K �K� The following is a crucial fact�

Lemma 	� cl�Q� is a function in the sense that no two members of cl�Q�
have the same �rst term�

Proof� Suppose that �fg �� �
f
h� � cl�Q� and k � g � h� Then ��k� � cl�Q��

Denote by f�fnf �n�g
�
n�� a sequence in Q which converges to ��k�� If m�n � Z	


denote by cm�n a member of �� �� so that j�fm�fn��cm�n�j � j�fm�fn��t�j� t �
�� ��� Then if t � �� ���

fm�t�� fn�t� � fm�cm�n�� fn�cm�n� �

Z t

cm�n

�f �m � f �n�

��
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and so

j�fm�t� � fn�t�j � kfm � fnkK � j
Z t

cm�n

�f �m � f �n�j

� kfm � fnkK � �

Z t

cm�n

�f �m � f �n�
�����

� kfm � fnkK � �

Z �

�

�f �m � f �n�
����� �  as m�n� �

Hence ffng�n�� converges uniformly to  on �
�� since it already converges to 
in K� Note that if t� c � �� ���

�

Z t

c

f �n �
Z t

c

k�� � �

Z t

c

jf �n � kj�� �
Z t

c

�f �n � k�� � kf �n � kk�K �  as n���

and so

lim
n��

Z t

c

f �n �

Z t

c

k�

Therefore since

fn�t�� fn�c� �

Z t

c

f �n�

it follows that

 �

Z t

c

k� c� t � �� ���

But this implies that k �  and hence g � h�

If �fg � � Q
 then we take by de�nition f � � g and also de�ne

kfkH � �kfk�K � kf �k�K����� �����

If f � C� then this de�nition is consistent with the usual de�nition� In fact
 if

g � K
 c � R and f�t� � c�
R t
� g
 t � �� ��
 then f � H and �fg � � Q and so in

the above sense
 f � � g� Moreover
 every member of H arises in this way�

To illustrate our point of view on adjoints of linear di�erential operators
 we
consider the member T of L�H�K� de�ned simply by

Tf � f �� f � H� �����

In regard to T 
 we have the following�

Problem �
�
 Find a construction for T � as a member of L�H�K��

Solution
 We identify a subset of Q� as

M � f�v�v � j v � C���� ���� v�� �  � v���g� �����

It is an elementary problem in ordinary di�erential equations to deduce that if
f� g � C��� ���
 then there are uniquely �uu� � � Q
 �v

�

v � �M so that

�uu�� � �v
�

v � � �fg �� �����
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Explicitly with C�t� � cosh�t�� S�t� � sinh�t�� t � R�

u�t� � �C��� t�

Z t

�

�C�s�f�s� � S�s�g�s�� ds �����

�C�t�

Z �

t

�C��� s�f�s� � S�� � s�g�s�� ds��S���� t � �� ���

v�t� � �S�� � t�

Z t

�
�C�s�f�s� � S�s�g�s�� ds

�S�t�
Z �

t

�C��� s�f�s� � S�� � s�g�s�� ds��S���� t � �� ���

Hence we see that M and Q are mutually orthogonal and their direct sum is
dense in K �K� Therefore K � K is the direct sum of Q and M � Since �����
may be extended by continuity to any �fg � � K �K
 it follows that

P �fg � � �uu�� where u is given by ������ �����

Hence we have an explicit expression for P�

We now �nish our solution of Problem ���� Suppose that f � H and g � K�
Then

hTf� giK � hf �� giK � h�ff � �� ��g�iK�K � h�ff � �� P ��g�iK�K � hf� �P ��g�iH
where ��rs� � r if r� s � K� Hence T �g � �P ��g�� Since P is explicitly given
 it
follows that we have found an explicit expression for T ��

�
 A Formula of Von Neumann

Adjoints as just calculated have a close relation with the adjoints of un�
bounded closed linear transformations� Recall that from ����
�����
 for example

if W is a closed linear transformation on H to K �i�e�
 f� xWx� � x � D�W �g is
a closed subset of H �K�
 then an adjoint W � of W is de�ned by�

�i� D�W t� � fy � K j � z � H such that hWx� yiK � hx� ziH � x � D�W �g�
and

�ii� W ty � z� y� z as in �i��

From this de�nition it follows that if x � D�W �
 y � D�W t�
 then

h� xWx�� �
�W ty
y �iH�K � hWx� yiK � hx�W tyiH � � ���	�

Furthermore
 it is an easy consequence of the de�nition that

f� xWx� j x � D�W �g� � f��W ty
y � j y � D�W t�g

and consequently that if �rs� � H � K
 then there exists uniquely x � D�W �

y � D�W t� such that

�xWx� � ��W
ty
y � � �rs�� �����
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From ����� we have the following�

Theorem ��� Suppose W is a closed� densely de�ned linear transformation
on the Hilbert space H to the Hilbert space K� Then the orthogonal projection
of H �K onto

f� xWx� � x � D�W �g ������

is given by the �� � maxtix v so that�

v�� � �I �W tW ���� v�� � W t�I �WW t��� ������

v�� � W �I �W tW ���� v�� � I � �I �WW t���

Proof� Note �rst that if r� s are as in ����� and s � � then x�W ty � r

Wx�y �  and consequently �I�W tW �y � r� Hence the range of �I�W tW � �
H� Since if x � D�W tW �


h�I �W tW �x� xiH � hx� xiH
it follows that �I � W tW ��� � L�H�H�
 and j�I � W tW ���j � �� Similar
properties hold for �I �WW t���� It is easily checked that the matrix indicated
������ is idempotent
 symmetric
 �xed on the set ������ and has range that
set �using that W �I � W tW ���x � �I � WW t���Wx
 x � D�W �� W t�I �
WW t���y � �I �W tW ���y
 y � D�W t��� Hence the matrix in ������ is the
orthogonal projection onto the set in �������

	
 Relationship between Adjoints

To see a relationship between the adjointsW t�W � of the above two sections

take W to be the closed densely de�ned linear transformation on K de�ned by
Wf � f � for exactly those members of K which are also members of H������ ����
Then the projection P in Section � is just the orthogonal projection onto the
set in ������ which in this case is the same as clQ� See ���� for an additional
description of adjoints of linear di�erential operators when they are considered
as densely de�ned closed operators�

This relationship may be summarized by the following�

Theorem ��� Suppose that each of H and K is a Hilbert space� W is a
closed densely de�ned linear transformation of H to K� Suppose in addition
that J is the Hilbert space whose points consist of D�W � with

kxkJ � �kxk�H � kWxk�K����� x � J� ������

Then the adjoint W � of W �with W regarded as a member of L�J�K�� is
given by

W �y � �P ��y�� y � J�

where P is the orthogonal projection of H � K onto f� xWx� � x � Jg and
��rs� � r� �rs� � H �K�
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Proof� If x � D�W �


hWx� yiK � h� xWx�� �
�
y�iH�K � h� xWx�� P �

�
y�iH�K �

hx� �P ��y�iJ � so that W �y � �P ��y��

We emphasize that W has two separate adjoints� one regarding W as a closed
densely de�ned linear transformation on H to H and the other regardingW as a
bounded linear transformation on D�W � where the norm on D�W � is the graph
norm ������� One sometimes might want to use the separate symbols W t�W �

for these two distinct �but related objects�� At any rate
 it is an obligation of
the writer to make clear in a given context which adjoint is being discussed�

�
 General Laplacians

Suppose that H is a Hilbert space and H� is a dense linear subspace of H
which is also a Hilbert space under the norm k kH� in such a way that

kxkH � kxkH� � x � H��

Following Beurling�Deny ���
���
 for the pair �H�H�� there is an associated trans�
formation called the laplacian for �H�H��� It is described as follows� Pick y � H
and denote by f the functional on H corresponding to y �

f�x� � hx� yiH � x � H�

Denote by k the restriction of f to H�� Then

jk�x�j � jhx� yiH j � kxkHkykH � kxkH�kykH � x � H��

Hence k is a continuous linear functional on H� and so there is a unique member
z of H� such that

k�x� � hx� yiH� � x � H��

De�ne M � H � H� by My � z where y� z are as above� We will see that
M�� exists� it will be called the laplacian for the pair �H�H��� If H�

� is a closed
subspace of H� whose points are also dense in H
 we denote the corresponding
transformation by M��

Theorem �	� The following hold for M as de�ned above�
	a
 R�M �� the range of M is dense in H�
	b
 jM jL�H�H�� � ��

	c
 M�� exists�
	d
 M� considered as a transformation from H � H� is symmetric�

Proof� Suppose �rst that there is z � H� so that hz�MxiH� � � x �
H� Then  � hz�MziH� � hz� ziH and so z � 
 a contradiction� Thus
clH�R�M � � H �� But then H� � clH� �R�M �� 
 clH�R�M ��� Hence H �
clH �H

�� � clH �R�M �� and �a� is demonstrated�

To show that �b� holds
 suppose that x � H� Then

kMxkH� � supz�H��z ���hz�MxiH��kzkH� �
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supz�H� �z ���hz� xiH�kzkH� � supz�H�z ���hz� xiH�kzkH�
and so jM jL�H�H�� � ��

To show that �c� holds
 suppose that x � H and Mx � � Then

 � hz�MxiH� � hz� xiH � z � H ��

But this implies that z �  since the points of H� are dense in H�

To see that �d� holds observe that if x� z � H
 then

hz�MxiH � hMz�MxiH� � hMz� xiH �

�
 A Generalized Lax�Milgram Theorem

In this section we present a slight extension of the Lax�Milgram ��	� Theo�
rem� The work of this section is taken from ����� Denote by each of H�H �

��H
�

a Hilbert space with
H�
� 
 H� 
 H

so that
kxkH�

�
� kxkH� � x � H�

�

and
kxkH � kxkH� � x � H ��

Suppose also that the points of H�
��H

� are dense in H� De�ne P� to be the
orthogonal projection of H � onto H�

� and denote the complementary projection
I � P� by Q�� For example take

H � L���� ����H
� � H������ ���

and
H �
� � ff � H� � f�� �  � f���g�

Returning to the general case of H�H��H�
�
 de�ne

��u� � �����kuk�H� � hu� giH � u � H�� ������

Theorem ��� Suppose g � H�w � H� and � � H� � R is de�ned by �������
Then the minimum of ��u� subject to the condition Q�u � Q�w is achieved by

u � Q�w �M�g� ������

The condition Q�u � Q�w may be regarded as a generalized boundary con�
dition� it is equivalent to asking the u� w � H�

��

Proof� De�ne q � Q�w and de�ne 	 � H�
� � R by

	�y� � ��y � q�� y � H �
��

Note that

	��y�k � ���y � q�k � hy � q� kiH� � hk� giH � k � H �
��

Note also that since

	���y��k� k� � kkk�H� k� y � H�
��
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it follows that 	 is �strictly� convex� Now

��u� � �����kuk�H� � hu� giH � �����kuk�H� � kukHkgkH �
�����kuk�H� � kukH�kgkH � kukH��kukH���� kgkH�� u � H�

so � and hence 	 is bounded from below�

Since 	 is convex and bounded from below it has an absolute minimum if
and only if it has a critical point� Moreover
 such a critical point would be the
unique point at which � attains its minimum� Observe that

	��y�k � hy � q� kiH� � hk� giH � hy� kiH� � hk� giH
since hq� kiH� � � k � H�

�� Now

hk� giH � hy� kiH� � k � H �
�

if and only if y � M�g� Choosing y in this way thus yields a critical point of
	� Consequently u � y � q is the point of H� at which � attains its minimum�
Therefore

u � Q�w �M�g

is the point at which � attains its minimum and the theorem is proved�

�
 Laplacians and Closed Linear Transformations

We now turn to a somewhat more concrete case of the above � a case which
is closer to the example�

Suppose that each of H and K is a Hilbert space and T is a closed and
densely de�ned linear transformation on H to K� Let H� be the Hilbert space
whose points are those of D�T � where

kxkH� � k� xTx�kH�K � x � D�T �� ������

Suppose that the linear transformation T� is a closed
 densely de�ned restriction
of T �see ���� for a discussion of closed unbounded linear operators from one
Hilbert space to another�� Denote by H�

� the Hilbert space whose points are
those of D�T�� where

kxkH�
�
� k� xT�x�kH�K � x � D�T��� ������

Then H�H��H�
� �t the hypothesis of Theorem ���

We remind the reader of an equivalent de�nition of T t� The domain of T t is

fy � H � x� hTx� yiK is continuous g�
For y � D�T t�� T ty is the element of H such that

hTx� yiK � hx� T tyiH � x � D�T ��

The de�nition of adjoint applies just as well when T is replaced by T��

One can choose T to be a di�erential operator in such a way that the result�
ing space H� is one of the classical Sobolev spaces which is also a Hilbert space�
Then the restriction T� of T can be chosen so that H�

� is a subspace of H
� con�

sisting of those members of H� which satisfy zero boundary conditions in some
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sense �much more variety than this can be accommodated�� In the example
 T
is the derivative operator whose domain consists of the elements of H������ ����
In other cases T might be a gradient operator�

Theorem ��� Suppose g � H�w � H� and � satis�es �������

��u� � �����kuk�H� � hg� uiH � u � H��

Then the element of H� which renders � minimum is the unique solution u to

�I � T�
tT �u � g� Q�u � Q�w

where Q� is as in Theorem � in its relationship with H ��H�
��

In the example
 �I � T�
tT � is the di�erential operator so that

�I � T�
tT �u � u� u��

for all u in its domain �without any boundary conditions on its domain � that is
it is the maximal operator associated with its expression��

Proof� From Theorem ��
 the minimum u of �� subject to Q�u � Q�w

may be written

u � Q�w �M�g�

It is clear that for u de�ned in this way
 Q�u � Q�w since R�M�� 
 R�P�� and
Q� � I � P�� It remains to show that

�I � T t�T �u � g�

We �rst show that

�I � T t�T �Q�w � �

To this end
 �rst note that

hQ�w� xiH�
�
� � x � H�

�

since x � P�x� x � H�
�� This may be rewritten

h� Q�w
TQ�w

�� � x
T�x�iH�K � � x � D�T���

But this is equivalent to

hT�x� TQ�wiK � hx��Q�wiH � x � D�T��

and hence

TQ�w � D�T t��

and

T t�TQ�w � �Q�w

that is


�I � T t�T �Q�w � �

Next we show that

�I � T t�T �M�g � g�
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To do this �rst note that M�g � D�T�� since M�g � H�
� and so TM�g � T�M�g�

Using the de�nition of M�


hx� giH � hx�M�giH�
�
�

and so

hx� giH � hx�M�giH � hT�x� T�M�giK �
that is

hT�x� T�M�giK � hx� g �M�giH � x � D�T���

But this implies that

T�M�g � D�T t��

and

T t�T�M�g � g �M�g�

that is

�I � T t�T��M�g � g

and the argument is complete�

The expression

�I � T t�T�� ������

is the inverse ofM� and is called the laplacian associated with the pair �H�H
�
���

Similarly the expression

�I � T tT � ����	�

is the laplacian associated with the pair �H�H ��� The expression

�I � T t�T � �����

plays the role of maximal operator associated with the tripleH�H ��H�
�� Theorem

�� gives thatR�I�T t�T � � H�One may observe that N �I�T t�T � is the orthogonal
complement of H �

� in H
��

�
 Remarks on Higher Order Sobolev Spaces

Work of this section is largely taken from ��	�� We may use results in this
chapter to specify adjoints related to more general Sobolev spaces Hm����� where
� is an open subset of Rn
 n�m � Z	� For j � �� �� ����m denote by S�j� n� the
vector space of all j�linear symmetric functions on Rn� Take H � L���� and

K � L���� S��� n��� � � � � L���� S�m�n�� ������

where L���� S�j� n�� denotes the space of square integrable functions from � to
S�j� n�
 j � �� ����m� More precisely
 e�� ���� en denotes any orthonormal basic for
Rn and v � S�j� n�
 then

kvkS�j�n� � �
nX

p���

� � �
nX

pj��

v�ep� � ���� vpj�
������ ������
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As noted in �Weyl
���	�
 p ��	�
����
 this norm is independent of particular
orthonormal basis� For z � L���� S�j� n��
 de�ne

kzkL����S�j�n��
� �

Z
�

kzk�S�j�n������ ������

Thus the norm on K is the Cartesian product norm on L���� S�j� n��
 j �
�� ����m� See also ���� in regard to the above construction�

For u � Cm���
 denote by Du the m�tuple �u�� u���� ���� u�m�� consisting of
the �rst m Fr�echet derivatives of u and take

Q � f� uDu�ju � Cm���g�
From ���
 the closure of Q in H �K is a function W 
 i�e�
 no two members of
cl�Q� have the same �rst term� The space Hm����� is de�ned as the set of all
�rst terms of W 
 with
 for u � H�������

kukH������ � �kuk�L���� � kWuk�K����� ������

The orthogonal projection of H � K onto W will be helpful in later chapters
for construction of various Sobolev gradients� Generally
 the calculation of such
a projection involves the solution of n constant coe�cient elliptic equation of
order �m on �� L� We will be particularly interested in the numerical solution
of such problems�



CHAPTER �

Introducing Boundary Conditions

In this chapter we give a some simple examples which illustrate how one may
deal with boundary conditions in the context of descent processes� We deal here
with a Hilbert space H� more general spaces are dealt with in later chapters�

�
 Projected Gradients

Many systems of partial di�erential equations may be expressed as the prob�
lem of �nding u � H such that

��u� �  �����

�for example


��u� �

Z �

�

�u� � u����� u � H������ ����� �����

Boundary conditions may be expressed by means of a function B from H to a
second Hilbert space V �

B�u� �  �����

�for example

B�u� � u��� �� u � H������ ���� �����

with V � R in this case� Thus if u satis�es ����� and ����� where � and B are
given by ����� and ����� respectively
 then we have

u� � u � � u�� � �� �����

In general we seek a gradient that takes both � and B into account� Speci�cally
we seek rB� so that if x � H

z�� � x� z��T � � ��rB���z�t��� t � � �����

then

B�z�t�� � B�x�� t � � �����

i�e�
 B provides an invariant for solutions z to ������ In particular
 if x � H

B�x� �  and ����� holds
 then B�u� � 
 that is
 u satis�es the required
boundary conditions if u � limt��z�t��

��
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How does one �nd such a gradient� For B di�erentiable
 the problem is
partially solved by means of the function PB so that if x � H
 then PB�x� is the
orthogonal projection onto N �B��x��� Then one de�nes

�rB���x� � PB�x��r���x�� x � H� �����

Hence if z satis�es ����� and t � �

�B�z����t� � B��z�t��z��t� � �B��z�t��PB�z�t���r���z�t�� � 

since PB�z�t�� is the orthogonal projection of H onto N �B��z�t���

So
 the main task in constructing gradients which meet our requirement is
the task of constructing families of orthogonal projections PB�x�
 x � H�

Before starting with an example
 we indicate how one might arrive at ������
For y � H
 de�ne the real�valued function �y to have domain N �B��y�� so that

�y�v� � ��y � v�
 v � N �B��y���

Note �y has a gradient as in Chapter �� if v � N �B��y��
 then r�y�v� is the
element of N �B��y�� so that

��y�v�h � hh�r�y�v�iH � h � N �B��y���

But note that

��y�v�h � ���y � v�h� h � N �B��y��

In particular

��y��h � ���y�h� h � N �B��y��

and

���y�h � hh� �r���y�iH � hh� PB�y��r���y�iH � h � N �B��y���

Hence

�r�y��� � PB�y��r���y�
and so

�rB���y� � �r�y����
We now treat in some detail how such a gradient is calculated in a simple exam�
ple� A number of essential features of Sobolev gradient construction are re�ected
in the following calculations�

Example �
�� Take H � H������ ��� and K � L���� ���� De�ne � and B
so that

��y� �

Z �

�

�y� � y����� B�y� � y�� � �� y � H� ���	�

Then if y � H is a solution to

��y� � � B�y� � �

it also satis�es ������
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We now get an explicit expression for rB�� In treating this example in
some detail
 we illustrate a number of general aspects of our theory� For ease in
writing de�ne the functions C and S by

C�t� � cosh�t�� S�t� � sinh�t�� j�t� � t� t � R�

Theorem �
� With ��B de�ned in ���	��

��rB���y���t� � y�t� � �y���S�t� � y��C��� t���C���� t � �� ���

We will break down this calculation in a series of lemmas� The �rst one
calculates �r���y�
 y � H�

Lemma �� If y � H� then

��r���y���t� � y�t� � �y���C�t� � y��C�� � t���S���� t � �� ���
Proof� Note that

���y�h �

Z �

�
�h� � h��y� � y��� h�hh� �� �y�y

�

y��y�i � h�hh� �� P �y�y
�

y��y�i� h� y � H�

where P is the orthogonal projection de�ned in ������ Since P �yy�� � �yy�� we have
that

�r���y� � y � u

where �uu�� � P �y
�

y ��

Using �����


u�t� � �C��� t�

Z t

�
�Cy� � Sy� � C�t�

Z �

t

�C��� j�y� � S�� � j�y���S���

� �C��� t��C�t�y�t� � C��y���� � C�t��C��y���� C��� t�y�t����S���

� �C�t�y��� � C��� t�y����S���� t � �� ���

since �Cy�� � Cy� � Sy and �C�� � j�y�� � C�� � j�y� � S�� � j�y� With this
expression for u
 ����� yields the concrete expression�

��r���y���t� � y�t� � �C�t�y��� � C��� t�y����S���� t � �� ���

Recall now that

�rB���y� � PB�y��r���y�
 y � H�

We next seek an explicit expression for PB�y�h where h� y � H� The next three
lemmas will give us this�

Lemma �� Suppose that for Hilbert spaces H�V � Q � L�H�V � and �QQ����

exists and belongs to L�H�V �� Then the orthogonal projection J of V onto N �Q�
is given by

J � I � Q��QQ����Q�
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Proof� Note that Q��QQ����Q is ��� idempotent
 ��� symmetric
 ��� its
range is a subset of R�Q��
 and ��� it is �xed on R�Q��� These four properties
imply that Q��QQ����Q is the orthogonal projection onto R�Q��� Thus J is its
complementary projection�

Note that for B as in ���	�
 B��y�h � h�� for all h� y � H� Let Q be this
common value of B��y�
 y � H�

The next lemma gives us an expression for Q� in a special case for which
V � R�

Lemma 
� Suppose Qh � h��� h � H� Then

�Q�w��t� � wC��� t��S���� t � �� ��� w � R� �����

Proof� Suppose w � R� Then there is a unique f � H so that

h��w � hQh�wiR � hh� fiH � h � H�

We want to determine this element f � To this end note that if f � C���� ���

then

hh� fiH �

Z �

�

�hf � h�f �� �

Z �

�

h�f � f ��� � h���f ���� � h��f ���

and so if

wh�� � hh� fiH � h � H�

it must be that

f � f �� � � f ���� �  and f ��� � �w� ������

It is an exercise in ordinary di�erential equations to �nd f satisfying �������
Such an f is given by ������

Lemma �� Let J be the orthogonal projection of H onto N �Q�� Then

�Jh��t� � h�t�� h��C��� t��C���� t � �� ���
Proof� We calculate Q��QQ����Q� Using Lemma 	
 if w � R�

QQ�w � �Q�w��� � wC����S���

and so

�QQ����w � wS����C����

Hence if h � H


�Q��QQ����Qh��t�� � ��QQ����Q�Qh��t�

� h���S����C�����C��� t��S���� � h��C��� t��C���� t � �� ���

The conclusion follows immediately�
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Proof� �Of Theorem ���� Note that PB�y� � J �J is as in Lemma �� for
any y � H� A direct calculation using Lemmas � and � yields

��rB���y���t� � �J��r���y����t�
� y�t� � �y���S�t� � y��C��� t���C���� t � �� ���

The reader may verify that if �rB���y� � 
 then

y�t� � y�� exp�t�� t � �� ���
A second example concerns a partial di�erential equation� The particular

equation has a conventional variational principal and is treated again in Chapter
	 from that point of view� It is usually preferable to deal with conventional
variational principals if they are available since that typically involves only �rst
derivatives whereas the following procedure involves second derivatives�

Example �
�� Suppose g is a real�valued C��� function on R and � is a
region with piecewise smooth boundary in R�� We seek u � H � H������ so
that

��u� g�u� � � u�w �  on ���

De�ne � on H by

��u� � �����

Z
�
���u� g�u���u � H�

Denote fv � H � v �  on ��g by H�� Then

���u�h �

Z
�
���u� g�u�����h � g��u�h�� u � H� h � H��

Denote by P the orthogonal projection of L����� onto

f�h� h�� h�� h���� h���� h���� � h � H�g�
Accordingly

���u�h � h�h� h�� h�� h���� h���� h����� �g��u�m�u�� � ��m�u�� ��m�u��i�L����
� hh� �P �g��u�m�u�� � ��m�u�� ��m�u��iH � u � H�h � H��

where m�u� � ��u� g�u�
 u � H� Hence we have

�r���u� � �P �g��u�m�u�� � ��m�u�� ��m�u��� u � H�

We emphasize that the boundary conditions are incorporated in this gradient�
If u � H
 � � 
 u�w �  on �� and v � u� ��r���u�
 then we also have that
v�w �  on ��� Observe that if B�u� � �u�w�j��
 u � H
 then the condition

B�u� � 

expresses the boundary conditions used in this example� In continuous steepest
descent using rB� in �����
 z�t� � w �  on ��
 t � � Consequently
 if u �
limt�� z�t� exists
 we would have B�u� �  also
 i�e�
 u�w �  on ���
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Alternatively we might have followed a path analagous to that in Example
����

Theorems in the second part of chapter � all have appropriate generalizations
in which rB� replaces r�� These generalizations will not be formally stated or
proved here�

�
 Approximation of Projected Gradients

We turn now to another matter concerning boundary conditions� We give
our development only in a �nite dimensional setting even though one surely exists
also in function spaces� We will illustrate our results in one dimension �see ����
for some higher dimensional results�� We indicate that laplacians associated
with subspaces H� are essentially limiting cases of a sequence of laplacians on
H taken with a succession of more extremely weighted norms�

Our point of departure is the norm ����� which we generalize as follows�
For a given positive integer n
 denote by

� � f�igni��
a sequence of positive numbers and de�ne the weighted norm

kxk� � �
nX
i��

���xi � xi����	n�
� � �i��xi � xi������

������ x � Rn�
������

Denote by h � i� the corresponding inner product� In what follows
 k k� h � i
denote respectively the standard norm and inner product on Rn�

Now the pair of norms k k and k k� on Rn	� yield a Dirichlet space in the
sense of Theorem �� of Chapter �� Denote byM� the corresponding transforma�
tion which results from from Theorem �� and denote M��

� by ��
 the laplacian
for this Dirichlet space�

For each 
 �  we choose a weight ��
� so that

��
�� � 
� ��
�i � �� i � �� � � � � n�

We examine the behavior of M���� as 
 � �� For the space H� whose points
are those of Rn	� whose �rst term is 
 consider the the Dirichlet space given
by H� with two norms
 the �rst being the norm restricted to H� and the second
being unweighted version of ������ restricted to H�� Denote byM� the resulting
transformation from Theorem �� and by �� the inverse of M��

Theorem ��� If h � H� then M�h � lim���M����h�

Proof� Denote by P � the orthogonal projection
 under the standard Eu�
clidean norm on Rn	�
 of Rn	� onto the points of H�� Observe that

����� � �
 � ��P � ������

and that if  � a � c
 then

h�cP � �������x� xi � h�aP � �������x� xi � h�����x� xi � hx� xi� x � Rn�
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Thus

I �M��c� �M��a�

and so

J � lim
���

M����

exists� Note that J is symmetric and nonnegative�

Suppose that x � Rn	�� x �� � For 
 �  de�ne

y� � �
P � �������
��x� ������

From the above it is clear that lim��� y� exists� Then for 
 � � ky�k � kx�j�
x � 
P �y� ������y�

and so


kP �y�k � kxk�� � j�����j��
Thus

lim
���

kP �y�k � � ������

Therefore P �J �  and consequently JP � � �

Take C to be the restriction of �I � P ������� to the range of �I � P �� and

note that C�� �M� �C�� exists since �������
�� exists and ����� is symmetric

and positive�� For x in the range of I � P � and 
 �  and ������ holding



P �y� ������y� � x

and so


�I � P ��P �y� � �I � P �������P
�y� � x

and consequently

�I � P ��y� � C��x� C���I � P �������P
�y��

Hence

Jx � lim
���

y� � C��x

which is what was to be shown�

	
 Singular Boundary Value Problems

Recent work of W�T� Mahavier ���� uses weighted Sobolev spaces in an in�
teresting and potentially far reaching way� This work stems from an observation
that for the singular problem

ty��t�� y�t� � � t � �� ��
the Sobolev gradient constructed according to previous chapters performs rather
poorly� It is shown in ���� that a Sobolev gradient taken with respect to a �nite
dimensional version of

kfk�W �

Z �

�

��ty��t��� � �y�t���� dt
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gave vastly better numerical performance using discrete steepest descent� In ����
it is shown how to choose weights so that the resulting Sobolev gradients have
good convergence properties can be chosen which are appropriate to singularities�
Generalizations to systems is made in this work
 which should be consulted for
details are careful numerical comparisons�

�
 Dual Steepest Descent

Suppose that each of H�K� S is a Hilbert space
 F is a C��� function from
H to K and B is a C��� function from S to R� Denote by �� ��  the functions
on H de�ned by

��x� � kF �x�k�K� x � H�

��x� � kB�x�k�S � x � H�

 � �� ��

Dual steepest
 used by Richardson in ����
 ���� descent consists in seeking
u � H such that

u � limt��z�t� andF �u� � � B�u� �  ������

where

z�� � x � H� z��t� � ��r��z�t��� t � H� ������

The following is a convergence result from ����� All inner products and norms
in this section without subscripts are to be taken in H�

Theorem ��� Suppose � is an open subset of H� z satis�es ������ and
R�z� 
 �� Suppose also that there exists c� d �  such that

k�r���y�k � kF �y�kK � k�r���y�k � kB�y�kS � y � ��
Finally suppose that there is � � ���� �� so that if y � �� then

h�r���y�� �r���y�i�k�r���y�k k�r���y�k � ��

Then ������ holds�

Proof� �From ����� Clearly we may assume that � � ���� �� Then
k�r��y�k� � k�r���y� � �r���y�k�

� k�r���y�k� � �i�r���y�� �r���y�i � k�r���y�k�
� k�r���y�k � ��k�r���y�k k�r���y�k � k�r���y�k�

� ���k�r���y�k� � �k�r���y�kk�r���y�k � k�r���y�k��
� �� � ���k�r���y�k� � k�r���y�k��

� �� � ��min�c�� d���kF �y�k� � kB�y�k�� � �� � ��min�c�� d����y��

The conclusion ������ then follows from Theorem 	 of Chapter ��
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�
 Multiple Solutions of Some Elliptic Problems

The following was written by John M� Neuberger and kindly supplied to the
present writer� The reader should see ���� and ���� for more background and
for numerical results�

In ���� Sobolev gradient descent is used to �nd sign�changing �as well as one�
sign� solutions to elliptic boundary value problems� This numerical algorithm
employs gradient descent as described in this text together with projections on
to in�nite dimensional submanifolds �of �nite codimension� of H � H���

� ����
The idea was �rst suggested by an examination of the existence proof for a
superlinear problem in ���� and later extended to study a more general class
of elliptic bvps� Speci�cally
 let � be a smooth bounded region in RN 
 � the
Laplacian operator
 and f � C��R�R� such that f�� �  �this last condition
can be relaxed and the resulting variational structure similarly handled�� We
seek solutions to the boundary value problem in ��

�u� f�u� � � u � hboxon��� ������

Under certain technical assumptions on f �e�g�
 subcritical and superlinear
growth�
 it was proven in ���� that ������ has at least four solutions
 the trivial
solution
 a pair of one�sign solutions
 and a solution which changes sign exactly
once� These solutions are critical points of the C� action functional

J�u� �

Z
�

f�
�
jruj� � F �u�g dx�

where F �u� �
R u
� f�s� ds� Necessarily these critical points belong to the zero

set of the functional 	�u� � J ��u��u�� We denote this zero set and an important
subset by

S � fu � H � fg � 	�u� � g

S� � fu � S � u	 �� � u� �� � 	�u	� � g�
where we note that nontrivial solutions to ������ are in S �a closed subset of
H� and sign�changing solutions are in S� �a closed subset of S�� In this case

 is a local minimum of J 
 J�
u� � �� as 
 � � for all u � H � fg
 and
there exists ��M �  such that jjujj � � and J�u� � M for all u � S� Thus

we have the alternative de�nitions S � fu � H � fg � J�u� � max��� J�
u�g
and S� � fu � S � u	 � S� u� � Sg� Think of a volcano with the bottom of the
crater at the origin� the rim is S� Since S is di�eomorphic to the unit sphere in
H and it can be shown that S� separates positive from negative elements of S

think of the one�sign elements as north and south poles with S� the equator�

For the problem outlined above
 steepest descent will converge to the trivial
solution if the initial estimate is inside the volcano� The remaining critical points
are saddle points and elements of S� The algorithm used to keep iterates on S
is steepest ascent in the ray direction� Projecting the gradient rJ�u� on to the
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ray f
u � 
 � g results in the formula
hrJ�u�� ui
hu� ui u �

	�u�

jjujj�u�

Thus
 the sign of 	 determines the ascent direction towards S� If we denote the
unique limit of this convergent sequence for a given initial element u by Pu
 then
Pu � S and P �u	� � P �u�� � S�� Standard �nite di�erence methods can be
used to compute the integrals 	�u� � jjujj�� R

�
uf�u� dx and jjujj� � R

�
jruj��

This leads to satisfactory convergence of the sequence uk	� � uk � s ��uk�
jjukjj�

uk


where the stepsize is some s � ���� ��� This is a fairly slow part of the algorithm
for which more e�cient methods might be found�

To �nd one�sign solutions
 let u� be any function satisfying the boundary
condition and of roughly correct sign� Before each Sobolev gradient descent step

apply the iterative procedure e�ecting the projection P � To �nd a sign�changing
solution
 let u� be any function satisfying the boundary condition and of roughly
correct nodal structure �eigenfunctions make excellent initial guesses�� Before
each Sobolev descent step
 apply the projection to the positive and negative
parts of the iterate and add them together� The result will be an approximation
of an element of S��



CHAPTER �

Newton�s Method in the Context of Sobolev

Gradients

This chapter contains two developments� The �rst shows how continuous New�
ton�s method arises from a variational problem� It provides an example of what
was indicated in ������ The second development concerns a version of Newton�s
method in which the usually required invertability fails to hold�

�
 Newton Directions From an Optimization


Up until now we have concentrated on constructing Sobolev gradients for
problems related to di�erential equations� If

��u� �  �����

represents a systems of di�erential equations on some linear space X of functions

then a norm for X was always chosen which involved derivatives� For example
if

��u� � �����

Z �

�

�u� � u��

for functions u on �
��
 then our chosen norm was X � H������ ���
 i�e�
 we
chose

kuk�X �

Z �

�

�u� � u�
�
��

With regard to this norm � is a continuously di�erentiable function with respect
to which a di�erentiable gradient function may be de�ned� Finite dimensional
emulations of both � and the above norm gave us numerically useful gradients�
This is in stark contrast with the choice X � L���� �� for which � would be ev�
erywhere discontinuous and only densely de�ned � an unpromising environment
in which to consider gradients� We noted in Chapter � that �nite dimensional
emulations of such situations performed very poorly� Now X � H������ ��� was
chosen over Hm����� ��� for m � � since a space of minimal complexity �which
still leaves � continuously di�erentiable� seems preferable�

In case ����� represents an expression in which derivatives are not in evi�
dence
 it would seem likely that no Sobolev metric would present an obvious
choice� Many �nite dimensional cases that do not emulate derivatives still su�er
the same problems that are illustrated by Theorem ��


�
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We raise the question as to how e�ective gradients may be de�ned in such
cases� For this we return to ������ Suppose that n is a positive integer and � is
a C��� function on Rn� We seek � � Rn � Rn � R
 � � C���
 so that if x � Rn

the problem of �nding a critical point h of

���x�h subject to the constraint ��x� h� � c � R

leads us to a numerically sound gradient� What ought we require of �� One cri�
terion �which served us rather well for di�erential equations even though we did
not mention it explicitly� is that the sensitivity of h in ��x� h� should somewhat
match the sensitivity of ���x�h� This suggests a choice of

��x� h� � ��x� h�� x� h � Rn�

For x � Rn
 de�ne

��h� � ���x�h� 	�h� � ��x� h�� h � Rn� �����

If h is an extremum of � subject to the constraint 	�h� � c �for some c � R�

then
 using Lagrange multipliers
 we must have that

�r���h� and �r	��h� are linearly dependent�
But

�r���h� � �r���h� and �r	��h� � �r���x� h��

We summarize some consequences in the following�

Theorem ��� Suppose that � is a real�valued C��� function on Rn� x � Rn�
and ����� holds� Suppose also that ��r����x���� exists� Then there is an open
interval J containing � such that if 
 � J � then


�r���x� � �r���x� h�

for some h � Rn�

Proof� Since ��r����x���� exists
 then ��r����y���� exists for all y in some
region G containing x� The theorem in the preface gives that there is an open
interval J containing � on which there is a unique function z so that

z��� � � z��t� � ��r����x� z�t������r���z�t��� t � J�

This is rewritten as

��r����x� z�t��z��t� � �r���z�t��� t � J�

Taking anti�derivatives we get

�r���x� z�t�� � t�r���x� � c�� t � J�

But c� �  since z��� �  and the argument is �nished�

Note that

z���� � ��r����x�����r���x�
is the Newton direction of r� at x� For a given x
 the sign of

h��r����x�����r���x�� �r���x�iRn
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is important� If this quantity is positive then

��r����x�����r���x�
is an ascent direction� if negative it is a descent direction� if zero
 then x is
already a critical point of ��

�
 Generalized Inverses and Newtons Method


Suppose that each of H and K is a Hilbert space and F � H � K is a C���

function� Suppose also that if x � H
 then for some m � �

kF ��x��ykH � mkykK � y � K� �����

This condition allows for F ��x� to have a large null space �corresponding to
di�erential equations for which full boundary conditions are not speci�ed� so
long as F ��x� is bounded from below
 i�e�
 that ����� holds�

Lemma ��� Suppose T � L�H�K� and for some m � 

kT �ykH � mkykK � y � K�

Then

�TT ���� exists and is in L�K�K�

and

h�TT ����y� yiK � kyk�K�m�� y � K�

This is essentially the theorem on page ��� of �����
The following indicates that a condition somewhat stronger than ���	� gives

convergence of continuous Newton�s method in cases where there may be a con�
tinuum of zeros of F � cases in which F ��x� fail to be invertable for some
x � H�

Theorem ��� Suppose that F is a C� function from H � K and for each
r �  there is m �  so that ����� holds if kxkH � r� Suppose also that x � H
and w � ����� H satis�es

w�� � x� w��t� � �F ��w�t����F ��w�t��F ��w�t������F �w�t��� t � �
�����

If the range of w is bounded then

u � lim
t��

w�t� exists and F �u� � �

Proof� Suppose w has bounded range� Denote by r a positive number so
that

kw�t�kH � r� t � �

and denote bym a positive number so that ����� holds for all x so that kxkH � r�
By Lemma �

j�F ��x�F ��x���jL�K�K� � ��m�� kxkH � r�
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Now suppose that x � H and w satis�es ������ Observe that

�F �w��� � F ��w�w� � �F �w�
so that

F �w�t�� � e�tF �x�� t � �

It follows that

kw��t�k�H � kF ��w�t����F ��w�t��F ��w�t������F �w�t��k�H
� h�F ��w�t��F ��w�t������F �w�t��� F �w�t��iH �
� e��th�F ��w�t��F ��w�t������F �x�� F �x�iK� t � �

Hence

kw��t�k�H � e��tM�
� � t � 

where

M� � kF �x�kK�m�
Since

kw��t�kH � e�tM�� t � �

it follows that Z �

�
kw�kH ��

and hence

u � lim
t��

w�t� exists�

Moreover

F �u� � lim
t��

F �w�t�� � �

and the argument is �nished�

Theorem �	 gives some instances in which ����� is satis�ed� Many other
instances can be found�

A promising group of applications for this chapter appears to be the follow�
ing� For � � H � R�� � C���
 many of the Sobolev gradients in this monograph
have the property that ��r����u���� exists and is in L�H�H�� u � H� Taking
F �u� � �r���u�� u � H
 there is in such cases the possibility of using either
discrete or continuous Newton�s method on F � As a start in this direction there
are the following two theorems�

Theorem ��� Suppose that � is a real valued C��� function on the Hilbert
space H and r� has a locally lipschitzian derivative� Suppose furthermore that
x � H and �� r �  so that ��r����u���� exists� is in L�H�H�� u � H� ku �
xkH � r and

k��r����y�����r���x�kH � �� ky � xkH � r�
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If

z�� � x� z��t� � ���r����z�t������r���z�t��� t � � �����

then

u � lim
t��

z�t�

exists and

�r���u� �  provided that � � r�

Proof� For z as in �����


�r����z�t��z��t� � ��r���z�t��� t � �

and so

��r���z��� � ��r���z�
and hence

�r���z�t�� � e�t�r���z�t��� t � �

But this implies that

z��t� � �e�t��r����z�t������r���x�� t � 

and hence if t �  and kz�s�� xkH � r�  � s � t then

kz�t� � xkH �
Z t

�
kz�kH �

Z t

�
e�sk��r����z�s�����r���x�kH ds

�
Z t

�

e�s� ds � ���� e�t� � ��

It follows using the fact that � � r that kz�t��xkH � � and also that
R t
� kz�kH �

�� t � � Consequently


u � lim
t��

z�t�

exists and

�r���u� � lim
t��

�r���z�t�� � lim
t��

e�t�r���x� � �

Theorem ��� Suppose � is a real�valued C��� function on H and r� has
a locally lipschitzian derivative and

��r����u���� � L�H�H�� u � H�

Suppose also that if r � � there is � �  so that

j��r����u��jL�H�H� � �� kukH � r� �����

Finally suppose that r� is coercive in the sense that if M � � then

fy � H � k�r���y�kH � Mg
is bounded� If

z�� � x� z��t� � ���r����z�t������r���z�t��� t �  �����
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then

u � lim
t��

z�t� exists and �r���u� � �

Proof� Suppose x � H and ����� is satis�ed� Since
 as in the argument for
the previous theorem


�r���z�t�� � e�t�r���x�� t � �

it follows
 due to �����
 that R�z� is bounded� Denote by r a positive number
such that r � kz�t�kH � t �  and by � a positive number such that

j��r����u����jL�H�H� � �� kukH � r�

Then as in the above argument


z��t� � �e�t��r����z�t�����r���x�� t � �

andZ t

�

kz�k �
Z t

�

e�sk�r����z�s�����r��x�k ds

�
Z t

�

e�s�k�r���x�k � �k�r���x�k� t � 

and hence

u � lim
t��

z�t� exists and �r���u� � �



CHAPTER �

Finite Di�erence Setting� the Inner Product

Case

This chapter is devoted to construction of Sobolev gradients for a variety of �nite
dimensional approximations to problems in di�erential equations� To illustrate
some intended notation we �rst reformulate the �nite dimensional problem of
Chapter �� These considerations give a guide to writing computer codes for
various Sobolev gradients�

Example �� Suppose n is a positive integer and D�� D� � Rn	� � Rn are
de�ned by

D�y � ��y� � y����� ���� �yn� yn�������

D�y � ��y� � y����� ���� �yn� yn������� �����

where y � �y�� y�� ���� yn� � Rn	� and � � ��n� De�ne

D � Rn	� � �Rn��

so that

Dy �

�
D�y

D�y

�

The norm expressed by ����� is also expressed by

kykD � ��kD�ykRn �� � �kD�ykRn ������ � kDykR�n � y � Rn	��
�����

The real�valued function in ����� can be expressed as

��y� � kG�Dy�k�Rn��� y � Rn	�� �����

where G � R� � R is de�ned by

G�r� s� � s� r� �rs� � R��

Then for u � Rn	�
 the composition G�Du� is to be understood as the member
of Rn whose ith component is

G��D�u�i� �D�u�i� � �D�u�i � �D�u�i� i � �� � � � � n� �����

If u � Rn	� then G�Du� �  if and only if u satis�es

�ui � ui����� � �ui � ui����� � � i � �� � � � � n�


�
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We will use some of this notation to express each of the two gradients that were
the object of study in Chapter �� We �rst take the Fr�echet derivative of � in
������

���u�h � hG��Du�tDh�G�Du�iRn � u� h � Rn	�� �����

Our gradient construction takes two di�erent paths depending on which norm
we take on Rn	�� First we take the standard norm on Rn	� and calculate

���u�h � hDh�G��Du�tG�Du�iRn �����

� hh�DtG��Du�tG�Du�iRn�� � h� u � Rn	�� �����

so that

�r���u� � DtG��Du�tG�Du�� u � Rn	�� �����

Note that this �r���u� is also obtained by making a list of the n � � partial
derivatives of � evaluated at u�

Proceeding next using the norm k kD in �����


���u�h � hG��Du�Dh�G�Du�iRn
� hDh�G��Du�tG�Du�iR�n � hDh�PG��Du�tG�Du�iR�n ���	�

where P is the orthogonal projection �using the standard norm on �Rn��� of
�Rn�� onto R�D� 
 �Rn�� � Taking � � Rn � Rn � Rn de�ned by

��xy� � x� x� y � Rn�

we have from ���	�

���u�h � hh� �PG��Du�tG�Du�iD �����

and hence the gradient of � with respect to k kD is given by

�rD���u� � �PG��Du�tG�Du�� u � Rn	� ������

where h � iD is the inner product associated with k kD� Note that
P � D�DtD���Dt ������

since D�DtD���Dt is symmetric
 idempotent
 is �xed on R�D� and has range
which is a subset of R�D�� Thus �P � �DtD���Dt and so

�rD���u� � �DtD���DtG��Du�tG�Du� ������

� �DtD����r���u�� u � Rn	�� ������

The reader might check that ������ is just another way to express ������ when
G�r� s� � s � r� �rs� � R�
 since An in ������ is the same as DtD� One can see
that calculations starting with �����
 and proceeding to ����� � ������ hold in
considerable generality� In particular they can be extended to the following�

Example �� The development in the previous example may be duplicated
for general G � R� � R
 G � C���� For such a G we seek a gradient in order to
obtain approximate solutions to the fully nonlinear equation

G�y�t�� y��t�� � � t � �� ��� ������
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Then ����� may be replaced by

G��D�u�i� �D�u�i� � � i � �� ���� n�

It is of interest to note that ������ may be singular with a singularity depending
upon nonlinearity in that it may be that

G��y�t�� y
��t�� � 

for some t � �� �� and some solution y� Our gradient construction is not sensitive
to such singularity although numerical performance would likely bene�t from the
considerations of Section � of Chapter ��

Dirgression on adjoints of di�erence operators
 We pause here to
indicate an example of a rather general phenomena which occurs when one emu�
lates a di�erential operator with a di�erence operator� Consider for an n��n���
matrix for D��

��D��i�i � ��� ��D��i�i	� � �� ��D��i�j � � j �� i� i� �� i � �� � � � � n�

The transpose of D� is then denoted by

Dt
� ������

Commonly the derivative operator �call it L here to not confuse it with D� on
L���� ��� is taken to have domain those points in L���� ��� which are also in
H������ ���� Denoting by Lt the adjoint of L �considered as a closed densely
de�ned unbounded operator on L���� ����
 we have that the domain of Lt is

fu � H������ ��� � u�� �  � u���g� ������

Furthermore


Ltu � �u�� u in the domain of Lt�
From ������
 if v � �v�� v�� ���� vn� � Rn	��

Dt
�v � ��v������v� � v����� ������vn� vn������ vn��� ������

so that Dt
� on Rn is like �D� would be on Rn except for the �rst and last

terms of ������� Remembering that � � ��n
 we see that in a sort of limiting
case of L���� ���
 the condition u�� �  � u��� in ������ seems almost forced
by the presence of the �rst and last terms of the rhs of ������� It would be
possible to develop the subject of boundary conditions for adjoints of di�erential
operators �particularly as to exactly what is to be in the domain of the adjoint the
formal expression for an adjoint is usually clear� by means of limits of di�erence
operators on �nite dimensional emulations of L������ 
 Rm for some positive
integer m� We write this knowing that these adjoints are rather well understood�
Nevertheless it seems that it might be of interest to see domains of adjoints
obtained by something like the above considerations�

Example 	� Before looking at �nite dimensional Sobolev gradients for
approximating problems to partial di�erential equations
 we see how Examples
� and � in this chapter are changed when we require a gradient which maintains
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an initial condition at � Choose a number �� We will try to maintain the
boundary condition y� � �� Pick

y � �y�� y�� ���� yn� � Rn	�� y� � ��

Denote by H� the subspace of Rn	� consisting of all points

�x�� x�� ���� xn� � Rn	�

so that x� � � We wish to represent the functional on H� �

h� ���y�h� h � H��

Using �����


���u�h � hh�DtG��Du�tG�Du�iRn�� � hh� ��DtG��Du�tG�Du�iRn�� �
u � Rn	�
 h � H�
 where �� is the orthogonal projection of Rn	� onto H� in
the standard inner product for Rn	�� Thus

��D
tG��Du�tG�Du�

is the gradient of � at u relative to the subspace H� and the standard norm on
Rn	�� To �nd an gradient of � relative to H� and the metric induced by k kD

we will see essentially that ���	� holds with P replaced by P�
 the orthogonal
projection of �Rn�� �using the standard metric on �R��n� onto

fDh � h � H�g�
Denote ��DtDjH� by E��

Theorem �	� P� � DE��� ��D
t �

Proof� De�ne Q� � DE��� ��D
t� First note that Q�

� � Q� since

Q�
� � �DE��� ��D

t��DE��� ��D
t� �

DE��� ��D
tDE��� ��D

t � DE��� ��D
t � Q�

and

Qt
� � �DE��� ��D

t�t � �D��E
��
� ��D

t�t �

D�t�E
��
� �t�D

t � DE��� ��D
t � Q��

Further note that R�Q�� 
 R�DjH� � and that Q� is �xed on R�DjH��� This
characterizes the orthogonal projection of �R��n onto

fDh � h � H�g
and thus we have that P� � Q��

As in ���	�
 if h � H�� u � H�

���u�h � hDh�G��u�tG�Du�iR�n �

but here

hDh�G��u�tG�Du�iR�n � hDh�P �G�u�tG�Du�iR�n
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and so in place of ����� we have

�r�B��u� � �P�G
��u�tG�Du� � E��� ���r���u�

where

�r���u�
is the conventional gradient of � �constructed without regard to boundary con�
ditions� and

�r�B��u�
is the Sobolev gradient of � constructed with regard to the boundary condition

B�u� � � � 

where if u � �u�� u�� ���� un� � Rn	�
 then B�u� � u��
We next give an example of how a �nite di�erence approximation for a

partial di�erential equation �ts our scheme�

Example �� Suppose n is a positive integer and G is the grid composed of
the points

f�i�n� j�n�gni�j���
Denote by Gd the subgrid

f�i�n� j�n�gn��i�j���

Denote by H the �n � ��� dimensional space whose points are the real�valued
functions on G and denote by Hd the �n � ��� dimensional space whose points
are the real�valued functions on G� Denote by D�� D� the functions from H to
Hd so that if u � H
 then

D�u � f�ui	��j � ui���j������gn��i�j��

and

D�u � f�ui�j	� � ui�j��������gn��i�j���n�

Denote by D the transformation from H to H �Hd �Hd so that

Du � �u�D�u�D�u�� u � H�

Denote by F a C��� from R� � R� For example
 if

F �r� s� t� � s � rt� �r� s� t� � R�

then the problem of �nding u � H such that

F �Du� � 

is a problem of �nding a �nite di�erence approximation to a solution z to the
viscosity free Burger�s equation�

z� � zz� �  ����	�

on �� ��� �� ��� For a metric on H we choose the �nite di�erence analogue of
the norm on H������ ��� �� ��
 namely


kukD � �kuk� � kD�uk� � kD�uk������ u � H� �����
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All norms and inner products without subscripts in this example are Euclidean�

De�ne then � with domain H so that

��u� � kF �Du�k���� u � H�

We compute �with � � D����

���u�h � hF ��Du�Dh�F �Du�i
� hDh� �F ��Du��tF �Du�i � hDh�PF ��Du�tF �Du�i
� hh� �PF ��Du�tF �Du�iD � hh� �DtD���DtF ��Du�tF �Du�iD

so that

�rD���u� � �DtD���DtF ��Du�tF �Du� � �DtD����r���u�
where h � iD the inner product associated with k kD �in the preceding we use the
fact that P � D�DtD���D� and �r���u� is the ordinary gradient of �
 u � H��
A gradient which takes into account boundary conditions may be introduced
into the present setting much as in Examples � and �� We pause here to recall
brie�y some known facts about ����	��

Theorem ��� Suppose z is a C� solution on � � �� �� � �� �� to ����	��
Then �� ��� �� �� is the union of a collection Q of closed intervals such that

	i
 no two members of Q intersect�
	ii
 if J � Q� then each end point of J is in ���
	iii
 if J � Q and J is nondegenerate� then the slope m of J is such that

m � z�x� x � J�

i�e�
 the members of Q are characteristic lines for ����	�� Some re�ection reveals
that no nondegenerate interval S contained in �� is small enough so that if
arbitrary smooth data is speci�ed on S then there would be a solution z to
����	� assuming that data on S� This is indicative of the fundamental fact
that for many systems of nonlinear partial di�erential equations the set of all
solutions on a given region is not conveniently speci�ed by specifying boundary
conditions on some designated boundary� This writer did numerical experiments
in �	����� �unpublished� using a Sobolev gradient ����	�� It was attractive to
have a numerical method which was not boundary condition dependent� It was
noted that a limiting function from a steepest descent process had a striking
resemblance to the starting function used �recall that for linear homogeneous
problems the limiting value is the nearest solution to the starting value�� It was
then that the idea of a foliation emerged� the relevant function space is divided
into leaves in such a way that two functions are in the same leaf provided they
lead �via steepest descent� to the same solution� It still remains a research
problem to characterize such foliations even in problems such as ����	�� More
speci�cally we say that

r� s � H � H������
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are equivalent provided that if

zr�� � r� zs�� � s�

and

z�r�t� � ��r���zr�t��� z�s�t� � ��r���zs�t��� t � � ������

then

lim
t��

zr�t� � lim
t��

zs�t��

where

��u� � �����

Z
�

�u� � uu��
�� u � H�

We would like to understand the topological
 geometrical and algebraic nature
of these equivalence classes� Each contains exactly one solution to ����	�� The
family of these equivalence classes should characterize the set of all solutions to
����	� and provide a point of departure for further study of this equation� The
gradient to which we refer in ������ is the function r� so that if u � H�

���u�h � hh� �r���u�iH � h � H�

Chapter �� deals rather generally with foliations which arise as in the above�

We present now an example of a Sobolev gradient for numerical approxi�
mations to a second order problem� At the outset we mention that there are
alternatives to treating a second order problem in the way we will indicate�

��� If a second order problem is an Euler equation for a �rst order varia�
tional principal
 we may deal with the underlying problem using only �rst order
derivatives as we indicated in Chapter 	

��� In any case we can always convert a second order problem into a system
of �rst order equations by introducing one or more unknowns� Frequently there
are several ways to accomplish this�

Example �� In any case if we are determined to treat a second order
problem directly
 we may proceed as follows� We will suppose that

� � �� ��� �� ��

and that our second order problem is Laplace�s equation on �� We do not partic�
ularly recommend what follows� it is for purposes of illustration only� Take the
grid as in Example �� Take the linear space H to consist of all real�valued func�
tions on this grid� De�ne D�� D�� D� on H so that if u � H
 then D�u�D�u�D�u
are as in Example � �all norms and inner products without subscripts in this
example are Euclidean� and

�D��u�i�j � �ui	��j � �ui�j � ui���j���
�

�D��u�i�j � �ui	��j	� � ui���j	�� ui	��j��� ui���j�����
��

�D��u�i�j � �ui�j	� � �ui�j � ui�j�����
�i� j � �� �� ���� n� ��
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Take

Du � �D�u�D�u�D�u�D��u�D��u�D��u�� u � H�

and take
 for u � H� kuk�D �

kD�uk� � kD�uk� � kD�uk� � kD�uk� � kD��uk� � kD��uk� � kD��uk�
������

where all norms without subscript are Euclidean� De�ne � on H so that

��u� � �����
n��X
i�j��

��D��u�i�j � �D��u�i�j�
�� u � H�

Thus if u� h � H�

���u�h �
n��X
i�j��

��D��u�i�j�D��h�i�j � �D��u�i�j�D��h�i�j�

and so

���u�h � hDh� �� � � �D��u�� � �D��u��i
� hDh�P �� � � �D��u�� � �D��u��i
� hh� �P �� � � �D��u�� � �D��u��iD

and so

�rD���u� � �P �� � � �D��u�� � �D��u��

where h � iD denotes the inner product derived from ������� In this particular
case
 of course
 the work involved in constructing P is at least as much as that
of solving Laplace�s equation directly�

In ����
 there is described a computer code which solves a general second or�
der quasi�linear partial di�erential equation on an arbitrary grid whose intervals
are parallel to the axes of R��

If boundary conditions on �� are required
 then the above constructions are
modi�ed� The various vectors h appearing above are to be in

H� � fu � H � ui�j �  if one of i or j �  or ng�
Then the resulting gradient rD� will be a member of H��

Example �� How one might treat a system of di�erential equations is
illustrated by the following�

Consider the pair of equations

u��t� � f�u�t�� v�t��� v��t� � g�u�t�� v�t��� t � �� ���

where f� g � R� � R are of class C�� Consider

� � H � H������ ���� R
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de�ned by

��u� v� � �����

Z �

�

��u� � f�u� v�� � �v� � g�u� v���� u� v � H�

Take Du � �uu��� u � H� Calculate�

���u� v��h� k� �

Z �

�

��u� � f�u� v��h� � f��u� v�h� f��u� v�k�
������

��v� � g�u� v��k� � g��u� v�h � g��u� v�k�� � h�DhDk�� �rs�i�L��������
where

r �

���u� � f�u� v��f��u� v�� ��v� � g�u� v��g��u� v�

�u� � f�u� v�

�
and

s �

���u� � f�u� v��f��u� v�� ��v� � g�u� v��g��u� v�

v� � g�u� v�

�
�

u� v� h� k � H� Thus we have from ������

���u� v��h� k� � �PrPs�� ������

where P is the orthogonal projection of L���� ���
� onto

f�uu�� � u � Hg�
Hence we have that

�r���u� v� � �	Pr	Ps�

where ���� � � �
 �� � � H�

Now let us incorporate boundary conditions
 say

u�� � �� v��� � ��

Then in ������


h � H� � f� � H � ��� � g�

k � H� � f� � H � ���� � g�
and instead of ������ we have

���u� v��h� k� � �P�rQ�s
� ������

where here P� is the orthogonal projection of L���� ���
� onto

fD� � � � H�g�
and Q� is the orthogonal projection of L���� ���� onto

fD� � � � H�g
Hence

�r���u� v� � �	P�r	Q�s
�
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For mixed boundary conditions
 say u�� � v���
 u��� � �v��
 we would have
in place of ������

���u� v��h� k� � P��
r
s�

where here P� is the orthogonal projection of L���� ���
� onto

f�D�D�� � ���� b��� � � ����� �v�� � g�
Hence

�r���u� v� � �P��
r
s�

where here ���� �� 	� �� � ��� 	��

In this latter case the boundary conditions are coupled between the two
components of the solution and a single orthogonal projection on L���� ���� is
to be calculated rather than two individual projections on L���� ����� Finite
di�erence considerations are similar to those of other examples in this chapter�

In ��� the use of �nite elements in construction and computation with Sobolev
gradients is developed� Applications are made to Burger�s equation and the
time�independent Navier�Stokes equations�



CHAPTER 	

Sobolev Gradients for Weak Solutions� Function

Space Case

Suppose � is a bounded open subset of Rn with piecewise smooth boundary and
F is a C��� function from R� Rn so that if

��u� �

Z
�

F �u�ru�� u � H � H������� �	���

then � is a C��� function on H� For w � H consider the problem of �nding a
minimum �or maximumor critical point� of � over all u � H such that u�w � 
on ��� Such an extremum u of � has the property that

���u�h �

Z
�

�F��u�ru�h� hF��u�ru��rhiRn � � h � H�� �	���

where H� � fh � H � h �  on ��g� If u � H satis�es �	��� and has the
property that F��u�ru� � C������
 thenZ

�
�F��u�ru��r � F��u�ru��h � � h � H�� �	���

i�e�
 the Euler equation

F��u�ru��r � F��u�ru� �  �	���

holds� Even if there is not su�cient di�erentiability for �	��� to hold
 it is
customary to say that if �	��� holds then u satis�es �	��� in the weak sense�

What we intend to produce is a Sobolev gradient r� for � so that

�r���u� � 

if and only if u � H satis�es �	���� More generally
 suppose p � �
 � is an open
subset of Rn and F is a C��� function from R�Rn to R so that the function �
de�ned by

��u� �

Z
�

F �u�ru�� u � H��p���

has the property that it is a C��� function from H � H��p��� to R� Denote by
H� a closed subspace of H� Then u � H is a critical point of � relative to H�

provided that

���u�h �

Z
�

�F��u�ru�h� hF��u�ru��rhiRn � � h � H��

��
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For u � H
 the functional ���u� � H�
� and H� is a subspace of H

��p���� Accord�
ingly
 since p � �
 there is a unique point �cf �	��� h � H� so that

���u�h is maximum subject of khkH��p��� � j���u�j� �	���

Such a point h is denote by �r���u� according the criterion ������ This will be
considered in some detail in chapter ��

Explicit construction of such gradients in �nite dimensional spaces is consid�
ered in Chapter �� Applications including some to transonic �ow and minimal
surfaces are given in Chapters ��
��
��� In case p � � we obtain below an explicit
expression for gradients in the present function space setting� Before giving this
construction we make some general observations�

For p � � and r� a gradient constructed from �	���
 there is the possibility
of �nding a critical point of � by �nding a zero of � �

��u� � k�r���u�k�H��� u � H �	���

�relative to the subspace H� of H� provided that r� � C���� A gradient r�
for � is constructed as in ������ with � replaced by � and F replaced by r��
Perhaps using results from Chapter �
 one may seek a zero of � as

u � lim
t��

z�t��

where z satis�es

z�� � x � H� z��t� � ��r���z�t��� t � �

Alternatively
 discrete steepest descent may be used on �� In this way one may
attempt to calculate weak solutions of the variational problem speci�ed by �
and H��

We now develop an explicit expression for such gradients in case p � �� Our
�nite dimensional results in Chapters �
�� will indicate similar results in the
general case where p � ��

We use the notation�

Du � � uru�� u � H�������

Theorem ��� Suppose � is an open subset of 	or the closure of an open
subset of
 Rn and F is a C��� function from R � Rn so that � is de�ned by
�	��� and is a C��� function on H � H������� Suppose furthermore that H� is a
closed subspace of H� Then

�r���u� � �P ��rF ��Du��
where P is the orthogonal projection of L���� � L����n onto

f� vrv� � v � H�g
and ��fg � � f � f � L����� g � L����n�
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Proof� Suppose u � H
 h � H�� Then

���u�h �

Z
�

F ��Du�Dh

� h� hrh�� �rF ��Du�iL����n��
� h� hr��� P ��rF ��Du��iL����n��
� hh� �P ��rF ��Du��iH

and so

�r���u� � �P ��rF ��Du���

Theorem �
� Suppose that in addition to the hypothesis of Theorem ���

��u� � � u � H�

Suppose also that x � H and

z�� � x� z��t� � ��r���z�t��� t � �

Then there is t�� t�� � � � ��� so that limn���r���z�tn�� � �

Proof� This follows immediately from the fact that

��x� �
Z t

�

k�r���z�k�� t � �

Theorem ��� Suppose that in addition to the hypothesis of Theorem ��
that � � C��� and that � is de�ned by �	���� Then

�r���u� � �r����u��r���u�� u � H� �	���

Proof� For u � H
 h � H��

���u�h � h�r����u�h� �r���u�iH � hh� �r����u��r���u�iH
so that

�r���u� � �r����u��r���u�� u � H

since �r����u� is a symmetric member of L�H�H� and � � C����

Note that since

�r���u� � �P ��rF ��Du��� u � H� �	���

it follows that

�r����u�h � �P ��rF ���Du�Dh�� u� h � H� �	�	�

In the case p � � and H� � H� de�ne W so that

Wu � ru� u � H��

Use formula ������ to express the orthogonal projection onto the graph ofW � In
the construction of P is in terms of inverses of the transformations �I �W tW �
and �I�WW t� where here W t denotes the adjoint of W in the usual sense �i�e�
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as a closed unbounded linear operator on an appropriate L� space�� But these
two operators are positive de�nite linear elliptic operators of a well understood
nature� Thus we might consider the projection P to be understood also� In
later chapters we will consider at some length construction of such projections
in corresponding �nite dimensional settings�

One can construct cases where the minimum of a functional � is not a
solution of the corresponding Euler equation but the minimumis a weak solution�
Our corresponding Sobolev gradients are zero at precisely such weak solutions�
The rather constructively de�ned gradients of this chapter give another means
by which to search for extrema of ��

We close this chapter with an example which will give a construction for r�
and r� in a speci�c case� Suppose that � is a bounded open set in R� with a
piecewise smooth boundary �or the closure of such a region�� Suppose also that
G is a C��� function from R to R so that the function � de�ned by

��w� �

Z
�
�krwk��� �G�w��� w � H � H������ �	���

is C��� � We propose to calculate both �	��� and �	��� in this special case�
Now

���w�h �

Z
�

�hrw�rhiR� � G��w�h�� h � H�

Instead of integrating by parts to obtain an Euler equation we proceed in a way
in which various functions are all in H� Note that

���w�h � h�hh� �� �G
��w�
rw �iL����� � h�hh� �� P �G

��w�
rw �iL����� � hh� �P �G��w�

rw �iH
where P is the orthogonal projection of L����� onto f�hrh� � h � Hg and ��fg � �
f� f � L����� g � L������ Calculating further we note that

�P �
G��w�
rw � � �P � wrw� � �P �

G��w��w
� � � w � �P �

G��w��w
� ��

First note that

f� uru� � u � Hg� � f�r	vv � � v � H������g
so that if f � L����� g � L����

�
 there exist uniquely u � H� v � H������ so
that

u�r � v � f� ru� v � g�

For �xed w � H
 we have that in the current example

f � G��w� �w� g � 

so u � H������ and will satisfy

�r �ru� u � G��w�� w�

We write

u � �I ������G��w� �w�
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with the understanding that the above inverse is taken with zero boundary
conditions on u� Hence

�r���w� � w � �I ������G��w�� w�� �	����

Next we look for r� where

��w� � k�r���w�k�H��� w � H�

It follows that

�r����w�h � h� �I ������G��w�h� h�� w� h � H� �	����

We already have that

�r���w� � �r����w���r���w�� w � H �	����

so that �	���� and �	���� combine to give an expression for �r���w� using �	�����

This problem grew out of discussions with the author�s colleagues Alfonso
Castro and Hank Warchall concerning the �nding of non�zero solutions to the
Euler equation associated with �	����

Steepest descent with �	���� seems better than that with �	���� for the
following reason� It is expected that zeros of r� are isolated� Steepest descent
calculations with r� may take advantage of a basin of attraction associated
with a zero of r�� On the other hand a steepest descent process with r� may
overshoot a saddle point of ��

For now we are content to let this example illustrate possible utility for
Sobolev gradients for weak formulations� In Chapters ��
 ��
�� we will return
to the topic in a numerical setting�
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CHAPTER �

Sobolev Gradients in Non�inner Product Spaces�

Introduction�

Many problems involving partial di�erential equations seem not to be placed
naturally in Sobolev spaces Hm�p��� for p � �� Some important examples will
be seen in Chapter �� which deals with various transonic �ow problems� In
the present chapter we �rst introduce Sobolev gradients in �nite dimensional
emulations of H��p��� ���� We seek to construct a gradient with respect to a
�nite dimensional version of an Hm�p space for p � �� As such it provides us
with an example of a gradient using the third principle of Chapter ��

Pick p � � and denote by n a positive integer� For a �nite dimensional
version of H��p��� ���
 denote by H the vector space whose points are those of
Rn	� but with norm

kykH � �
nX
i��

jyijp �
nX
i��

jyi � yi��jp���p� y � �y�� y�� ���� yn� � Rn	��
�����

This expression di�ers from ���	� even if we choose p � �� The present choice
gives us somewhat nicer results than the direct analogy of ���	��

We de�ne a function � as follows� First de�ne D�� D� as in ����� and denote
by � a real valued C��� function from Rn � Rn� De�ne � � Rn	� � R by

��y� � ��D�y�D�y� � ���y� � y����� ���� �yn� yn������ �y� � y�����

� � � � �yn � yn������� y � �y�� y�� ���� yn� � Rn	��

Consider the problem of determining h � Rn	� so that

���y�h is maximum subject to khkpH � j���y�jp �  �����

where

j���y�j � sup
g�Rn���g ���

j���y�gj�kgkH �

We need some notation� Fix y � Rn	� and choose A�B � Rn so that the linear
functionals

���D�y�D�y�� ���D�y�D�y�

have the representations

���D�y�D�y�k � hk�AiRn
���D�y�D�y�k � hk�BiRn � k � Rn�

�
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Then we have that

���y�h � hD�h�AiRn � hD�h�BiRn
� hh�Dt

�A �Dt
�BiRn�� � hh� qiRn�� � h � Rn	� �����

where

q � �r���y� � Dt
�A�Dt

�B�

We proceed to �nd a unique solution to ����� and we de�ne a gradient of �
at y� �rH���y�
 to be this unique solution� Note that there is some h � Rn	�

which satis�es ����� since

fh � Rn	� � khkpH � j���y�jpg
is compact� De�ne �� 	 � H � R by

��h� � ���y�h� 	�h� � khkpH � j���h�jp� h � Rn	��

In order to use Lagrange multipliers to solve ����� we �rst calculate conventional
�i�e�� Rn	�� gradients of �� 	� Using ����� we have that

�r���h� � �Dt
�A�Dt

�B� � �r���y� � q� h � Rn	��

De�ne Q so that Q�t� � jtjp��� t � R� By direct calculation


�r	��h� � �	����h�� 	����h�� � � � � 	�n��h��

where

	����h� � Q�h���Q��h� � h�������� 	
�n��h� � Q�hn� �Q��hn� hn���������

	�i��h� � Q�hi� � �Q��hi � hi������� Q��hi � hi	���������

i � �� � � � � n� �� h � Rn	�� �����

This can be written more succinctly as

�r	��h� � Et�Q�Eh�� �����

where

E�h� � � h
D�h�� h � Rn	�

and the notation Q�Eh� denotes the member of Rn	� which is obtained from
Eh by taking Q of each of its components� The rhs of expression ����� gives a
�nite dimensional version of the p�Laplacian associated with the embedding of
H��p��� ��� into Lp and is denoted by �p�h�� Some references to p�Laplacians
are �����

The theory of Lagrange multipliers asserts that for any solution h to �����
�indeed of any critical point associated with that problem�
 it must be that
�r	��h� and �r���h� � �r���y� are linearly dependent� We will see that there
are just two critical points for �����
 one yielding a maximum and the other a
minimum�

Lemma ��� If h � Rn	� the Hessian of 	 at h� �r	���h� is positive de�nite
unless h � � Moreover �r	�� is continuous�
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Indication of proof
 Using �����
 we see that for h � Rn	�
 h ��
� �r	���h� is symmetric and strictly diagonally dominant� Thus �r	���h� must
be positive de�nite� Clearly �r	�� is continuous�

Theorem ��� If g � Rn	�� there is a unique h � Rn	� so that

�r	��h� � g� �����

Moreover there is a number 
 so that if g � 
q� then the solution h to �����
solves ������

Proof� Since �r	���h�
 h � Rn	�
 h ��  is positive de�nite
 it follows that
	 is strictly convex� Now pick g � Rn	� and de�ne

�h� � 	�h� � hh� giRn�� � h � Rn	�� �����

Since 	 is convex it follows that  is also convex� Noting that  is bounded
below
 it is seen that  has a unique minimum
 say h� At this element h we have
that

��h�k � 	��h�k � hk� giRn�� � � k � Rn	�� �����

Since 	��h�k � h�r	��h�� kiRn�� 
 it follows from ����� that

�r	��h� � g� ���	�

At a critical point h of �����


�r	��h� � 
�r���y�
for some 
 � R and hence

h � �r	����
�r���y��
� Q���
��r	�����r���y���

The condition that ��h� �  determines 
 up to sign� one choice indicating a
maximum for ����� and the other a minimum �pick the one which makes ���x�h
positive��

The above demonstrates a special case of the following �	�� as pointed out
in ������

Theorem ��� Suppose X is a uniformly convex Banach space� f is a con�
tinuous linear functional on X and c � � Then there is a unique h � X so that
fh is maximum subject to khkX � c�

The space H above �Rn	� with norm ������ is uniformly convex� Our
argument for Theorem � gives rise to a constructive procedure for determining
the solution of ���	� in the special case ������ Higher dimensional analogues
which generalize the material in Chapter � follow the lines of the present chapter
with no di�culty� In ����� �which should be published separately� there are
generalizations of a number of the propositions of Chapter � to spaces Hm�p� p �
�� In �����
 the lhs does not depend on h and so that an e�ective solution of our
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maximization problem ����� depends on being able to solve
 given g � Rn	�

for h so that

�p�h� � g� �����

To this end we indicate a nonlinear version of the well�known Gauss�Seidel
method �for solving symmetric positive de�nite linear systems� which are to
be used to solve �����
 given g � �g�� � � � � gn� � Rn	�� We seek h � Rn	� so
that Et�Q�E�h��� � g
 that is
 so that

	����h� � Q�h��� Q��h� � h������� � g��

	�n��h� � Q�hn� � Q��hn � hn�������� � gn

	�i��h� � Q�hi� � �Q��hi � hi�������Q��hi � hi	�������� � gi

i � �� � � � � n� �� ������

Now given a� b� c � R
 each of the equations individually

Q�x�� Q��a� x������ � b�

Q�x� � Q��x� a������ � b�

Q�x� � �Q��x� a����� Q��x� c������� � b

has a unique solution x� Our idea for a nonlinear version of Gauss�Seidel for
solving ������ consists in making an initial estimate for the vector h and then
systematically updating each component in order by solving the relevant equa�
tion �using Newton�s method�
 repeating until convergence is observed� Gener�
alization to higher dimensional problems should be clear enough�



CHAPTER ��

The Superconductivity Equations of

Ginzburg�Landau

�
 Introduction

Sections ��� and 	 of this chapter present joint work with Robert Renka� It
follows closely ����� There is considerable current interest in �nding minima of
various forms of the Ginzburg�Landau �GL� functional� Such minima give an
indication of electron density and magnetic �eld associated with superconduc�
tors� We are indebted to Jacob Rubinstein for our introduction to this problem�
We have relied heavily on ����
����
�����

We will present a method for determining such minima numerically�

�
 The GL Functional

Following ����
����
���� we take the following for the GL functional�

E�u�A� � E� �

Z
�

�k�r� iA�uk��� � kr� A�H�k��� � ���V �u��
������

where V �z� � ������jzj� � ���� z � C� The unknowns are

u � H������ C�� A � H������ R���

and the following are given�

E� � R� H� � C��� R��� � � R�

with � a bounded region in R� with regular boundary� H� represents an applied
magnetic �eld and � is a constant determined by material properties�

We seek to minimize ������ without imposing boundary conditions or other
constraints on u�A in �������

We attempt now to contrast our point of view with previous treatments of
the minimization problem for ������� In ���� a Fr�echet derivative for ������ is
taken�

E��u�A�

�
v
B

�
� u� v � H������ C�� A�B � H������ R���

������

An integration by parts is performed resulting in the GL equations� the Euler
equations associated with ������ together with the natural boundary conditions

�r�A� � � � H� � �� ��r� iA�u� � � �  ������

��
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on  � �� where � is the outward unit normal function on  � �We do not write
out the GL equations here since they will not be needed�� Then one seeks a
minimum of ������ by solving the Euler equation resulting from ������ subject
to the boundary conditions �������

	
 A Simple Example of a Sobolev Gradient

In this section we give an example of a Sobolev gradient for a simple and
familiar functional� We hope that this will make our construction for the GL
functional easier to follow�

Denote by g a member of K � L���� ��� and by � the functional on H �
H������ ����

��y� �

Z �

�

��y�
�
� y����� yg�� y � H� ������

De�ne D � H � K �K by Du �

�
u
u�

�
� u � H� Then

���y�h �

Z �

�
�h�y� � hy � hg� � h�hh� �� �y�gy� �iK�K

� hDh�P �y�gy� �iK�K � hh� �P �y�gy� �iH ������

where P is the orthogonal projection of K �K onto

R�D� �

��
u
u�

�
� u � H

�

and ��fk� � f� f� k � K�

De�ne a Sobolev gradient as the function on H so that if y � H
 then
�rS���y� is the element of H which represents the functional ���y��

�rS���y� � �P �y�gy� �� ������

We see y � H is a critical point of � if and only if

�rS���y� � �

Thus a search for a critical point of � is reduced to the problem of �nding a zero
of rS��

Contrast this with the familiar strategy of writing ������ as

���y�h �

Z �

�

h��y�� � y � g� � hy�j��� h � H ������

�making the assumption along the way that y � H���� and then seeking a critical
point satisfying the Euler equation

�y�� � y � g ������

together with the natural boundary conditions

y��� �  � y����� ����	�
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By contrast
 using the Sobolev gradient ������ a critical point may be sought
�successfully� by either continuous steepest descent

z�� � z� � H� z��t� � ��rS��z�t��� t �  ������

or discrete steepest descent

z� � H� zn � zn�� � �n���rS���zn���� n � �� �� � � �
�������

where ��� ��� � � � are chosen optimally�

At the risk of running this example into the ground
 we express the above
in a notation which is similar to what we want to use for the GL functional�

De�ne F � R� �R� R by

F ��x� y�� w� � �x� � y����� xw� x� y� w � R� �������

Then for a given g � K
 ������ may be written

��y� �

Z �

�
F �Dy� g�� y � H� �������

The Fr�echet derivative �� may then be expressed

���y�h �

Z �

�

F��Dy� g�Dh � hDh� �r�F ��Dy� g�iK�K
� hDh�P �r�F ��Dy� g�iK�K
� hh� �P �r�F ��Dy� g�iH � h� y � H� �������

where F� indicates the partial Fr�echet derivative of F in its �rst argument and

for p � R�� q � R�

F��p� q�s � hs� �r�F ��p� q�iR� � s � R�� �������

Now �P �r�F ��Dy� g� is just another expression for �rS���y�� y � H�

�
 A Sobolev Gradient for GL


The boundary conditions ������ are relatively complicated and somewhat
unusual� Our Sobolev gradient construction avoids explicit consideration of these
boundary conditions� Just as they arise naturally in the conventional method of
the calculus of variations
 they can be avoided naturally in the Sobolev gradient
method� We will try to make this clear in what follows� We revert back to the
notation of Section ��

Although it is not necessary to do so
 we convert ������ into an equivalent
real form� This will simplify our explanation and �t more closely with our
background reference �����

De�ne

G � H � H������ R���H������ R��� R �������

by

G��rs�� A� � E�u�A�� E�� u � r � is � H������ C�� A � H������ R���
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Then there is

F � r�� �R� � R �������

�r�� denotes �R� �R��� �R� � R��� so that

G�w� �

Z
�

F �Dw�H��� w � ��rs�� A� � H �������

where

Dw � D��rs�� A� � ���rs�� �
rr
rs��� �A�rA��� �����	�

Note that for such w � H�Dw is a function from �� r��� A Fr�echet derivative
of G is expressed as

G��w�k �

Z
�
F��Dw�H��Dk� w� k � H

where the subscript � above denotes partial Fr�echet di�erentiation in the �rst
argument of F � Further


G��w�k � hDk� �r�F ��Dw�H��iJ � w� k � H ������

where J denotes L����
�� and for p � r��� q � R�
 �r�F ��p� q� here represents

the element of r�� so that

F��p� q�h � hh� �r�F ��p� q�ir�� � h � r���

Note that

fDk � k � Hg
forms a closed subspace of L���� r���� Denote by P the orthogonal projection of
L���� r��� onto R�D�� Note that R�D� with the standard norm in L���� r��� is
isometrically isomorphic with H� � H������ R
��

Returning to ������ we have that

G��w�k � hDk� �r�F ��Dw�H��iJ � hPDk� �r�F ��Dw�H��iJ
� hDk�P �r�F ��Dw�H��iJ � hk� �P �r�F ��Dw�H��iH�

where
 for q � H� �Dq � q� �Note that for w � H�P ��r�F ��Dw�H��� is of
the form Dq for some q � H��

We de�ne a Sobolev gradient function for G as

rSG�w� � �P �r�F ��Dw�H���� w � H�

Our descent iteration is

w� � H�wn � wn�� � �n���rSG��wn���� n � �� �� � � �

where f�ng�n�� are chosen optimally�
In order to specify a numerical algorithm precisely we need two things� a

discretization scheme for G and some illumination concerning P both as de�ned
and in a corresponding discretized version� This is the point of the following
section�
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�
 Finite Dimensional Emulation

We follow the development of Section � for a numerical setting for GL� We
take � to be a square domain in R�� Choose a positive integer n� Consider the
rectangular grid �n on � obtained by dividing each side of � into n pieces of
equal length� Denote by Hn the collection of all functions from �n to R�� For
v � Hn� denote by Dnv the proper analogue of �����	� �values corresponding
to divided di�erences are considered attached to centers of grid squares and
function values at cell centers are obtained by averaging grid�point values�� The
calculations following �����	� have their precise analogy in this �nite dimensional
setting� for F as used in �������
 there is a function Gn which corresponds to a
�nite dimensional version of G in �������� Thus ������� corresponds to

Gn�w� �
X

i�j���


�n

F ��Dnw��i�j��H��i�j��� w � Hn

which in turn gives that

G�n�w�k � hDnk� �r�F ��Dnw�H��iJn
� hk�Dt

n�r�F ��Dnw�H��iH�
n
� w� k � Hn� �������

From ������� it follows that rGn
 the conventional gradient function for Gn
 is
speci�ed by

�rGn��w� � Dt
n�r�F ��Dnw�H��� w � Hn�

where H�
n� Jn� Pn are the appropriate �nite dimensional versions of H

�� J and P 

respectively�

From ������� it follows that

G�n�w�k � hk� �Pn�r�F ��Dnw�H��iH�
n
� w� k � Hn�

Hence the Sobolev gradient function rSGn is given by

�rSGn��w� � �Pn�r�F ��Dnw�H��� w � Hn�

To �nish a description of how this Sobolev gradient is calculated note �rst
that

Pn � Dn�D
t
nDn�

��Dt
n

since the range of Pn is a subset of the range of Dn
 Pn is �xed on the range of
Dn
 Pn is symmetric and idempotent� This is enough to convict Pn of being the
orthogonal projection onto the range of Dn� Thus

�rSGn��w� � �Dn�D
t
nDn�

��Dt
n�r�F ��Dnw�H��

� �Dt
nDn�

���rGn��w�

After computation of the standard gradient rGn�w�
 an iterative method
is used to solve the symmetric positive de�nite linear system for the discretized
Sobolev gradient�
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�
 Numerical Results

Here we present some numerical results� We compare results using our
Sobolev gradient with those obtained using the ordinary gradient� As indicated
in �
 one should expect much better results using the Sobolev gradient� The
following table re�ects this� Results are for two distinct runs
 one using a Sobolev
gradient and the second using a conventional gradient
 for each of � values of n

the number of cells in each direction �� is partitioned into n� square cells��

Sobolev gradient Standard gradient
n SD steps LS iterations Time SD steps Time Speedup
� �� �	 � ��	 �� 	�
� �� ��� �� ���� ��� ����
� �� �� �� ���	 �	�� ����
� �� ��� �� ��	� ���� ����
� �� �� ��� ����� ����� ����
The contour plot in Figure � matches closely one in Figure � of ����� Consid�

ering only constant imposed magnetic �elds H� and restricting oneself to square
domains
 there are essentially three parameters in ������� the value of H�
 the
value of � and the length of one side of the square� The length comes in as a
factor by means of derivatives in the �rst and second terms of ������ so it seems
to have at least as much in�uence as H� and �� We do not dwell on physical
interpretations of our work but rather stress that we have presented an e�cient
method for calculating minima of ������ that may be extended with no di�culty
to a three dimensional setting�

The columns labeled �SD steps� contain the numbers of steepest descent
steps
 and the column labeled �LS iterations� contains the total number of linear
solver iterations� Since the condition number of the linear systems increases
with n
 so does the number of linear solver iterations per descent step� All times
in are in seconds on a PC with the Intel �����DX�!�� processor� The column
labeled �Speedup� contains the ratios of execution times� Note that the rela�
tive advantage of the Sobolev gradient over the standard gradient increases with
problem size� Convergence is de�ned by an upper bound of ��� on the mean
absolute �conventional� gradient component� �n�����krGn�u�A�kR�n���� � Pa�
rameter values are � � �� ��� �� ��� �� ���H��x� y� � ��� �x� y� � �� The initial
estimate in all cases was taken from A � � u�x� y� � � � i� �x� y� � �� Linear
systems were solved by a conjugate gradient method in which the convergence
tolerance was heuristically chosen to decrease as the descent method approached
convergence� The line search consisted of univariate minimization in the search
direction �negative gradient direction�� The number of evaluations of the func�
tional per descent step averaged ���� with the Sobolev gradient and ��� with the
conventional gradient�

Figures ��� are contour plots depicting computed values of electron density
juj� and the magnetic �eld r� A for each of two square domains� �� ��� �� ��
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and �� ����� ��� In both cases
 the material number is � � �
 and the external
magnetic �eld is H� � ��

Plots are given in Section �

�
 A Liquid Crystal Problem

In �		�
 Garza deals with the problem of numerically determining critical
points of

E�u� �

Z
�

jruj� �������

where for some � in �� ��


� � f�x� y� z� � R� � �� � x� � y� � ��  � z � �g
and u � H������ r�� is subject to the condition that

ku�x� y� z�k � �� �x� y� z� � � �������

and that u�x� y� z� be normal to the boundary of � for all �x� y� z� � ���

According to ���
 for � small enough there are two critical points to �������

one being a trivial one and the other being considerably more interesting� In
�		� there is determined numerically a Sobolev gradient for �nding critical points
of �������� A unique feature of this gradient is that it respects ������� in the
sense that continuous steepest descent preserves this condition� In ���
 the full
symmetry of � is required� On the other hand
 Garza�s numerical method does
not depend on any particular symmetry of �� It thus seem appropriate for design
purposes on regions of various shapes� See �		� for details�

�
 An Elasticity Problem

In ���� there is considered the problem of �nding critical points of

��u� �

Z
�
�kr�u�k�� �det�r�u�������� u � H������ R���

�������

where � is a bounded region in R� and r�u� � � � L�R�� R�� is the matrix
valued representation of u�� Members u � H�����R�� which are a critical point
of � are sought so that the determinant in ������� are nonnegative� A Sobolev
gradient for � is constructed and critical points of it are found numerically� See
���� for more references and details�

�
 Singularities for a Simpler GL functional

Work in this section is joint with Robert Renka and is taken from �����
Suppose � �  and d is a positive integer� Consider the problem of determining
critical points of the functional ���

���u� �

Z
�

�kr�u�k��� � �juj� � ����������� u � H������ C�� u�z� � zd� z � ���
�������
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where � is the unit closed disk in C
 the complex numbers� For each such � � 

denote by u��d a minimizer of ��������

In ��� it is indicated that for various sequences f�ng�n�� of positive numbers
converging to 
 precisely d singularities develop for u�n�d as n��� The open
problem is raised �Problem ��
 page ��	 of ���� concerning possible orientation
of such singularities� Our calculations suggest that for a given d there are �at
least� two resulting families of singularity con�gurations� Each con�guration is
formed by vertices of a regular d�gon centered at the origin of C
 with each
corresponding member of one con�guration being about �� times as large as
a member of the other� A family of which we speak is obtained by rotating
a con�guration through some angle �� That this results in another possible
con�guration follows from the fact �page �� of ���� that if

v��d�z� � e�id�u��d�e
i�z�� z � ��

then ���v��d� � ���u��d� and v��d�z� � zd� z � ���

That there should be singularity patterns formed by vertices of regular
d�gons has certainly been anticipated although it seems that no proof has been
put forward� What we o�er here is some numerical support for this proposition�
What surprised us in this work is the indication of two families for each positive
integer d�

We explain how these two families were encountered� Our calculations use
steepest descent with numerical Sobolev gradients� One family appears using
discrete steepest descent and the other appears when continuous steepest descent
is closely tracked numerically� We o�er no explanation for this phenomenon
but simply report it� For a given d
 the family of singularities obtained with
discrete steepest descent is closer to the origin �by about a factor of ��� than
the corresponding family for continuous steepest descent� In either case
 the
singularities found are closer to the boundary of � for larger d� A source of
computational di�culties might be that critical points of �� are highly singular
objects �for small �
 a graph of ju��dj� would appear as a plate of height one
above � with d slim tornadoes coming down to zero�� Moreover for each d as
indicated above
 one expects a continuum of critical points �one obtained from
another by rotation� from which to �choose��

For calculations the region � is broken into pieces using some number ���
to �
 depending on d� of evenly spaced radii together with � to � concentric
circles�

For continuous steepest descent
 using d � �� � � � � � we started each steep�
est descent iteration with a �nite dimensional version of u��d�z� � zd� z � C�
To emulate continuous steepest descent
 we used discrete steepest descent with
small step size �on the order of ��� instead of the optimal step size� In all runs
reported on here we used � � ��� except for the discrete steepest descent run
with d � �� In that case � � ��� was used �for � � ��� convergence seemed
not to be forthcoming in the single precision code used � the value ��� given
is likely smaller than a successful run with � � ��� would give�� Runs with
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somewhat larger � yielded a similar pattern except the corresponding singular�
ities were a little farther from the origin� In all cases we found d singularities
arranged on a regular d�gon centered at the origin�

Results for continuous steepest descent are indicated by the following pairs�

��� ����� ��� ����� ��� ���� ��� ����� ��� ����� ��� ����� ��� ���� �	� ����� ��� �����

where a pair �d� r� above indicates that a �near� singularity of u��d was found
at a distance r from the origin with � � ���� In each case the other d � �
singularities are located by rotating the �rst one through an angle that is an
integral multiple of ���d� Results for discrete steepest descent are indicated by

the following pairs�

��� ����� ��� ����� ��� ����� ��� ��	�� ��� ����� ��� ��	�� ��� ����� �	� ����� ��� ���

using the same conventions as for continuous steepest descent�

Computations with a �ner mesh would surely yeild more precise results�

Some questions� Are there more than two �even in�nitely many� families of
singularities for each d� Does some other descent method �or some other method
entirely� lead one to new con�gurations� Are there in fact con�gurations which
are not symmetric about the origin�

We thank Pentru Mironescu for his careful description of this problem to
JWN in December �		� at the Technion in Haifa�

��
 Some Plots
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Figure �� Electron density on the unit square
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Figure �� Magnetic �eld on the unit square
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Figure �� Electron density on �� ��� �� ��
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Figure �� Magnetic �eld on �� ��� �� ��
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CHAPTER ��

Minimal Surfaces

�
 Introduction

In this chapter we discuss an approach to the minimal surface problem by
means of a descent method using Sobolev gradients on a structure somewhat
similar to a Hilbert manifold� We begin with a rather detailed discussion of the
problem of minimal length between two �xed points� This problem
 of course

has the obvious solution but we hope that the explicit calculation in this case
will reveal some of our ideas� The work of this chapter is recent joint work with
Robert Renka and this written in �����

�
 Minimum Curve Length

Let S denote the set of smooth regular parametric curves on �� ��� i�e�


S � ff � f � C���� ���R�� and kf ��t�k �  � t � �� ��g�
where k � k denotes the Euclidean norm on R�� Denote curve length � � S � R
by

��f� �

Z �

�

kf �k �
Z �

�

s��

where s is the arc length function associated with f � i�e�


s�t� �

Z �

�

kf �k � t � �� ���

We now treat f � S as �xed and
 using a steepest descent method with f
as the initial estimate
 we seek to minimize � over functions that agree with f
at the endpoints of �� ��� Variations are taken with functions that satisfy zero
end conditions�

S� � fh � h � C���� ���R�� and h�� � h��� � g�
The derivative of ��f� in the direction h is

���f�h � lim
���

��������f � �h�� ��f�� � lim
���

�����

Z �

�
�kf � � �h�k � kf �k�

� lim
���

�����

Z �

�

kf � � �h�k� � kf �k�
kf � � �h�k� kf �k � lim

���
�����

Z �

�

��hf �� h�i� ��kh�k�
kf � � �h�k� kf �k

�

Z �

�

hf �� h�i�kf �k �
Z �

�

hf �� h�i�s� �h � S�� ������

��
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Note that ���f�h can be rewritten as a Stieltjes integral�

���f�h �

Z �

�

hf ��s�� h��s�i s� �
Z �

�

�
df

ds
�
dh

ds

�
ds�

where df
ds � f ��s� and dh

ds � h��s� are the derivatives of f and h with respect to
the arc length function s �associated with f�� Thus we have expressed ���f�h in
a parameter�independent way in the sense that both the Stieltjes integral and
the indicated derivatives depend only on the two curves involved and not on
their parameterization�

We obtain a Hilbert space by de�ning an inner product on the linear space
S�� The gradient of � at f depends on the chosen metric� We �rst consider the
standard L� norm associated with the inner product

hg� hi�L������� �
Z �

�

hg� hi � g� h � S��

Integrating by parts
 we have

���f�h �

Z �

�
hf �� h�i �s� �

Z �

�
hf ��s�� h�i

�

Z �

�

h��f ��s���� hi � h��f ��s���� hi�L������� �h � S��

Thus the representation of the linear functional ���f� in the L� metric is

r��f� � ��f ��s����
Note that the negative gradient direction �used by the steepest descent method�
is toward the center of curvature� i�e�


�r��f� � �f ��s��� � s��N

for curvature vector

�N �
d�f

ds�
�

d

ds

�
f �

s�

�
�

�

s�

�
f �

s�

��
�

f � � f �� � f �

s��
�

We now consider a variable metric method in which the Sobolev gradient of
� at f is de�ned by an inner product that depends on f �but not the parame�
terization of f��

hg� hif �
Z �

�

hg�� h�i �s� �
Z �

�

�
dg

ds
�
dh

ds

�
ds � g� h � S��

������

Let g � S� denote the Sobolev gradient representing �
��f� in this metric� i�e�


���f�h � hg� hif �h � S�� ������

Then
 from ������
 ������
 and ������


���f�h �

Z �

�

hf �� h�i �s� �
Z �

�

hg�� h�i �s� �h � S�
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Z �

�

�
f � � g�

s�
� h�
�

� �
Z �

�

��
f � � g�

s�

��
� h

�
�  �h � S�

 �f � � g���s� � c for some c � R��

Hence g�t� �
R t
� g

� �
R t
� �f

� � cs�� � f�t� � f�� � cs�t�� where g��� � f��� �
f�� � cs��� �  c � �f���� f����s���� i�e�


f�t� � g�t� � f�� �
s�t�

s���
�f���� f��� � t � �� ��� ������

The right hand side of ������ is the line segment between f�� and f��� pa�
rameterized by arc length s� Thus steepest descent with the Sobolev gradient g
leads to the solution in a single iteration with step�size �� While this remarkable
result does not appear to extend to the minimal surface problem
 our tests show
that steepest descent becomes a viable method when the standard gradient is
replaced by the �discretized� Sobolev gradient�

	
 Minimal Surfaces

Denote the parameter space by � � �� ��� �� ��� The minimal surface prob�
lem is to �nd critical points of the surface area functional �subject to Dirichlet
boundary conditions�

��f� �

Z
�

kf� � f�k � f � C����R��� f� � f� �� �

where f� and f� denote the �rst partial derivatives of f � This functional will be
approximated by the area of a triangulated surface�

De�ne a triangulation T of � as a set of triangles such that
�� no two triangles of T have intersecting interiors

�� the union of triangles of T coincides with �
 and
�� no vertex of a triangle of T is interior to a side of a triangle of T �

Denote by VT the set of all vertices of triangles of T 
 and let ST be the
set of all functions f from VT to R� such that
 if q � p and r � p are linearly
independent
 then fq�fp and fr�fp are linearly independent for all p� q� r � VT
such that p is adjacent to q and r in the triangulation� Let Q be the set of all
triples � � �a� b� c� � �b� c� a� � �c� a� b� such that a� b�and c enumerate the vertices
of a member of T in counterclockwise order� Denote the normal to a surface
triangle by

f� � �fb � fa�� �fc � fa� � fa � fb � fb � fc � fc � fa for � � �a� b� c��

Note that f� ��  and the corresponding triangle area �
�
kf�k is positive
 where

k�k now denotes the Euclidean norm on R�� De�ne surface area �T � ST � R
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by

�T �f� �
�

�

X
��Q

kf�k �

Now �x f � ST and let S��T denote the linear space of functions from VT to
R� that are zero on the boundary nodes VT ���� A straightforward calculation
results in

��T �f�h �
�

�

X
��Q

hf� � �f� h�� i � kf�k �h � S��T � ������

where h�� �i denotes the inner product on R� and

�f� h�� � �fb � fa�� �hc � ha� � �hb � ha�� �fc � fa�

� fa � hb � ha � fb � fb � hc � hb � fc �

fc � ha � hc � fa for � � �a� b� c��

It can be shown that the approximation to the negative L��gradient is pro�
portional to the discretized mean curvature vector� Brakke has implemented
a descent method based on this gradient ����� However
 for a metric on S��T 

we choose the one related to the following symmetric bilinear function which
depends on f �

hg� hif �
�

�

X
��Q

h�f� g�� � �f� h�� i � kf�k � g� h � S��T � ������

We will show that
 at least for a regular triangulation T of �
 ������� de�nes
a positive de�nite function and hence an inner product�� To this end
 let n be

a positive integer and consider the uniform rectangular grid with �n� ��� grid
points f�i�n� j�n�g n

i�j��� Then let Tn denote the triangulation of � obtained by
using the diagonal with slope �� to partition each square grid cell into a pair of
triangles�

Theorem ��� For f � ST � T � Tn� h�� �if is positive de�nite on S��T �

Proof� Suppose there exists h � S��T such that hh� hif � � Then �f� h�� �
 � � � Q� It su�ces to show that h � � Consider a pair of adjacent triangles
indexed by �� � �a� b� p� and �� � �b� c� p� for which ha � hb � hc �  so that
�f� h��� � �fb � fa� � hp �  and �f� h��� � �fc � fb� � hp � � For every such
pair of triangles in Tn
 a
 b
 and c are not collinear
 and fb � fa and fc � fb are
therefore linearly independent� Hence
 being dependent on both vectors
 hp � �
The set of vertices p for which hp �  can thus be extended from boundary nodes
into the interior of �� More formally
 let B� � VT � �� and denote by Bk the
union of Bk�� with fp � VT � � a� b� c � Bk�� such that �a� b� p�� �b� c� p�� Qg for
k as large as possible starting with k � �� Then for some k�Bk � VT and
 since
hp �  � p � Bk
 we have h � �
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Let g � S��T denote the Sobolev gradient representing ��T �f� in the metric
de�ned by ������� i�e�


��T �f�h � hg� hif �h � S��T � ������

Then from ������
 ������
 and ������


��T �f�h �
�

�

X
��Q

hf� � �f� h�� i � kf�k

�
�

�

X
��Q

h�f� g�� � �f� h�� i � kf�k

implying that

� hu� hif �
X
��Q

h�f� u�� � �f� h�� i � kf�k �  �h � S��T � ������

where u � f�g since �f� u�� � �f� f����f� g�� � �f���f� g�� � For an alternative
characterization of u
 de�ne ��v� � �

� kvk
�
f �v � ST 
 and let v be the minimizer

of � over functions in ST that agree with f on ��� Then ���v�h � hv� hif �
 �h � S��T � This condition is uniquely satis�ed by v � u � f � g�

The Sobolev gradient g used in the descent iteration is obtained from u
which is de�ned by ������� We expand the left hand side of ������ as follows�
For � � �a� b� c��

�f� u�� � ua � �fb � fc� � ub � �fc � fa� � uc � �fa � fb� and

�f� h�� � ha � �fb � fc� � hb � �fc � fa� � hc � �fa � fb��

Hence

h�f� u�� � �f� h�� i � hha� �fb � fc�� �f� u�� i � hhb� �fc � fa�� �f� u�� i
� hhc� �fa � fb�� �f� u�� i

� hha� �fb � fc� � ua � �fb � fc� � �fb � fc��
�ub � �fc � fa� � uc � �fa � fb��i �

hhb� �fc � fa�� ub � �fc � fa� � �fc � fa��
�uc � �fa � fb� � ua � �fb � fc��i �

hhc� �fa � fb�� uc � �fa � fb� � �fa � fb� �
�ua � �fb � fc� � ub � �fc � fa��i

For p � VT 
 denote f� � Q � p � �g by T p� ThenX
��Q

h�f� u�� � �f� h�� i � kf�k �
X
p�VT

hhp�
X

��p�b�c��Tp

f�fb � fc�� up � �fb � fc� �

�fb � fc� � �ub � �fc � fp� � uc � �fp � fb��g� kf�ki�
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From ������
 this expression is zero for all h � S��T � ThusX
��p�b�c��Tp

f�fb � fc� � up � �fb � fc� � �fb � fc��

�ub � �fc � fp� � uc � �fp � fb��gkf�k �  �p � VI�T � ����	�

where VI�T denotes the interior members of VT � Equation ����	� can also be

obtained by setting ��
�up

to � In order to obtain an expression in matrix!vector

notation
 let u � v�w where v � S��T and w � ST is zero on VI�T �so that v � u
on VI�T and w � u � f on the boundary nodes�� Then ����	� may be written

Au � q� ������

where

�Au�p �
X

��p�b�c��Tp

f�fb � fc�� vp � �fb � fc� �

�fb � fc�� �vb � �fc � fp� � vc � �fp � fb��g�kf�k
and

qp � �
X

��p�b�c��Tp

�fb � fc�� �wb � �fc � fp� � wc � �fp � fb�� � kf�k

for all p � VI�T � For N interior nodes in VI�T and an arbitrarily selected ordering
of the members of VT � u and q denote the column vectors of length �N with
the components of up and qp stored contiguously for each p � VI�T � Then A is
a symmetric positive de�nite matrix with N� order�� blocks� This follows from
Theorem �� since

uTAu �
X

p�VI�T

D
up� �Au�p

E
�
X
p�VT

D
vp� �Au�p

E
X
p�VT

hvp�
X

��p�b�c��Tp

f�fb � fc� � vp � �fb � fc� �

�fb � fc�� �vb � �fc � fp� � vc � �fp � fb��g� kf�ki
�
X
��Q

h�f� v�� � �f� v�� i � kf� k � � hv� vif �

Equation ������ may be solved by a block Gauss�Seidel or SOR method
using u � f as an initial solution estimate� No additional storage is required
for the matrix �thus allowing for a large number of vertices�
 and convergence is
guaranteed since A is positive de�nite ���
 p� ����

If f is su�ciently close to a local minimum of �T that second derivatives in
all directions are positive
 we obtain a Hessian inner product

hg� hiH � ���T �f�gh �
�

�

X
��Q

h�f� g�� � �f� h�� i� hf� � �g� h�� i
kf�k

� hf� � �f� g�� ihf� � �f� h�� i
kf�k� �
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for g� h � S��T � The Hessian matrixH is de�ned by hg� hiH � hHg� hiL� �g� h �
S��T 
 and letting g now denote the H�gradient
 g is related to the standard
gradient r�T �f� by ��T �f�h � hg� hiH � hHg� hiL� � hr�T �f�� hiL� �h � S��T 


implying that g � H��r�T �f�� The displacement u � f � g is obtained by
minimizing

hu� uiH �
�

�

X
��Q

k�f� u��k� � � hf� � u� i
kf�k � hf� � �f� u�� i�

kf� k�

over functions u that agree with f on the boundary� Note that
 for g � 

�
� hu� uif and �

� hu� uiH are both equal to �T �f��

�
 Uniformly Parameterized Surfaces

Numerical tests of the method revealed a problem associated with non
uniqueness of the parameterization� Recall that
 even in the minimum curve
length computation
 the parameterization of the solution depends on the initial
curve� Thus
 depending on the initial surface f�
 the method may result in a
triangulated surface whose triangular facets vary widely in size and shape� Also

with a tight tolerance on convergence
 the method often failed with a nearly null
triangle� �Refer to Section ��� Currently available software packages such as
EVOLVER ���� treat this problem by periodically retriangulating the surface
�by swapping diagonals in quadrilaterals made up of pairs of adjacent triangles�
during the descent process� As an alternative we considered adding bounds on
kf�k to the minimization problem� This �nally led us to a new characterization
of the problem as described in the following two theorems�

Theorem ��� Let ��f� �
R
� kf� � f�k and 	�f� �

R
� kf� � f�k� for f �

C����R�� such that f� � f� �� � Then critical points of 	 are critical points
of �� i�e�� if 	��f�h �  �h � C�

����R
�� �

	
h � C����R�



� h�x� �  �x �

��g� then ���f�h �  �h � C�
����R

��� Furthermore� such critical points f are
uniformly parameterized� kf� � f�k is constant 	and hence equal to the surface
area ��f� at every point since � has unit area
�

Proof� ���f�h �  �h � C�
�

�
��R�



if and only if

�r��f� � D�

�
f� � f� � f�
kf� � f�k

�
�D�

�
f� � f� � f�
kf� � f�k

�
� �

where D� and D� denote �rst partial derivative operators� �Note that the L��
gradient r��f� is proportional to the mean curvature of f �� Also
 	��f�h �
 �h � C�

�

�
��R�



if and only if Lf � D� �f� � f� � f�� �D� �f� � f� � f�� �

� Thus it su�ces to show that Lf �  kf� � f�k is constant� Expanding Lf 
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we have

Lf � f�� � �f� � f�� � f� �D��f� � f�� � D��f� � f�� � f� �

�f� � f�� � f��

f� �D��f� � f�� � D��f� � f�� � f�

f� � f�� � f� � f� � �f� � f��� � �f�� � f��� f� �

f� � f�� � f�

hf�� f�i f�� � hf�� f��i f� � hf�� f��i f� � hf�� f�i f�� �
hf�� f��i f� � hf�� f�i f�� � hf�� f�i f�� � hf�� f��i f� �

where the last equation follows from the identity u��v�w� � hu�wiv�hu� viw�
Now suppose Lf � � Then hf�� Lfi � hf�� Lfi �  and hence

hf� � f� � f�� f��i � hf� � f� � f�� f��i �
hf�� f�i hf�� f��i � hf�� f�i hf�� f��i �

hf�� f�i hf�� f��i � hf�� f�i hf�� f��i � hf�� Lfi � 

and

hf� � f� � f�� f��i � hf� � f� � f�� f��i �
hf�� f�i hf�� f��i � hf�� f�i hf�� f��i �

hf�� f�i hf�� f��i � hf�� f�i hf�� f��i � hf�� Lfi � 

Hence


D� �kf� � f�k� � hf� � f�� D� �f� � f��i
kf� � f�k

hf� � f� � f�� f��i� hf� � f� � f�� f��i
kf� � f�k � 

and

D� �kf� � f�k� � hf� � f�� D� �f� � f��i
kf� � f�k

hf� � f� � f�� f��i� hf� � f� � f�� f��i
kf� � f�k � 

implying that kf� � f�k is constant�

The following theorem implies the converse of Theorem ��� i�e�
 critical
points of � are �with a change of parameters� critical points of 	� Note that the
surface should not be confused with its representation by a parametric function�

Theorem ��� Any regular parametric surface f � C����R�� can be uni�
formly parameterized�

Proof� Let ��x� y� � kf��x� y�� f��x� y�k � �x� y� � �
 and de�ne � � ��
� by

��x� y� �

�
u�x� y�

v�x� y�

�
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where

u�x� y� �

R x
�
��r� y�drR �

� ��r� y�dr
� v�x� y� �

R y
�

R �
�
��r� s�drds

��f�
�

Then

u��x� y� �
��x� y�R �

� ��r� y�dr
� v��x� y� � � and v��x� y� �

R �
� ��r� y�dr

��f�
�

Note that ��f� �
R �
�

R �
� ��r� s�drds
 and by regularity of f 
 ��x� y� �  � �x� y� �

�� It is easily veri�ed that � is invertible� Its Jacobian has determinant u�v� �
u�v� � ����f�� Denote the reparameterized surface by g�u� v� 	 f

�
����u� v�



�

Then f�x� y� � g ���x� y�� and

f��x� y� � f��x� y� � �g��u� v�u��x� y� � g��u� v�v��x� y���
�g��u� v�u��x� y� � g��u� v�v��x� y��

� �u�v� � u�v�� �g��u� v�� g��u� v�� �

Hence kg��u� v� � g��u� v�k � ��f��

Note that
 in the analogous minimum curve length problem
 the minimizer

of
R �
�
kf �k� satis�es f �� �  implying constant velocity resulting in a uniformly

parameterized line segment
 while the minimizer of
R �
� kf �k satis�es �f �� kf �k�

� �
 implying zero curvature but not a uniform parameterization�

For the minimum curve length problem the analog of Theorem �� holds
in both the discrete and continuous cases
 but this is not true of the minimal
surface problem� i�e�
 the theorem does not apply to the triangulated surface�
However
 to the extent that a triangulated surface approximates a critical point
of 	
 its triangle areas are nearly constant� This is veri�ed by our test results�

On the other hand
 there are limitations associated with minimizing the dis�
cretization of 	� Forcing a uniformly triangulated surface eliminates the poten�
tial advantage in e�ciency of an adaptive re�nement method that adds triangles
only where needed � where the curvature is large� Also
 in generalizations of the
problem
 minimizing the discretization of 	 can fail to approximate a minimal
surface� In the case of three soap �lms meeting along a triple line
 the triangle
areas in each �lm would be nearly constant but the three areas could be di�er�
ent
 causing the �lms to meet at angles other than �� degrees� Furthermore

it is necessary in some cases of area minimization to allow surface triangles to
degenerate and be removed�

It should be noted that
 while similar in appearance
 	 is not the Dirichlet
integral of f 
 ��f� � �

�

R
� kf�k

�
� kf�k�
 which is equal to ��f� when f is a

conformal map �f is parameterized so that kf�k � kf�k and hf�� f�i � � �����
Minimizing � has the advantage that the Euler equation is linear �Laplace�s
equation� but requires that the nonlinear side conditions be enforced by varying
nodes of T �
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The discretized functional to be minimized is

	T �f� �
�

�

X
��Q

kf�k� � f � ST �

and the appropriate inner product is

hg� hif �
�

�

X
��Q

h�f� g�� � �f� h�� i � g� h � S��T �

Theorem �� remains unaltered for this de�nition of h�� �if � A Sobolev gradient

g for 	T is de�ned by u � f � g
 where 	�T �f�h � hg� hif implying thatX
��Q

h�f� u�� � �f� h�� i �  � h � S��T �

and thus u satis�es ����	� without the denominator kf�k �or with kf�k taken to
be constant�� The Hessian inner product associated with 	T is

hg� hiH �
�

�
	��T �f�gh �

�

�

X
��Q

h�f� g�� � �f� h�� i � hf� � �g� h�� i �

and the displacement is obtained by minimizing

hu� uiH �
�

�

X
��Q

k�f� u��k� � � hf� � u� i �

This expression is considerably simpler than the corresponding expression asso�
ciated with �T �

�
 Numerical Methods and Test Results

We used the Fletcher Reeves nonlinear conjugate gradient method ���� with
Sobolev gradients and step size obtained by a line search consisting of Brent�s
one dimensional minimization routine FMIN �	��� The number of conjugate
gradient steps between restarts with a steepest descent iteration was taken to
be �� At each step
 the linear system de�ning the gradient was solved by a
block SOR method with relaxation factor optimal for Laplace�s equation and
the number of iterations limited to �� Convergence of the SOR method was
de�ned by a bound on the maximum relative change in a solution component
between iterations� This bound was initialized to ��� and decreased by a factor
of � �but bounded below by ����� after each descent iteration in which the
number of SOR iterations was less than �
 thus tightening the tolerance as the
initial estimates improved with convergence of the descent method�

The SOR method was also used to solve the linear systems associated with
attempted Newton steps� A Newton step was attempted if and only if the
root�mean�square norm of the L� gradient at the previous iteration fell below a
tolerance which was taken to be a decreasing function of n� Failure of the SOR
method due to an inde�nite Hessian matrix was de�ned as an increase in the
Euclidean norm of the residual between any pair of consecutive iterations� In
most cases this required only two wasted SOR iterations before abandoning the
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attempt and falling back to a conjugate gradient step� In some cases however

the number of wasted SOR iterations was as high as �
 and
 more generally

there was considerable ine�ciency caused by less than optimal tolerances�

The selection of parameters described above
 such as the number of con�
jugate gradient iterations between restarts
 the tolerance de�ning convergence
of SOR
 etc�
 were made on the basis of a small number of test cases and are
not necessarily optimal� The Fletcher�Reeves method could be replaced by the
Polak�Ribi"ere method at the cost of one additional array of length ��n � ����
Also
 alternative line search methods were not tried
 nor was there any attempt
to optimize the tolerance for the line search� However
 again based on limited
testing
 conjugate gradient was not found to be substantially faster than steepest
descent
 and the total cost of the minimization did not appear to be sensitive
to the accuracy of the line search� Adding a line search to the Newton iteration
�a damped Newton method� was found to be ine�ective
 actually increasing the
number of iterations required for convergence�

We used the regular triangulation T � Tn of � � �� ��� �� �� and took the
initial approximation f� to be a displacement of a discretized minimal surface
f � f� � f �p for f � ST � p � S��T � Note that f� de�nes the boundary curve as
well as the initial value� The following three minimal surfaces F � C�

�
��R�



were used to de�ne f � Catenoid F �x� y� � �R cos ��R sin �� y� for radius

R � cosh �y � ��� and angle � � ��x� The surface area is ��F � �
R
� kF� � F�k �

� �� � sinh ���� �� �������

Right Helicoid F �x� y� � �x cos ��y� � x sin ��y� � �y� with surface area
��F � �

p
�� �

�
ln
�
� �

p
��


�� �� �������

Ennepers SurfaceF �x� y� �
�
� � ���� � ���  � ��� � ��� �� � �



for

� � ��x� ��R�
p
� and  � ��y � ��R�

p
�
 where R � ���� The surface area is

��F � � �R� � �
�R

� � ��
�
R

� �� ��	����

For each test function f 
 all three components were displaced by the dis�
cretization p of P �x� y� � �x��� x�y�� � y� which is zero on ���

Table � displays the computed surface areas associated with minimizing
�T �f� �method �� and 	T �f� �method ��
 for each test function and each of
�ve values of n� Convergence of the descent method was de�ned by a bound
of �� � ��� on the relative change in the functional between iterations� The
number of conjugate gradient iterations and the total number of SOR iterations
�in parentheses� for each test case is displayed in the row labeled CG �SOR�
iterations� Similarly
 the number of Newton iterations is followed by the total
number of SOR iterations �for all Newton steps� in parentheses� Note that
the cost of each SOR iteration is proportional to n� �with a smaller constant for
method ��� Although each SOR step has a higher operation count �by a factor of
� with method � and ��� with method �� for a Newton iteration than a conjugate
gradient iteration
 this is o�set by the fact that no line search is required for the
Newton iteration� Method � is more e�cient in all cases except the helicoid with
n � �� This is further discussed below� The rows labeled RMS L� gradient
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n � �� n � �� n � �� n � �� n � ��

Catenoid �T �f� 	
	��	 	
��� 	
���� 	
���� 	
����
��F � � 	����	
Method �

Surface area 	
	��� 	
��� �
���� �
���� �
����
CG �SOR� iterations ������ �����	� ������� ����	��� �	��		�

Newton iterations � � � � �
RMS L� gradient 
��E�� 
�E�� 
��E� 
��E� 
��E�

Method �

Surface area 	
	�	� 	
���� 	
���� 	
���� 	
����
CG �SOR� iterations ������ ������� ������ �����	�� ��������

Newton iterations ���� � � � �
RMS L� gradient 
�	E�� 
�	E�� 
��E�� 
��E�� 
��E��

Helicoid �T �f� �
���� �
��� �
�� �
���� �
����
��F � � ���	��
Method �

Surface area �
���� �
�	� �
���� �
���� �
���
CG �SOR� iterations ������ ������ ����	�� ������	� �������

Newton iterations � � � � �
RMS L� gradient 
�	E�� 
	E�� 
��E�� 
��E�� 
��E��

Method �

Surface area �
��� �
���� �
���� �
��� �
����
CG �SOR� iterations ����� ������ �������� ������	� ���	����

Newton iterations ����� ����� � � �
RMS L� gradient 
�E�� 
�	E�� 
��E�� 
��E�� 
�	E��

Enneper �T �f� �
�� �
���� �
���� �
���� �
���
Method �

��F � � ������
Surface area �
���� �
���� �
���� �
���� �
����

CG �SOR� iterations ������� �����	� �������� �������� �������
Newton iterations � � � � �
RMS L� gradient 
��E�� 
�E�� 
��E�� 
��E�� 
��E�

Method �

Surface area �
���� �
���	 �
���� �
��� �
����
CG �SOR� iterations ������ ���	�� �������� ������� �������

Newton iterations ����� ����� � � �
RMS L� gradient 
	�E�� 
�	E�� 
��E�� 
��E�� 
��E��

Table �� Surface Areas and Iteration Counts
 Low Accuracy

display the root�mean�square Euclidean norms of the L� gradients of the surface
area �T �

The table also displays the triangulated surface areas �T �f� associated with
the undisplaced surfaces� From these values
 the discretization error is veri�ed to

be of order
�
�
n


�
� i�e�
 n� j��F �� �T �f�j approaches a constant with increasing

n
 where T � Tn and f is the discretization of F � Note
 however
 that the
computed surface areas do not closely match the �T values and are in some
cases smaller because
 while both are triangulated surface areas with the same
boundary values
 the former are minima of the discretized functionals while the
latter have nodal function values taken from smooth minimal surfaces�
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n � �� n � �� n � �� n � �� n � ��

Catenoid �T �f� 	
	��	 	
��� 	
���� 	
���� 	
����
��F � � 	����	
Method �

Surface area 	
	�	� 	
��� 
���� �
��	� �
����
CG �SOR� iterations ������� ���������� ������	� �����	� ��������

Newton iterations ������ ����� � � �
RMS L� gradient 
��E� 
��E�� 
��E� 
��E� 
�E�

Method �

Surface area 	
	�	� 	
��� 	
���� 	
���� 	
����
CG �SOR� iterations ������ ������ 	����	� �������� ������

Newton iterations ���� ������� ������ 	����� �������
RMS L� gradient 
�	E�� 
	�E�� 
��E�� 
��E�� 
��E��

Helicoid �T �f� �
���� �
��� �
�� �
���� �
����
��F � � ���	��
Method �

Surface area �
���� �
�	�� �
��� �
��� �
����
CG �SOR� iterations ���������� �������	�� �������� ��������� ����������

Newton iterations � � � � �
RMS L� gradient 
�E� 
�	E�� 
��E�� 
		E�� 
�E��

Method �

Surface area �
��� �
���� �
��� �
��	� �
����
CG �SOR� iterations ����� ������ �������	� ��������� ����	��	�

Newton iterations ���� ������� 	���	� ������� �
RMS L� gradient 
�E�� 
�	E�� 
��E�� 
��E�� 
�	E��

Enneper �T �f� �
�� �
���� �
���� �
���� �
���
��F � � ������
Method �

Surface area �
�� �
��� �
���� �
���� �
���
CG �SOR� iterations ����	��� ���������� ��	��	�� �����	��� ��	����

Newton iterations ������ � � � �
RMS L� gradient 
��E� 
�	E�� 
�E�� 
�E�� 
��E�

Method �

Surface area �
���� �
���	 �
��� �
���� �
����
CG �SOR� iterations ������ ���	�� ������� �������� ���������

Newton iterations ������� ������� �������� ������� ��������
RMS L� gradient 
	�E�� 
��E�� 
	�E�� 
�	E�� 
��E��

Table �� Surface Areas and Iteration Counts
 High Accuracy

The tabulated surface areas reveal some anomalies associated with non
uniqueness of the solution� In the case of the catenoid
 there is a second surface
satisfying the same boundary conditions� a pair of parallel disks connected by
a curve� This surface has an approximate area of ��	�	�� Plots verify that it is
this surface that is approximated by method � with n � �
 �
 and �� The
curve connecting the disks is approximated by long thin triangles� We assume
that the nearly constant triangle area maintained by method � prevented it from
converging to this solution� Additional tests on Enneper�s surface with a larger
domain �� and  in the range �� to �� revealed the apparent existence of a
second minimal surface with the same boundary but with smaller surface area�
This non�uniqueness of Enneper�s surface was noted by Nitsche �������
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Table � displays the same quantities as in Table � but with convergence tol�
erance ��� ����� The computed solutions are not signi�cantly more accurate

but the tests serve to demonstrate the de�ciencies of method � and the robust�
ness of method �� Method � failed to converge in all cases except the catenoid
with n � � and n � � and Enneper�s surface with n � �� In all other cases the
procedure was terminated when the minimum triangle area fell below �� for
machine precision � ���������
�� �Allowing the procedure to continue would
have resulted in failure with a nearly singular linear system or a triangle area
of �� Method �
 on the other hand
 failed to converge only on the helicoid with
n � �� Table � displays the result of � iterations
 but another � iterations
resulted in no improvement� Pictures reveal a uniformly triangulated surface
but with long thin triangles apparently caused by the tendency of triangle sides
to be aligned with the lines of curvature� Also
 for method �
 the ratio of largest
to smallest triangle area is at most � in all cases other than the helicoid with
n � �
 in which the ratio is �� with the larger convergence tolerance and 	�
with the smaller tolerance� In no case was a saddle point encountered with either
method�

Excluding the cases in which the method failed to converge
 the number
of descent steps and the number of SOR steps per descent step both increase
with n for all test functions and both the conjugate gradient and Newton meth�
ods
 implying that the Hessian matrices and their approximations become in�
creasingly ill�conditioned with increasing n� This re�ects the fact that �nite
element approximations to second�order elliptic boundary value problems on
two�dimensional domains result in condition numbers of O�N� for N nodes�

The small iteration counts demonstrate the e�ectiveness of the precondi�
tioner for both methods� Additional tests revealed that the standard steepest
descent method �using the discretized L� gradient� fails to converge unless the
initial estimate is close to the solution� Also
 the conjugate gradient method
without preconditioning is less e�cient than preconditioned steepest descent
even when starting with a good initial estimate�

�
 Conclusion

We have described an e�cient method for approximating parametric min�
imal surfaces� In addition to providing a practical tool for exploring minimal
surfaces
 the method serves to illustrate the much more generally applicable
technique of solving PDE�s via a descent method that employs Sobolev gradi�
ents
 and it demonstrates the e�ectiveness of such methods� Furthermore
 it
serves as an example of a variable metric method�

The implementations of method � �MINSURF�� and method � �MINSURF�� are
available as Fortran software packages which can be obtained from netlib�



CHAPTER ��

Flow Problems and Non�inner Product Sobolev

Spaces

�
 Full Potential Equation

From �	�� we have the following one�dimensional �ow problem� Consider a
horizontal nozzle of length two which has circular cross sections perpendicular
to its main axis and is a �gure of revolution about its main axis� We suppose
that the cross sectional area is given by

A�x� � ���� � ��� x����  � x � ��

We suppose that pressure and velocity depend only on the distance along the
main axis of the nozzle and that for a given velocity u the pressure is given by

p�u� � �� � ��	 � �������� u����������

for all velocities for which � � ��	 � ������� � u�� � � We choose 	 � ���

the speci�c heat corresponding to air� De�ne a density function m by m�u� �
�p��u�� u � R� Further de�ne

J�f� �

Z �

�
Ap�f ��� f � H���� ������

For general 	 � � we would choose H���������� in order that the integrand of
������ be in L���� ���� Thus the speci�c heat of the media considered determines
the appropriate Sobolev space� for 	 � ��� we have �	��	 � �� � �� Taking a

�rst variation we have

J ��f�h � �
Z �

�
Am�f ��h�� f� h � H��� ������

where the perturbation h � H��� is required to satisfy h�� �  � h��� and f is
required to satisfy

f�� � � f��� � c ������

for some �xed positive number c� Denote

H� � H���
� ��� ��� � fh � H������ ��� � h�� �  � h���g�

Suppose f � H������ ���� By Theorem �� there is a unique h � H� such that

J ��f�h

���
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is maximum subject to

khk � jJ ��f�j
where jJ ��f�j is the norm of J ��f� considered as a member of the dual of H��
This maximum h � H may be denoted by �rHJ��f�
 the Sobolev gradient
of J at f � Later in this chapter we construct a �nite dimensional emulation
of this gradient� First we point out some peculiar di�culties that a number
of �ow problems share with this example� From ������
 if Am�f �� were to be

di�erentiable
 we would arrive at an Euler equation

�Am�f ���� �  ������

for f a critical point of J � Furthermore
 given su�cient di�erentiability
 we
would have

A�m�f �� � Am��f ��f �� � 

for f a critical point of J� Observe that for some f 
 the equation ������ may be
singular if for some

x � �� ��� m��f ��x�� � �

This simple appearing example leads to a di�erential equation ������ which has
the particularly interesting feature that it might be singular depending on the
whims of the nonlinear coe�cient of f ��� Some calculation reveals that this is
exactly the case at x � �� �� if f ��x� � � which just happens to be the case at the
speed of sound for this problem �f ��x� is interpreted as the velocity corresponding
to f at x�� It turns out that the choice of c in ������ determines the nature of
critical points of ������ � in particular whether there will be transonic solutions

i�e�
 solutions which are subsonic for x small enough �f ��x� � �� and then become
supersonic �f ��x� � �� for some larger x�

It is common that there are many critical points of ������� Suppose we have
one
 denoted by f � An examination of m yields that for each choice of a value
of y � �� ��
 there are precisely two values x�� x� � �� ��	 � ����	 � ������� so
that x� � x� and m�x�� � y � m�x��� The value x� corresponds to a subsonic
velocity and x� corresponds to a supersonic velocity� So if f is such that

 � f ��t�� � ��  � f ��t�� � � for some t�� t� � �� ���
and ������ holds
 then we may construct additional solutions as follows�

Pick two subintervals �a� b�� �c� d� of �� �� so that f is subsonic on �a
b� and
supersonic on �c
d�� De�ne g so that it agrees with f on the complement of the
union of these two intervals so that g� on �a� b� is the supersonic value which
corresponds as in the preceding paragraph to the subsonic values of f � on �a� b��
Similarly
 take g� on �c� d� to have the subsonic values of f � on �c� d�� Do this in
such a way that Z �

�

f � �

Z �

�

g��
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In this way one may construct a large family of critical points g from a particular
one f � Now at most one member of this family is a physically correct solution
if one imposes the conditions that the derivative of a such a solution does not
shock �up� in the sense that going from left to right �the presumed �ow direction�
there is no point of discontinuity of the derivative that jumps from subsonic
to supersonic� A discontinuity in a derivative which goes from supersonic to
subsonic as one moves from left to right is permitted�

We raise the question as to how a descent scheme can pick out a physically
correct solution given the possibility of an uncountable collections of non�physical
solutions�

A reply is the following� Take take the left hand side of ������ and add an
arti�cial dispersion
 that is pick � �  and consider the problem of �nding f so
that

� �Am�f ���� � �f ��� � � ������

We now turn to a numerical emulation of this development� Equation ������
is no longer singular� A numerical scheme for ������ may be constructed using
the ideas of Chapter �� We denote by w a numerical solution to ������ �on a
uniform grid on �� �� with n pieces� satisfying the indicated boundary conditions�
Denote by Jn the numerical functional corresponding to J on this grid� Denote
by Hn the space of real�valued functions on this grid where the expression �����
is taken for a norm on Hn� Using the development in Chapter �
 denote the
H������ ��� Sobolev gradient of Jn at v � Hn by �rJn��v�� Consider the steepest
descent process

wk	� � wk � �k�rJk��wk�� k � �� �� � � � ������

where w��� � w� our numerical solution indicated above and for k � �� �� � � �� �k
is chosen optimally� We do not have a convergence proof for this iteration but
do call attention to Figure � at the end of this chapter which shows two graphs
superimposed� The smooth curve is a plot of w satisfying ������� The graph
with the sharp break is the limit of fwkg�k�� of the sequence ������� The process
sharp picks out the one physically viable critical point ������� The success of this
procedure seems to rest on the fact that the initial value w
 the viscous solution

has the correct general shape� The iteration ������ then picks out a nearest

in some sense
 solution to w which is an actual critical point of ������� The
reader will recognize the speculative nature of the above �assertions�� this writer
would be quite pleased to be able to o�er a complete formulation of this problem
together with complete proofs
 but we must be content here to raise the technical
and mathematical issues concerning this approach to the problem of transonic
�ow� It might be called a smeared shock� Results as indicated in Figure � are
in good agreement with those of F� T� Johnson �	��� This writer expresses great
appreciation to F�T� Johnson of Boeing for his posing this problem and for his
considerable help and encouragement�
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A similar development has been coded for a two dimensional version�

J�u� �

Z
�

�� � ��	 � �����jruj��������� ������

u � H������� where � is a square region in R� with a NACA��� airfoil removed�
Details follow closely those for the nozzle problem outlined above� We present
results for two runs
 one where air speed �at in�nity� is subsonic �Figure �� and
the second �Figure �� in which air speed at in�nity is supersonic� In the �rst
we see supersonic pockets built up on the top and bottom of the airfoil� in the
second we see a subsonic stagnation region on the leading edge of the airfoil�
Both are expected by those familiar with transonic �ow problems�

Calculations in the two problems were straight �o� the shelf� in that pro�
cedures outlined in Chapter � were follow closely �with appropriate approxi�
mations being made on airfoil to simulate zero Neumann boundary conditions
there� It is this writer�s belief that the same procedure can be followed in three
dimensions� Our point is that procedures of this chapter are straightforward
and that there should be no essential di�culties in implementing them in large
scale three dimensional problems in which �shock �tting� procedures would be
daunting �we claim the procedure of this chapter is �shock capturing��

�
 A Linear Mixed�Type Problem

In ���� Kim studies the problem of �nding u such that

u���x� y� � y � u���x� y� � � �x� y� � � ������

where

� � �x� y� � R� � �� � y � ��  � x � ��

Problem ������ is elliptic in the part of � in the upper half plane and hyperbolic
in the part of � in the lower half plane� The presence of this mixed�type gives
a common ground with the preceding section� A numerical solution to this
problem is given in ������� What boundary conditions for ������ yield a unique
solution appears to be still unknown but ������ provides an experimental tool
with which to explore this problem� The code in ������ assumes no boundary
conditions� It is the transformation T which associates a given u � H������
with its limit under continuous steepest descent which is of interest here� Much
remains to be done in order to understand this problem on � and
 of course
 on
more complicated regions which also intersect both the upper and lower planes�

	
 Other Codes for Transonic Flow

From ���� one has the problem of determining u � R� � R such that

F �u� u�� u��u�� � G�u� u�� u��u�� �H�u� u�� u��u�� � 
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where

F �u� u�� u�� � a� � ��	 � ������u�� � u�� � u��� � u��

G�u� u�� u�� � ��u�u�
H�u� u�� u�� � a� � ��	 � ������u�� � u�� � u��� � u���

a� u� being the speed of sound and air velocity at in�nity respectively and 	 is as
in the previous section� For boundary conditions it is required that for each y �
R
 limx���u�x� y��x� � 
 limx���u��x� y��u�� � 
 and limx�	y�u��x� y� �
� Assuming an airfoil as in the previous section
 it is also required that the
tangential velocity component be zero on the object� In ���� a �nite element
code using Sobolev gradients is presented� In ���� a �nite di�erence code is
given for this problem�

�
 Transonic Flow Plots
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Figure �� Smeared and Sharp Shocks in Nozzle Problem
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Figure �� Mach �� Velocity Contours
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Figure �� Mach ��� Velocity Contours



CHAPTER ��

Foliations as a Guide to Boundary Conditions

For a given system of partial di�erential equations
 what side conditions may
be imposed in order to specify a unique solution� For various classes of elliptic

parabolic or hyperbolic equations there are
 of course
 well established criteria
in terms of boundary conditions� For many systems
 however
 there is some
mystery concerning characterization of the set of all solutions to the system�

�
 A Foliation Theorem

This section is taken largely from ����� Suppose that each of H and K is a
Hilbert space and F is a C��� function from H � K� De�ne

� � H � R

by

��x� � kF �x�k�K��� x � H

and note that

���x�h � hF ��x�h� F �x�iK � hh� F ��x��F �x�iH � x� h � H ������

where F ��x�� � L�K�H� is the Hilbert space adjoint of F ��x�� x � H� In view of
������
 we take F ��x��F �x� to be �r���x�
 the gradient of � at x�

By Theorem � there is a unique function

z � �����H � H

such that

z�� x� � x� z��t� x� � ��r���z�t� x��� t � � x � H ������

where the subscript in ������ indicates the partial derivative of z in its �rst
argument�

In this chapter we have the following standing assumptions on F � If r � 

there is c �  such that

kF ��x��gkH � ckgkK � kxk � r� g � K

and if

x � H� z�� x� � x� z��t� x� � ��r���z�t� x��t � �

then

fz�t� x� � t � g is bounded�
��
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Using Theorem 	 we have that if x � H
 then

u � limt��z�t� x�� exists and F �u� � � ������

De�ne G � H � H so that if x � H then G�x� � u� u as in ������� Denote by Q
the collection of all g � C����H�R� so that

g��x��r���x� � � x � H�

Theorem �	� �a� G� exists� has range in L�H�H� and

�b� G���G�x�� � �g�Q g���g�x��� x � H�

Lemma ��� Under the standing hypothesis suppose x � H and

Q � fz�t� x�� t � g � fG�x�g�
There are 	�M� r� T �  so that if

Q� � �w�QB� �w��

then

j�r����w�j �M� j�r�����w�j � M�w � Q

and if y � H� ky � xkH � r� then

�z�t� y�� z�t� x�� 
 Q� � t �  and �z�t� y�� G�y�� 
 Q�� t � T�

For a� b � H
 �a� b� � fta � �� � t�b �  � t � �g and for w � H
 j�r����w�j

j�r�����w�j denote the norms of �r����w�
 �r�����w� as linear and bilinear func�
tions on H � H respectively�

j�r����w�j � sup
h�H�khkH��

j�r����w�hj

j�r�����w�j � sup
h�k�H�khkH���kkkH��

j�r�����w��h� k�j�

Proof� Since Q is compact and both �r���� �r���� are continuous on H

there is M �  and an open subset � of H containing Q so that

j�r����w�j� j�r�����w�j � M� w � ��

Pick 	 �  such that Q� 
 �� Then the �rst part of the conclusion clearly holds�

Note that Q� is bounded� Denote by c a positive number so that

kF ��w��gkH � ckgkK � g � K� w � Q� �

Pick T �  so that kz�T� x� � G�x�kH � 	�� and kF �z�T� x��kK � c	��
�this is possible since limt�� F �z�t� x�� � F �u� � �� Pick v �  such that
v � exp�TM � � 	��� Suppose y � Bv�x� �� fw � H � kw� xkH � v�g� Then

z�t� y� � z�t� x� � y � x�
Z t

�

��r���z�s� y�� � �r���z�s�x���ds

and so

z�t� y� � z�t� x� � y � x
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�
Z t

�

Z �

�

��r������� � �z�s� x� � �z�s� y���d� �z�s� y� � z�s� x��ds� t � �

Hence there is T� �  such that �z�s� y�� z�s� x�� 
 Q� 
  � s � T�
 and so

j R �� ��r������� � �z�s� x� � �z�s� y���d� j �M and

kz�t� y�� z�t� x�kH � ky � xkH �M

Z t

�

kz�s� y� � z�s� x�kHds�  � s � T��

But this implies that

kz�t� y� � z�t� x�kH � ky � xkHexp�tM � � v � exp�tM �

� v � exp�T�M � � 	� ky � xkH � r

and so
�z�t� y�� z�t� x�� 
 Q� � ky � xkH � v�  � t � T��

Supposing that the largest such T� is less than T 
 we get a contradiction
and so have that

�z�t� y�� z�t� x�� 
 Q� �  � t � T� ky � xkH � r�

Now choose r �  such that r � v and such that if ky � xkH � r
 then

kF �y�kK � �kF �x�kK� kz�T� y�� z�T� x�kH � 	��

and

kF �z�T� y�� � F �z�T� x��kK � c	���

Hence for ky � xkH � r�

kz�T� y� � G�x�kH � kz�T� y� � z�T� x�kH � kz�T� x� �G�x�kH � 	��

and

kF �z�T� y��kK � kF �z�T� y�� � F �z�T� x��kK � kF �z�T� x��kK � c	���

According to Theorem ��
 it must be that

kz�t� y� � z�T� y�kH � 	��� t � T

and so

kG�y� � z�T� y�kH � 	��� t � T

since G�y� � limt�� z�t� y�� Note also that Theorem �� gives that

kz�t� x�� z�T� x�kH � 	��� t � T

and so we have that the convex hull of

G�x�� G�y�� fz�t� x� � t � Tg� fz�t� y� � t � Tg
is a subset of B� �G�x�� 
 �� This gives us the second part of the conclusion
since we already have that

�z�t� y�� z�t� x�� 
 Q� �  � t � T�
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Lemma ��� Suppose B � L�H�K�� c �  and

kB�gkH � ckgkK � g � K� ������

Then

j exp��tB�B� � �I �B��BB����B�j � exp��tc��� t � �

Note that the spectral theorem �df ����� gives that exp��tB�B� converges point�
wise on H to �I �B��BB����B�
 the orthogonal projection of H onto N �B�
 as
t��� What Lemma �� gives is exponential convergence in operator norm�

Proof� First note that ������ is su�cient for

�BB����

to exist and belong to L�K�K�� Note next the formula

exp��tB�B� � I �B��BB����B �B��BB���� exp��tBB��B
������

which is established by expanding exp��tBB�� in its power series and collecting
terms
 t � � Note also that

B��BB���� exp��tBB��B � B��BB������ exp��tBB���BB������B
and that

jB��BB������j � j�BB������Bj � �

and hence

jB��BB���� exp��tBB��Bj � j exp��tBB��j�
Now denote by � a spectral family for BB�� Since

� BB�g� g �K� kB�gk�K � c�kgk�K � g � K

it follows that c� is a lower bound to the numerical range of BB�� Denote by b
the least upper bound to the numerical range of BB�� Then

BB� �

Z b

c�

 d��
�

and

exp��tBB�� �
Z b

c�
exp��t
�d��
�� t � �

But this implies that j exp��tBB��j � exp��tc��
 t � � This fact together with
������
������ give the conclusion to the lemma�

Lemma ��� Suppose x� 	�M� r� T� c are as in Lemma ��� If kx � wk � r�
then

kz�t� w�� G�w�k �M� exp��tc��� t � 

where M� � �����kF �x�k���� exp��c����
Proof� This follows from the argument for Theorem 	�
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From ��	��
 Theorem �������� we have that z��t� w� exists for all t � � w �
H and that z� is continuous� Furthermore if Y �t� w� � z��t� w�� t � � w � H

then

Y �� w� � I� Y��t� w� � ��r����z�t� w��Y �t� w�� t � � w � H�

Consult �	�� for background on various techniques with di�erential inequalities
used in this chapter�

Lemma �	� Suppose x� 	�M� r� T� c are as in Lemma �� and � � � There
is M� �  so that if t � s � M� and kw � xkH � r� then

jY �t� w�� Y �s� w�j � ��

Proof� First note that if kw � xkH � r then

jY �t� w�j � exp�Mt�� t �  since

Y �t� w� � I �
Z t

�

�r����z�s� w��Y �s� w�ds� t �  ������

and j�r����z�s� w��j � M 
  � s� In particular


jY �T�w�j � exp�MT �� kw� xkH � r�

Suppose that t � s � T and � � t� s� Then

jY �t� w�� Y �s� w�j � lim
n��

j�#nk���I � ���n��r����z�s � �k � ����n�w����Y �s�j

�This is an expression that the Cauchy polygon methods works for solving ������
on the interval �s� t��� For n a positive integer and kw � xkH � r�

j�#nk���I � ���n��r����z�s � �k � ����n�w����Y �s� w�j

� j�#nk���I � ���n��r����G�w����Y �s� w�j
� j�#nk���I � ���n��r����z�s � �k � ����n�w����Y �s� w�

� �#nk���I � ���n��r����G�w����Y �s� w�j
Now by Lemma ��


j�#nk���I � ���n��r����G�w����Y �s� w�j � exp��c�s�jY �s� w�j�
De�ne

Ak � I � ���n��r����z�s � �k � ����n�w��

and

Bk � I � ���n��r����G�w���
k � �� �� ���� n
 and denote Y �s� w� by W� By induction we have that

j�#nk��Ak�W � �#nk��Bk�W j �
nX

k��

jAn � � �Ak	��Ak �Bk�Bk�� � � �B�W j�
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Now

jAjj � jI � ���n��r����z�G�w���j
� ���n�j�r����G�w��� �r����z�s � �j � ����n�w��j

� � � ���n�M j�r����G�w��� �r����z�s � �j � ����n�w��j

� � � ���n��

Z �

�

j�r�������� � �z�s � �j � ����n�w� � �G�w�jdr�
kG�y� � z�s � �j � ����n�w�kH

� � � ���n�MkG�y� � z�s � �j � ����n�w�kH
� � � ���n�MM� exp��c��s � �j � ����n�

� � � ���n�M� exp��c�s��exp��c���n��j���
j � �� ���� n� We note that jBj j � �� j � �� ���� n� Note that

jAn � � �Ak	�j � jAnj � � � jAk	�j ������

� #nj�k	��� � ���n�M� exp��c�s��exp��c���n��j���
� #nj�k	� exp����n�M� exp��c�s��exp��c���n��j���

� exp�M� exp��c�s����n�
nX

j�k	�

�exp��c���n��j���

� exp�M� exp��c�s����n����� exp��c���n���
� exp�M� exp��c�s��

so long as ��n � � whereM� �M� sup������� �����exp��c���� andM� �MM��
Note that

jAk �Bkj � ���n�j�r����z�s � �j � ����n�w��� �r����G�w��j

� ���n�j�
Z �

�

�r�������� � �z�s � �j � ����n�w� � �G�w�� d�

�z�s � �j � ����n�w�� G�w��j ������

� ���n�M j�z�s� �j � ����n�w�� G�w��j
� ���n�MM� exp��c�s��exp��c���n�j���

� k � �� ���� n�

and so using ������
������
 we get that

j�#nk��Ak�W � �#nk��Bk�W j

�
nX

k��

exp�M� exp��c�s��jAk � BkjjW j

� exp�M� exp��c�s��MM�exp��c�s�
nX

k��

exp��c���n�k���jW j

� exp�M� exp��c�s�� exp��c�s��M�jW j�
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Thus

j�#nk���I � ���n��r����z�s � �k � ����n�w����Y �s� w�j ����	�

� j�#nk���I � ���n��r����G�w����Y �s� w�j
� exp�M� exp��c�s�� exp��c�s�M�jY �s� w�j

Taking the limit of both sides of ����	� as n��
 we have

jY �t� w�� Y �s� w�j � exp��c�s�jY �s� w�j�� � exp�M� exp��c�s��M��

 � T � s � t� Taking for the moment s � T the above yields

jY �t� w�� Y �T�w�j � exp��c�T �jY �T�w�j�� � exp�M� exp��c�T ��M���

Note fjY �T�w�j� ky � xkH � rg is bounded
 say by M
 � � Hence

jY �t� w�� Y �T�w�j �

exp��c�s�M
�� � exp�M� exp��c�T ��M��� t � s � T� kw � xkH � r�

and so the conclusion follows�

Denote by U the function with domain Br�x� to which fY �t� ��gt
� converges
uniformly on Br�x�� Note that U � Br�x�� L�H�H�� and U is continuous�

Lemma ��� Suppose that x � H� r � � each of v�� v�� ��� is a continuous
function from Br�x�� H� q is a continuous function from H to L�H�H� which
is the uniform limit of v��� v

�
�� ���� on Br�x�� Then q is continuous and

v��y� � q�y�� ky � xkH � r�

Proof� Suppose y � Br�x�
 h � H
 h ��  and y � h � Br�x�� ThenZ �

�
q�y � sh�h ds � lim

n��

Z �

�
v�n�y � sh�h ds

� lim
n��

�vn�y � h�� vn�y�� � v�y � h�� v�y��

Thus

kv�y � h�� v�y� � q�y�hkH�khkH � k
Z �

�

q�y � sh�h� q�y�h�dsk

�
Z �

�

jq�y � sh�� q�y�jds� 

as khk � � Thus v is Frechet di�erentiable at each y � Br�x� and v��y� � g�y�

y � Br�x��

Proof� To prove the Theorem
 note that Lemmas ��
��
�� give the �rst
conclusion� To establish the second conclusion
 suppose that g � Q� Suppose
x � H and ��t� � g�z�t� x��� t � � Then

���t� � g��z�t� x��z��t� x� � �g��z�t� x���r���z�t� x��� t � �



��� ��� FOLIATIONS AS A GUIDE TO BOUNDARY CONDITIONS

Thus � is constant on Rx � fz�t� x� � t � g� fG�x�g� But if y is $in G���G�x��
then g�fz�t� y� � t � g�fG�y�g� must also be in G���G�x�� since G�y� � G�x��
Thus G���G�x�� is a subset of the level set g���g�x�� of g� Therefore


G���G�x�� 
 �g�Qg���g�x���
Suppose now that x � H
 y � �g�Qg���g�x�� and y �� G���G�x��� Denote
by f a member of H� so that f�G�x�� �� f�G�y��� De�ne p � H � R by
p�w� � f�G�w��� w � H� Then p��w�h � f ��G�w��G��w� and so

p��w��r���w� � fG��w�G��w��r���w� � �

w � H
 and hence p � Q
 a contradiction since

y � �q�Qg���g�x��andp � Q

together imply that p�y� � p�x�� Thus

G���G�x�� � �q�Qg���g�x��
and the second part of the theorem is established�

We end this section with an example�

Example� Take H to be the Sobolev space H������ ����K � L���� ���


F �y� � y� � y� y � H�

We claim that the corresponding function G is speci�ed by

�G�y���t� � exp�t��y���e � y�����e� � ��� t � �� ��� y � H�
������

In this case

G���G�x�� � fw � H � w���e� w�� � y���e � y��g�
This may be observed by noting that since F is linear


r���y� � F �Fy� y � H�

The equation
z�� � y � H� z��t� � �F �Fz�t�� t � 

has the solution
z�t� � exp��tF �F �y� t � �

But exp��tF �F �y converges to

�I � F ��FF ����F �y�

the orthogonal projection of y onto N �F �
 i�e�
 the solution w � H to F �w� � 
that is nearest �in H� to y� A little calculation shows that this nearest point
is given by G�y� in ������� The quantity �y���e � y�����e� � �� provides an
invariant for steepest descent for F relative to the Sobolev metric H������ ����
Similar reasoning applies to all cases in which F is linear but invariants are
naturally much harder to exhibit for more complicated functions F� In summary

for F linear
 the corresponding function G is just the orthogonal projection
of H onto N �F �� In general G is a projection on H in the sense that it is
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an idempotent transformation� We hope that a study of these idempotents in
increasingly involved cases will give information about �boundary conditions� for
signi�cant classes of partial di�erential equations�

�
 Another Solution Giving Nonlinear Projection

Suppose that each of H and K is a Hilbert space and F � H � K is a C���

transformation such that

�F ��x�F ��x����� � L�K�K�� x � H

and F �� � � Denote by P�Q functions on H such that if x � H
 then P �x� is

the orthogonal projection ofH onto the null space of F ��x� and Q�x� � I�P �x��
Denote by f� g the functions on R�H �H to H such that if x� 
 � H then

f�� x� 
� � x� f��t� x� 
� � P �f�t� x� 
�
� t � �

and

g�� x� 
� � x� g��t� x� 
� � Q�g�t� x� 
�
� t � �

De�ne M from H to H so that if 
 � H then

M �
� � g��� f��� � 
�� 
��

The following is due to Lee May �����

Theorem ��� There is an open subset V of H� centered at  � H such that
the restriction of M to V is a di�eomorphism of V and M �V � is open�

Denote by S the inverse of the restriction of M to V and denote by by G
the function with domain S so that

G�w� � f��� � S�w��� w � R�M ��

The following is also from �����

Theorem ��� R�G� 
 N �F ��

The function G is a solution giving nonlinear projection� Two elements
x� y � D�S� are said to be equivalent if G�x� � G�y�� Arguments in ���� use
an implicit function and are essentially constructive� Thus G associates each
element near enough to  with a solution� Many of the comments about the
function G of the preceding section apply as well to the present function G�
The reader might consult ���� for careful arguments for the two results of this
section�
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CHAPTER ��

Some Related Iterative Methods for Di�erential

Equations

This chapter describes to developments which had considerable in�uence on the
theory of Sobolev gradients� They both deal with projections� As a point of
departure
 we indicate a result of Von Neumann ������
�	����

Theorem �
� Suppose H is a Hilbert space and each of P and L is an
orthogonal projection on H� If Q denotes the orthogonal projection of H onto
R�P � �R�L�� then

Qx � lim
n��

�PLP �nx� x � H� ������

If T� S � L�H�H�� and are symmetric
 then S � T means

hSx� xi � hTx� xi� x inH�

Proof� �Indication� First note that f�PLP �ng�n�� is a non�increasing se�
quence of symmetric members of L�H�H� which is bounded below �each term
is non�negative� and hence f�PLP �ng�n�� converges pointwise on H to a non�
negative symetric member Q of H which is idempotent and which commutes
with both P and L� Since Q is also �xed on R�P �� R�L� it must be the required
orthogonal projection�

Howmight this applied to di�erential equations is illustrated �rst by a simple
example�

Example ��
�
 Suppose H � L���� ����� P is the orthogonal projection of
H onto

f�uu��g � u � H������ ���g
and L is the orthogonal projection of H onto

f�uu� � u � L���� ���g�
Then

R�P � �R�L� � f�uu�� � u � H������ ���� u� � ug�
Thus R�P ��R�L� essentially yields solutions u to u� � u�
The above example is so simple that a somewhat more complicated one

might shed more light�

��
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Example ��
�
 Suppose that each of a� b� c� d is a continuous real�valued
function on �� �� and denote by L the orthogonal projection of H � L���� ����

onto

f�u� au� bv� v� cu� dv� � u� v � L���� ���g� ������

Denote by P the orthogonal projection of H onto

f�u� u�� v� v�� � u� v � H������ ���g ������

Then

�u� f� v� g� � R�P ��R�L�
if and only if

f � u�� g � v�� f � au� bv� g � cu� dv�

that is
 the system

u� � au� bv� v� � cu� dv ������

is satis�ed�

In a sense we split up ������ into an algebraic part represented by ������
and an analytical part �i�e�
 a part in which derivatives occur� ������� Then
R�P � � R�L� gives us all solutions to ������� One may see that the iteration
������ provides a constructive way to calculate a solution since we have already
seen that the P may be presented constructively� As to a construction for L
observe that if

t � �� ��� � � a�t�� � � b�t�� 	 � c�t�� � � d�t�� p� q� r� s � R

then the minimum �x� y� to

k�p� q� r� s�� �x� �x� �y� y� 	x � �y�k ������

is given by the unique solution �x� y� to

�� � �� � 	��x� ��� � 	��y � p� �q � 	s

��� � 	��x � �� � �� � ���y � r � �q � �s�

We remark that appropriate boundary conditions could be imposed using
the ideas of Chapter ��

From ���� there is a nonlinear generalization of ������� Suppose that H is a
Hilbert space
 P is an orthogonal projection on H and  is a strongly continuous
function from H to

S � fT � L�H�H� � T � � T�  � hTx� xi � kxk�� x � Hg�
For T any non�negative symmetric member of L�H�H�� T ��� denotes the unique
non�negative symmetric square root of T � By  being strongly continuous we
mean that if fxng�n�� is a sequence in H converging to x � H and w � H
 then

limn�� �xn�w �  �x�w�
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Theorem ��� Suppose w � H�Q� � P �

Qn	� � Q���
n  �Q���

n w�Q���
n � n � �� �� � � � �

Then

fQ���
n wg�n�� converges to z � H

such that

Pz � z�  �z�z � z�

�

Proof� First note that Q� is symmetric and nonnegative� Using the fact
that the range of  contains only symmetric and nonegative members of L�H�H�

one has by induction that each of fQng�n�� is also symmetric and nonnegative�
Moreover for each positive integer n
 and each x � H


hQn	�x� xi � hQ���
n  �Q���

n x�Q���
n x� xi

� h �Q���
n x�Q���

n x�Q���
x i � hQ���

n x�Q���
n xi � hQnx� xi� ������

so that Qn	� � Qn� Hence fQng�n�� converges strongly on H to a symmetric

nonnegative transformationQ and so also fQ���
n g�n�� converges strongly to Q����

Denote by z the limit of fQ���
n wg�n�� and note that then f �Q���

n w�Q
���
n wg�n��

converges to  �z�z� Since for each positive integer n�Q��� is the strong limit of
a sequence of polynomials in Qn
 it follows by induction that PQ��� � Q����
Hence Pz � z�

Since for each positive integer n and each x � H


hQn	�x� xi � h �Q���
n w�Q���x�Q���xi�

it follows that

hQx� xi � hQ���x�Q���xi � h �z�Q���w�Q���wi
and hence

h�I �  �z��x� xi � � x � H

and so

�I �  �z��z � � i�e�
 �z�z � z�

This together with the already established fact that Pz � z is what was to be
shown�

Further examples of a nonliner projection methods are given in ���� �particularly
Proposition �� and in references contained therein�

Brown and O�Malley in ���� have generalized the above result� The next
Lemma and Theorem give their result� Denote by B��H� the set of symmetric

bounded members of L�H�H� which have numerical range in �� ���

Lemma ��� 	From ����
 Let Q � B��H� and let � be a positive rational
number other than �� If Q� � Q� then Q � Q��
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Proof� Let � � r�s� the presumed equality is equivalent to Qr � Qs�
Assume that r � s and that r is the minimal positive power of Q which reoccurs
in the sequence fQng�n��� From the fact that powers of an operator descend
in the quasi�order mentioned above
 together with the limited anti�symmetry of
this relation
 it follows that Qt � Qr for all integral t between r and s� From
Qr � Qr	�
 it follows that Qt � Qr for all t � r� If r is odd
 then

�Q�r	������ � Qr	� � Q�r � �Qr��

By uniqueness of square roots
 Qr � Q�r	���� whence r � �r � ���� and r � ��
If r is even
 then �Qr���� � Ar � �Qr��
 whence r � r��
 which is impossible
for positive r� Thus r � � and Q � Q��

Theorem 	�� Let w � H� let P be an orthogonal projection on H� and let
L � H � B��H� be strongly continuous� Let �� � be positive rational numbers
with � � �������� Set Q� � P � and let

Qn	� � Q�
nL�Q

�
nw�Q

�
n� n � �� �� � � � �

Then fQng�n�� is a decreasing sequence of elements of B��H� which converges
to an element Q � B��H� such that 	�
 if � � ��� then Q is idempotent and
z � Qw satis�es L�z�z � z and Pz � z� and 	�
 if � � ���� � � ���� then
z � Q�w satis�es L�z�z � z� Pz � z�

Proof� �From ������ Fix � � ���� � � � Since Q� � P � B��H� and the
range of L is in B��H�
 it follows inductively that Qn � B��H� for all n� Since
�� � �� Q��

n � Qn� moreover


h�Q��
n �Qn	��x� xi � h�Q��

n �Q�
nL�Q

�
nw�Q

�
n�x� xi

� hQ�
n�I � L�Q�

nw��Q
�
nx� xi � h�I � L�Q�

nw��Q
�
nw��Q

�
nx�Q

�
xi�

Thus
 since I � L�Q�
nx� � 
 if follows that Qn	� � Q��

n � Hence we have

Qn	� � Q��
n � Qn� n � � �� �� � � �� ������

In particular
 the sequence fQng�n�� is monotonically decreasing in the �oper�
ator� interval from  to I� Thus we have by ���� that the sequence fQ�

ng�n��
converges to Q� and fQ�

ng�n�� converges to Q�� Since L is continuous and op�
erator multiplication is jointly continuous in the strong topology on B��H�
 we
have by uniqueness of limits that

Q � Q�L�Q��w�Q��

Also from ������ and the closed graph of the relation �
 we have
Q � Q�� � Q�

Thus
 since Q�Q�� commute
 we have that Q � Q��� Moreover
 since P � Q�

we have PQn � Qn
 whence PQ� � Q� for all positive rational 	�

�i� Suppose � � � By ���� Q � Q�
 from which it follows that Q � Q� for
all positive rational 	
 and in particular Q � QL�Qw�Q�
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Let z � Qw
 and �x x � H�

hQx� xi � hQL�z�Qx� xi � hL�z�Qx�Qxi�
and since Q� � Q
 it follows that

 � hQx�Qxi � hL�z�Qx�Qxi � h�I � L�z��Qx�Qxi�
Therefore
 since I�L�z� and hence �I�L�z����� belong to B��H�
 we have that
Q � L�z�Q� In particular
 z � Qw � L�z�Qw � L�z�z�

�ii� Suppose � � ���� � � ���� Let z � Q�w� then Q � Q���L�z�q��� from
which

hQx� xi � hQ���L�z�Q���x� xi � hL�z�Q���x�Q���xi�
Since hQx� xi � hQ���� Q���i also we have

 � hQ���x� L�z�Q���x�Q���xi � h�I � L�z��Q���x�Q���xi�
Now as in �i�
 it follows that Q��� � L�z�Q���� In particular


z � Q�w � Q���Q�����w � L�z�Q���Q�����w � L�z�Q�w � L�z�z�

That Pz � z in both cases is obvious from the fact that PQ� � Q� for all
positive rational 	�

Further applications to di�eretial equations are illustrated by the following sim�
ple case� Compare results of Chapter �� Take A as a function from L���� ����

�

into L�L���� ����� L���� ���� and take D � H������ ���� L���� ��� so that Du �
�uu��� u � H������ ���� Make the assumption that

A�Du�A�Du�� � I� the identity onL���� ���

a result that can be obtained by normalization granted that A�Du�A�Du�� is
invertable� De�ne  so that

 �u� � u� A�Du��A�Du�� u � H������ ����

Take P to be the orthogonal projection of L���� ��� onto R�D�� Then if z �
H������ ��� and

Pz � z� �z�z � z

hold
 i�e�
 that the conclusion to Theorem �	 holds
 it follows that

A�Du�Du � � ������

Equation ������ represents a substantial family of quasilinear di�erential equa�
tions�

The following problem from ���� is related to the above projection methods�
Suppose we hve two Hilbert spaces H�K
 an othogonal projection P onH� g � K
and a continuous linear transformationB fromH to K such that BB� � I� Find
y in H so that

By � g and Py � y� ����	�



��� �
� SOME RELATED ITERATIVE METHODS FOR DIFFERENTIAL EQUATIONS

This is equivalent to �nding x � H so that

BPx � g� ������

Make the de�nitions L � I � B�B�Lgx � Lx � B�x� x inH and note that if
x � H
 then Lgx is the nearest element z to x so that Bz � g� We seek solutions
x to ������ as

x � limn���PLgP �
nz for some z � H�

First note that if z � H� g � K
 by induction we have

�PLgP �
kz � �PLP �kz � PB��I � �I �M � � � � �� �I �M �k���g� k � �� �� � � �

�������

where

M � BPB�

Note thatM is a symmetric nonnegative linear transformation fromK to K and
M � I so that the numerical range of M is a subset of �� ��� The next theorem
gives a characterization of $R�BP � and the one after that gives a characterization
of R�BP ��

Theorem 	�� If g � K then g � N �PB��� if and only if

limk���I �M �kg � �

Proof� De�ne z � limk���I �M �kg� This limit exists since M is sym�
metric and  � I �M � I� Now

�I �M �z � limk���I �M �k	�g � z

so that Mz �  and hence BPB�z � � Therefore

 � hBPB�z� zi � kPB�zk��
Hence z � N �PB��� If in addition
 g � N �PB���
 then

 � hg� zi � hg� limk���I �M ��kgi � klimk���I �M �kgk� � kzk�

and hence z � �

Now suppose that z �  and w � N �PB��� Then

 � kzk� � h lim
k��

�I �M �kg� wi � hg� lim
k��

�I �M �kg� wi � hg� wi

since �I�M �w � z� Hence hg� wi �  for all w � N �PB�� and so g � N �PB����

Theorem 	�� If g � $R�BP � then g � R�BP � if and only if

limk��PB
��I � �I �M � � � � �� �I �M �k���g

exists�
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Proof� Suppose the limit in the Theorem exists and call it z� Note that
Pz � z� Then

Bz � limk��BPB��I � �I �M � � � � �� �I �M �k���g

� limk��M �I � �I �M � � � � �� �I �M �k���g

� limk���g � �I �M �kg� � g

since g � $R�BP � � N �PB��� and so by ���� limk���I �M �kg � � Therefore
Bz � g and so BPz � g since Pz � z�

Theorem 	�� Suppose g � H� limk���I �M �kg �  and

limk��PB
��I � �I �M � � � � �� �I �M �k���g

exists� If z � H� then x � limk���PLgP �kz exists and satis�es Px � x�Bx �
g� and hence BPx � g� Moreover� x is the nearest point w to z so that Pw �
w�Bw � g�

Proof� Suppose z � H� De�ne r � limk���PLP �kz and

y � PB��I � �I �M � � � � �� �I �M �k���g�

Using �������
 x � limk���PLgP �kz � r � y� But Pr � r� Br �  and
 as in
the proof of ����
 Py � y�By � g� Therefore Px � x�Bx � g and consequently
BPx � x�

Suppose now that w �� x� Pw � w� Then BP �w � x� � g � g � � Since
r � limk���PLP �kz
 if follows that r is the nearest point of R�P � �N �B� to
z� Hence hr � z� w � xi �  since w � x � R�P � � R�L�� Also since for each
positive integer k


hw � x� PB��I � �I �M � � � � �� �I �M �k���gi
� hBP �w � x�� �I � �I �M � � � � �� �I �M �k���gi � �

it follows that hw � x� yi � � Hence x is the closest point w to z such that
Pw � w�Bw � g�

We apply the above development to a problem of functional di�erential
equations with both advanced and retarded arguments� If c � R� f H � HR

then fc denotes the member of H so that f�t� � f�t � c�� t � R� Suppose
�� � � � g � C����R�� r� s � C�R�� r� s bounded � We have the problem of �nding
f � H so that

f � � rf� � sf�� � g� �������

� This is a functional di�erential equation with both advanced and retarded
arguments �	��
��	� � De�ne A � L��R�

� � L��R� by

A�fg � � g � rf� � sf�� � f� g � L��R�
�� �������
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Lemma �
� Suppose A satis�es �������� Then

A�z � �
�rz���	�sz��

z �� z � L��R��

Moreover� AA� has a bounded inverse de�ned on all of L��R��

Proof� For �fg � � L��R�
�� z � L��R�

hA�fg �� ziL��R� �
Z �

��

�rf� � sf�� � g�z �Z �

��

�f�rz��� � f�sz�� � gz� � h�fg �� ���rz���	�sz��z �iL��R��

The �rst conclusion then follows� To get the second
 compute

AA�z � z � r��rz��� � �sz�� �� � s��rz��� � �sz�� ���

� �� � r� � s��z � r�sz��	� � s�rz����� � �I � CC��z

where

C�fg � � rf� � sf�� � �
f
g � � L��R�

��

It is then clear that the second conclusion holds�

De�ne B � �AA�����A� Then B satis�es the hypothesis of the previous three
theorems�

Lemma ��� The orthogonal projection Q of L��R�� onto f�uu��� u � H����R�
is given by Q�fg � � �uu�� where

u�t� � �et���

Z �

t

e�s�f�s� � g�s�� ds� �e�t���

Z t

��
es�f�s� � g�s�� ds� t � R�

Proof� Note that Q is idempotent
 symmetric and �xed on all points of
f�uu�� � u � H����R�g and has range in this set� This is enough to show that Q is
the required orthogonal projection�

The formula in Lemma �	 came from a calculation like that of Problem ���
of Chapter �� On this in�nite interval one has the requirement that various
functions are in L��R� but there are no boundary conditions�

With A as in Lemma �� and P as in Lemma �	
 form B as above and take
M � BPB�� If the conditions of Theorem �� are satis�ed one is assured of
existence of a solution to �������� Linear functional di�erential equations in a
region � 
 Rm for m � � may be cast similarly� As an alternative to these
projection methods
 one can use the continuous steepest descent propositions
of Chapters � and � and numerical techniques similar to those of Chapter ��
We do not have concrete results of functional di�erential equations to o�er as
of this writing but we suspect that there are possibilities along the lines we
have indicated� For references on functional di�erential equations in addition to
�	��
��	� we mention the references �	�
 ��	�
 ������ In this last reference there
are re�nements to some of the propositions of this chapter�
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A Related Analytic Iteration Method

This chapter deals with an iteration scheme for partial di�erential equations
which
 at least for this writer
 provided a predecessor theory to the main topic of
this monograph� Investigations leading to the main material of this monograph
started after a failed attempt to make numerical the material of the present
chapter� The scheme deals with spaces of analytic functions
 almost certainly
not the best kind of spaces for partial di�erential equations� To deal with these
iterations we will need some notation concerning higher derivatives of functions
on a Euclidean space�

Suppose that each of m and n is a positive integer and u is a real�valued
C��� function on an open subset of Rm� For k � n and x � D�u�� u�k� denotes
the derivative of order k of u at x � it is a symmetric k� linear function on Rm

�cf ������

Denote by M �m�n� the vector space of all real�valued n� linear functions
on Rm and for v �M �m�n� take

kvk � �
mX

p���

� � �
mX

pn��

�v�ep� � � � � � epn ���
��� ������

where e�� � � � � em is an orthonormal basis of Rm� As Weyl points out in ���	�
 p
��	
 the expression in ������ does not depend on particular choice of orthonormal
basis� Note that the norm in ������ carries with it an inner product�

Denote by S�m�n� the subspace ofM �m�n� which consists of all symmetric
members ofM �m�n� and denote by Pm�n the orthogonal projection of M �m�n�
onto S�m�n�� For y � Rm� v � S�m�n�
 vyn denotes v�y�� � � � � yn� where yj �
y� i � �� � � � � n�

Suppose r �  and u is a C��� function whose domain includes Br��� We
have the Taylor formula

u�x� �
n��X
q��

uq��xq �

Z �

�

���� s�n����n� ��%�u�n��sx�xn ds�
������

For A�w � S�m�n�� Aw denotes the inner product of A with w taken with
respect to �������

���
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Now suppose that k is a positive integer
 k � n
 f is a continuous function
from

Rm � R� S��� n� � � � � � S�k� n�� R

and A is a member of S�m�n� with kAk � �� Given r �  one has the problem
of �nding u � C�n� so that

Au�n��x� � f�x� u�x�� u��x�� � � � � u�k��x��� kxk � r� ������

We abbreviate the rhs of ������ by fu�x��

To introduce our iteration method
 note that if v � S�m�n�� g � R then

v � �Av � g�A

is the nearest element w of S�m�n� to v so that Aw � g� This observation
together with ������ leads us to de�ne

T � C�n��Br���� C�Br���

by

�Tv��x� �
n��X
q��

vq��xq �

Z �

�

���� s�n����n� ��%��v�n��sx�� �Av�n��sx� � fv�sx��A�x
n ds�

kxk � r� v � C�n��Br���� ������

We are interested in the possible convergence of

f�T jv��x�g�j�� ������

at least for kxk � � for some � � r� This convergence is a subject of a series of
papers ����
����
 ��	�
���� and ����
����
��	�
 ����
����� Some results from these
papers are indicated in what follows�

For r �  denote by �r the collection of all real�valued functions v so that

v�x� �
�X
q��

���q%�v�q�xq �
�X
q��

���q%�kv�q�kxq ��� kxk � r� ������

Theorem 	�� If r � � u � C�n��Br���� then Tu � u if and only if ������
holds�
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Theorem 		� Suppose r �  and h is a real�valued polynomial on Rm� A �
S�m�n�� kAk � � and

�Tv��x� �
n��X
q��

vq��xq �

Z �

�

���� s�n����n� ��%��v�n��sx�� �Av�n��sx� � h�sx��A�xn ds�

kxk � r� v � �r� ������

Then fT jvg�j�� converges uniformly on Br�� to u � �r such that

Au�n��x� � h�x�� kxk � r�

The next two theorems require a lemma from ����� In order to state the
lemma we need some additional notation� There are several kinds of tensor
products which we will use� Suppose that each of n� k is a positive integer

n � k
 i is a nonnegative integer
 i � n� For A � S�m�n�� D � S�m� k� de�ne
A�i D to be the member w � S�m�n � k � �i� so that

w�y�� � � � � yn	k��i� � hA�y�� � � � � yn�i�� D�yn�i	�� � � � � yn	k��ii�
y�� � � � � yn	k��i � Rm�

where the above inner product h � i is taken in S�m� i�� The case i �  describes
the usual tensor product of A and D� the case i � n describes what we will call
the inner product of A and D and in this case we will denote A�nD as simply
AD � S�m� k�n� and call AD the inner product of A with D� If k � n the this
agrees with our previous convention� The symmetric product A �D is de�ned
as Pm�n�A �D��

The following lemma is crucial to proving convergence of our iteration in
nonlinear cases� It took about seven years to �nd� an argument is found in �����

Lemma ��� If A�C � S�m�n�� B�D � S�m� k� and n � k� then�
n� k

n

�
hA �B�C �Di �

nX
i��

�
n

i

��
k

i

�
hA �i D�C �i Bi�

������

Observe that the lemma has the easy consequence

kA �Bk� �
�
n� k

n

���
kAk�kBk�� ����	�

This inequality is crucial to the following �essentially from ��	�
������

Theorem 	�� Suppose that r � � v � �r and f in ������ is real�analytic
at

�� v��� v���� � � � � v�k���� � Rm �R � S��� n�� � � � � S�k� n��
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If k � n�� there is � � �� r� so that fT jvg�j�� converges uniformly on B�� to
u � � such that

Au�n��x� � fu�x�� kxk � ��

In ���� Pate generalizes the above in the direction of weakening the require�
ment k � n��� The key is an analysis of higher order terms of�

n� k

n

�
kA �Bk� �

nX
i��

�
n

i

��
k

i

�
kA�i Bk�

which is just ������ with C � A � S�m�n�� D � B � S�m� k�� The main fact in
this analysis is the result from ���� that�

n� k

n

�
kA �Bk� �

min�n���k�X
i��

�
n

i

��
k

i

�
kA� Bk��q�A�

where for  � q � min�n��� k�
 �q�A� is de�ned to be 
q�A��kAk� and 
q�A�
is de�ned as follows� For q in this range and A a non zero member of S�M�n�
de�ne

Aq � S�m� q� � S�m�n � q�

by Aqu � Au
 the above de�ned �inner product� of A and u� Then denote
At
q � S�m�n � q� � S�m�n� the corresponding adjoint transformation� Finally


de�ne Tq � S�m�n� � S�m�n� by Tqu � At
q�Aqu�� u � S�m�n�� Then 
q�A� is

the minimum eigenvalue of Tq�

In ����
 the condition k � n�� of ���� is weakened to state k � �n �
j��� where j is the largest integer p such that 
p�A� �� � This is a result
of some deep and di�cult mathematics� The reader is encouraged to see ����

����
��	�
����
���� for details�
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Steepest Descent for Conservation Equations

Many systems of conservation equations may be written in the form

ut � r � F �u�r�u�� ������

where for some positive integers n� k and T �  and some region

� 
 Rn� u � �� T �� �� Rk�

Often
 however
 a more complicated form is encountered�

�Q�u��t � r �F �u�r�u��� S�u� �  ������

where here for some positive integer q


u � �� T �� �� Rk	q�

Q � Rk	q � Rk� S � Rk	q � Rq�

F � Rk	q � Rn�k	q� � Rnk�

The condition S�u� �  in ������ is a relationship between the components
of the unknowns u� It is often called an equation of state� In Q�u� unknowns
may be multiplied as in momentumequations� Sometimes ������ can be changed
into ������ by using the condition S�u� �  to eliminate q of the unknowns and
by using some change of variables to convert the term �Q�u��t into the form
ut
 but it often seems better to treat the system ������ numerically just as it is
written�

We consider homogeneous boundary conditions on �� as well as initial con�
ditions� We describe a strategy for a time�stepping procedure� Take w to be a
time�slice of a solution at time t�� We seek an estimate v at time t�� � for some
time step �� We seek v as a minimum to � where

��v� � �kQ�v� �Q�w�� �F ��w � v����r��v �w�����k� � kS��v � w����k�

for all v H������ Rn� satifying the homogeneous boundary conditions� If v is
found so that ��v� � 
 then it may be a reasonable approximation of a solution
at t�� �� Assuming that F and Q are such that � is a C��� function with locally
lipschitzian derivative
 we may apply theory in various preceeding chapters in
order to arrive at a zero �or at least a minimum� of �� In particular we may
consider continuous steepest descent

z�� � w� z��t� � ��r���z�t��� t �  ������

���
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where we have started the descent at w
 the time slice estimating the solution at
t�� If � is not too large
 then w should be a good place to start� For numerical
computations we would be interested in tracking ������ numerically with a �nite
number of steps� This procedure was tested on Burger�s Equation

ut � uux � ��u

with periodic boundary conditions� The above development is taken from ����� A
more serious application is reported in ���� �r a magnetohydrodynamical system
consisting of eight equations �essentially a combination of Maxwell�s equations
and Navier�Stokes equations� together with an equation of state� These equa�
tions were taken from ���� and the computations was carried out in three space
dimensions� The code has never been properly evaluated but it seems to work�
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A Sample Computer Code with Notes

Following is a simple FORTRAN code for a �nite di�erence approximation to the
problem of �nding y on �� �� so that y��y � � It is a computer implementation
of the Sobolev gradient given in Chapter ��

program sg
dimension u����
 g����
 w����

c See Note A
f�t� � ��t
open��
�le��sg�dat��
n � �
er � ��
delta � ��!�oat�n�
p � ��!delta � ��
q � ��!delta � ��
sq � p&&� � q&&�

c See Note B
do � i � 
n
u�i� � f��oat�i�!�oat�n��

� continue

c See Note C
kkk � 

� continue

c See Note D
g�� � �p&��u����u���!delta � �u����u���!���
do � i��
n��
g�i� � q&��u�i� � u�i����!delta � �u�i� � u�i����!���

� �p&��u�i��� � u�i��!delta � �u�i��� � u�i��!���
� continue

g�n� � q&��u�n� � u�n����!delta � �u�n� � u�n����!���

kk � 
c See Note E

call ls�g
w
n
p
q�

c See Note F
x � �

���
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y � �
do � i��
n
x � x���w�i��w�i����!delta � �w�i��w�i����!���&&�
y � y���w�i��w�i����!delta��w�i��w�i����!���

� &��u�i��u�i����!delta��u�i��u�i����!���
� continue

d � y!x

c See Note G
x � �
do � i�
n
u�i� � u�i� � d&w�i�

� continue
do �� i��
n
x � ��x�i��x�i����!delta�&&� � ��x�i��x�i����!���&&�

�� continue
x � sqrt�x!�oat�n��

kkk � kkk � �

if �x�gt�er� goto �

write��
&� �number of iterations � �
kkk
write��
		� �u�i�
 i�
n�
write�&
&� �Solution at intervals of length ����
write�&
		� �u�i�
 i�
n
n!��

		 format��f����

stop
end

c See Note H
subroutine ls�g
w
n
p
q�
dimension g����
w����
a����
b����
c����

do � i�
n
a�i� � �p&q
b�i� � p&&� � q&&�
c�i� � �p&q

� continue

do � i��
n
b�i� � b�i� � c�i���&a�i�!b�i���
g�i� � g�i� � g�i���&a�i�!b�i���

� continue

w�n� � g�n�!b�n�
do � i�n��

��
w�i� � �g�i� � c�i�&w�i����!b�i�

� continue

return
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end

Note A
 The function f speci�es the initial estimate of a solution� The
integer n is the number of pieces into which �� �� is broken� When the Sobolev
norm of the gradient is less than er the interation is terminated�

Note B
 The vector u at �rst takes its values from the function f � It later
carries a succession of approximations to a �nite di�erence solution�

Note C
 The main iteration loop starts at label ��

Note D
 Construction of the conventional gradient of

� � ��u�� u�� � � � � un�

� �����
nX

n��

��u�i� � u�i � ����delta� �u�i� � u�i� �������� u � Rn	��

Note E
 Call of the linear solver with input g a conventional gradient and
output w a Sobolev gradient� Here Gaussian elimination is used� For problems
in higher dimensions one might use Gauss�Seidel
 Jacobi or Succesive Overrelax�
ation �SOR�� In practice for large problems
 a conjugate gradient scheme may
be superimposed on a discrete steepest descent procedure �H�� This was done in
�Renka�Neuberger GL
SD�� It further enhances numerical performance by cut�
ting down on classic alternating direction hunting common in discrete steepest
descent� In the case of Sobolev gradients
 the iteration normally converges quite
fast but a conjugate gradient procedure might cut the number of interations in
half� It give a signi�cant but not compelling saving of time�

Note F
 Calculation of optimal step size as the number d which minimizes
��u� d �w��

Note G
 Updating of the estimate u� Calculation of norm of Sobolev gra�
dient of w� Calculation stops when this norm is smaller than er�

Results from running the above code are found in �le �sg�dat�� In addition
one should get printed to the screen the following�

Solution at intervals of length ���

����� ����� �	��� ����� ������ ����� ����� ������ ����� ������ �����
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