- 1. State the definition of *prime number*.
- 2. Prove that there are an infinite number of prime numbers.
- 3. State (without proof) the division algorithm.
- 4. Find the prime factorization of 4, 700, 619.
- 5. How many digits are there in the representation of 2^{100} in base 2? base 8? base 16?
- 6. State (without proof) the fundamental theorem of arithmetic.
- 7. Suppose that $a, b, q, r \in \mathbb{Z}$ so that a = bq + r. Prove that gcd(a, b) = gcd(r, b).
- 8. Express the number 5, 197 in (a) base 5; (b) base 16.
- 9. Express the number 123_{six} in base 10.
- 10. State and prove the rule for checking if a number is divisible by 3.
- 11. State and prove the rule for checking if a number is divisible by 4.
- 12. If $k \ge 0$, prove that $11 \mid 10^{2k} 1$. (This can be done either with or without induction.)
 - If $k \ge 0$, prove that $11 \mid 10^{2k+1} 10$.
 - State and prove the rule for checking if a number is divisible by 11.
- 13. Let $n \in \mathbb{Z}$, and suppose that $2^n 1 = p$ is prime. (For example, if n = 3, then p = 7.)
 - List all factors of $N = 2^{n-1}p$. (For example, for n = 3, the factors are 1, 2, 4, 7, 14 and 28.)
 - Prove that the sum of all the factors of N is equal to 2N. In other words, prove that N is a *perfect* number.
- 14. Let $a, b, d, m, n \in \mathbb{Z}$. Prove: If $d \mid a$, then $d \mid ma + nd$.
- 15. Let pqr_b be a 3-digit number in base b. Prove that $pqr_b rqp_b$ is a multiple of b 1 and b + 1.
- 16. Prove that $\sqrt{7}$ is irrational.
- 17. Let p and q be distinct primes and $m, n \in \mathbb{Z}^+$ with m > n. Find $gcd(p^mq^n, p^nq^m)$ and $lcm(p^mq^n, p^nq^m)$.
- 18. Find gcd(4912, 6860) and lcm(4912, 6860).
- 19. Describe the sieve of Erastonthenes and what it is used for.
- 20. Give an example of integers a, b and c so that $a \mid bc$ but $a \nmid b$ and $a \nmid c$.
- 21. Use lattice multiplication to find 12×27 , and explain why this technique works.
- 22. Without a calculator, find $\sqrt{691}$ to one decimal place, and explain why your technique works.
- 23. Find a number a with exactly 12 positive divisors.
- 24. Suppose that gcd(b,d) = gcd(a,b) = gcd(c,d) = 1. Prove that $\frac{ad+bc}{bd}$ is in simplest form.
- 25. For homework, you analyzed a magic trick which used binary numbers to identify any number from 1 to 63 using only six cards. Make a similar magic trick using base-3 arithmetic to identify any number from 1 to 26 using six cards.
- 26. Find the product of 3, 316, 624, 791 and 5, 099, 019, 514.