Problem 11.1 Sketch the graph of

$$
f(x)=\frac{x^{2}}{x^{2}-4}=\frac{x^{2}}{(x-2)(x+2)}
$$

Be sure to label all intercepts, local extrema, and points of inflection. Big Hint: You may use the following information to help you get started:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{-8 x}{\left(x^{2}-4\right)^{2}}=\frac{-8 x}{(x-2)^{2}(x+2)^{2}} \\
f^{\prime \prime}(x) & =\frac{8\left(3 x^{2}+4\right)}{\left(x^{2}-4\right)^{3}}=\frac{8\left(3 x^{2}+4\right)}{(x-2)^{3}(x+2)^{3}}
\end{aligned}
$$

## Problem 11.2

- Find the linearization of the function $f(x)=\sqrt{x^{2}+9}$ at $a=4$.
- Use the linearization found in part (a) to estimate $f(4.1)$. Your answer should be accurate to three decimal places.

Problem 11.3 Find the absolute maximum and absolute minimum of

$$
f(x)=\frac{\sin x}{2-\cos x}
$$

on the interval $[0, \pi]$.
Problem 11.4 Kevin stands at a street corner. Britney stands 240 feet to the east of Kevin when they first see each other. At the same time, Britney runs west at a constant rate of $8 \mathrm{ft} / \mathrm{s}$, while Kevin walks north at a constant rate of $3 \mathrm{ft} / \mathrm{s}$. How fast is the angle $\theta$, measuring the angle from Britney to the street corner and to Kevin, changing when Kevin has walked 60 feet?

Problem 11.5 Use Newton's method to estimate a root of $x^{3}-2 x-1=0$. Begin with $x_{0}=1$ and find $x_{2}$.

Problem 11.6 A rectangle lies in the first quadrant which has one side on the $x$-axis, one side on the $y$-axis, and a corner on the curve $y=\sqrt{6-x}$. Find the dimensions of the rectangle with maximum area.

## Problem 11.7

- Suppose the cost of producing $x$ computers is $C(x)=4000+400 x-0.1 x^{2}$. Find the marginal cost of producing 100 computers.
- In a sentence, explain what your answer to part (a) actually means.

Problem 11.8 Find the critical values of

$$
f(x)=\left(x^{2}-4 x\right)^{2 / 3}
$$

Problem 11.9 Sketch the graph of $f(x)=x^{4}+4 x^{3}$. Be sure to label all intercepts, local extrema, and points of inflection.

Problem 11.10 The electric field of an electric dipole along the axis of the dipole is

$$
E(z)=k q\left(\frac{1}{(z-a)^{2}}-\frac{1}{(z+a)^{2}}\right)
$$

where $k$ is a constant, $q$ is the charge, and $z$ is the distance from the center of the dipole. If $z$ is much larger than $a$, use linearization to show that

$$
E(z) \approx \frac{4 k a q}{z^{3}}
$$

Hint: To begin, notice that

$$
(z-a)^{-2}=\left(z\left[1-\frac{a}{z}\right]\right)^{-2}=z^{-2}\left(1-\frac{a}{z}\right)^{-2}
$$

and

$$
(z+a)^{-2}=\left(z\left[1+\frac{a}{z}\right]\right)^{-2}=z^{-2}\left(1+\frac{a}{z}\right)^{-2} .
$$

Problem 11.11 You are videotaping a NASCAR race from a stand 132 feet from the track, following a car that is moving at $180 \mathrm{mi} / \mathrm{h}(264 \mathrm{ft} / \mathrm{s})$. How fact will your camera angle $\theta$ be changing a half-second after the car is right in front of you? Be sure to give the units of your answer.

Problem 11.12 The length of time (in hours) that a model airplane can spend in the air is given by

$$
T(v)=\frac{10000 v}{v^{4}+30000}, \quad v \geq 0
$$

where $v$ is measured in miles per hour.

- Determine the value of $v$ which maximizes $T(v)$.
- Find the maximum amount of time that the model airplane can be aloft.
- Verify that your solution is indeed the absolute maximum value of the function.

