Problem 10.1 Find the equation of the tangent line to $y=\sqrt{x^{2}+9}$ at $x=4$. Write your answer in slope-intercept form.

Problem 10.2 Differentiate

$$
f(\theta)=\frac{\theta \sin ^{2} \theta^{2}}{1+\sec 2 \theta}
$$

Problem 10.3 State the formal definition of a derivative. Use this formal definition to find the derivative of $f(x)=5 x-3$. You must use the formal definition of a derivative to do this problem.

Problem 10.4 If possible, sketch the graph of a function so that f is continuous at $x=2$ but $f^{\prime}(2)$ does not exist. If this cannot be done, write the word "Impossible."

Problem 10.5 If possible, sketch the graph of a function so that $f^{\prime}(2)=0$ but f is discontinuous at $x=2$. If this cannot be done, write the word "Impossible."

Problem 10.6 True or false:

- If $f(x)$ is continuous at a point c, then f must be differentiable at c.
- If $f(x)$ is differentiable at a point c, then f must be continuous at c.

Problem 10.7 If possible, sketch a function f which satisfy all of the following:

- $\lim _{x \rightarrow 4^{+}} f(x)=3$
- $\lim _{x \rightarrow 4^{-}} f(x)=-2$
- $f(4)=1$
- f is differentiable for all $x \neq 4$

If this is not possible, write the word "Impossible."
Problem 10.8 If possible, sketch a function f which satisfy all of the following:

- $\lim _{x \rightarrow \infty} f(x)=3$
- $\lim _{x \rightarrow-\infty} f(x)$ is undefined but is neither ∞ or $-\infty$.
- f is differentiable for all x

If this is not possible, write the word "Impossible."
Problem 10.9 Find $\frac{d y}{d x}$ if

$$
\sqrt{x^{3}+y^{2}}=\cot \left(\frac{x}{y}\right)
$$

Problem 10.10 Differentiate $y=\csc ^{2}(x+\sqrt[3]{2 x+7})$.

Problem 10.11 Find the values of x where $Q(x)=\frac{x}{x^{2}+1}$ has a horizontal tangent line.
Problem 10.12 Find $\frac{d^{2} y}{d x^{2}}$ if $y=\frac{1}{x^{2}+1}$.
Problem 10.13 Differentiate $y=x^{2} \sin ^{6}(\sec (x \tan 4 x))$.
Problem 10.14 Differentiate

$$
h(t)=\frac{\sqrt{t}}{4}-\frac{\sqrt[3]{t}}{5}+\frac{\sqrt[6]{t}}{10}
$$

Problem 10.15 Find the values of x where the slope of the tangent line to

$$
f(x)=\frac{x}{2 x+1}
$$

has slope 1.

