Problem 9.1 Calculate

$$
\lim _{x \rightarrow 0} \frac{\tan 2 x}{5 x}
$$

Problem 9.2 Find a number δ so that

$$
0<|x-6|<\delta \Longrightarrow|\sqrt{16-2 x}-2|<\epsilon
$$

Problem 9.3 To what limit does the above $\delta-\epsilon$ argument correspond? Fill in the blanks:

Problem 9.4 If possible, sketch the graph of a function so that

- $f(0)=0$, and
- $\lim _{x \rightarrow 0} f(x)$ is undefined.

If this cannot be done, write the word "Impossible."
Problem 9.5 If possible, sketch the graph of a function so that

- $\lim _{x \rightarrow 2^{+}} f(x)=3$,
- $\lim _{x \rightarrow 2^{-}} f(x)=3$,
- $f(x)$ is discontinuous at $x=2$.

If this cannot be done, write the word "Impossible."
Problem 9.6 True or false, and explain: if $\lim _{x \rightarrow 2} g(x)=6$, then $\lim _{x \rightarrow 2^{+}} g(x)=6$ and $\lim _{x \rightarrow 2^{-}} g(x)=6$.
Problem 9.7 True or false, and explain: $h(x)=\frac{x^{2}-1}{x-1}$ is continuous at $x=1$.
Problem 9.8 Calculate

$$
\lim _{x \rightarrow-\infty} \frac{x^{2}-5 x+4}{2 x^{2}+x-10}
$$

Problem 9.9 Calculate

$$
\lim _{x \rightarrow 4^{-}} \frac{\sqrt{x}-2}{x-4}
$$

Problem 9.10 Calculate

$$
\lim _{x \rightarrow 2^{-}} \frac{x-3}{x^{2}+4 x+4}
$$

Problem 9.11 Fill in the blank to make this sentence true, if possible: The function

$$
f(x)= \begin{cases}\frac{x^{2}-x}{x^{2}-7 x+6}, & x \neq 1 \\ , & x=1\end{cases}
$$

is continuous at $x=1$. If not possible, write the word "Impossible."
Problem 9.12 Calculate

$$
\lim _{x \rightarrow 4^{-}} \frac{x^{2}-6 x+8}{x^{2}-3 x-4}
$$

Problem 9.13 Fill in the blank to make this sentence true: The function

$$
f(x)= \begin{cases}\frac{\sin 3 x}{2 x}, & x \neq 0 \\ , & x=0\end{cases}
$$

is continuous at $x=0$.

