Problem 8.1 Find the coefficient of the x^{9}-term in the expansion of $\left(2 x^{3}-1\right)^{12}$. You do not need to give the entire expansion to receive full credit.

Problem 8.2 Compute $\sum_{k=1}^{\infty} 2\left(-\frac{2}{5}\right)^{2 k-1}$.
Problem 8.3 Express in \sum-notation:

$$
q^{2}-p q^{6}+\frac{p^{2} q^{10}}{2}-\frac{p^{3} q^{14}}{6}+\frac{p^{4} q^{18}}{24}-\frac{p^{5} q^{22}}{120}
$$

Problem 8.4 Use mathematical induction to show that

$$
2+2^{2}+2^{3}+\ldots+2^{n}=2^{n+1}-2
$$

Problem 8.5 For an arithmetic sequence, $a_{4}=35$ and $a_{8}=75$. Find the sum of the first 100 terms.
Problem 8.6 Consider the sequence recursively defined by

$$
a_{n}= \begin{cases}1, & n=1 \\ a_{n-1}+1+2 \sqrt{a_{n-1}}, & n \geq 2\end{cases}
$$

- Find a_{1}, a_{2}, a_{3}, and a_{4}.
- Now guess a formula for a_{n}, and use mathematical induction to prove that your formula works.

Problem 8.7 Expand and simplify $(1-\sqrt{2})^{6}$.
Problem 8.8 Use the formula

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

to calculate

$$
\sum_{k=1}^{12}\left(\frac{k^{2}}{5}+2\right)
$$

Problem 8.9 Evaluate the arithmethic series

$$
0.9+1.3+1.7+\ldots+8.1+8.5
$$

Problem 8.10 Use mathematical induction to show that $2^{2 n-1}+1$ is always divisible by 3 .
Problem 8.11 Use mathematical induction to show that

$$
1+3+5+\ldots+(2 n-1)=n^{2}
$$

Problem 8.12 Compute

$$
\sum_{k=3}^{100}(2 k-3)
$$

Problem 8.13 An infinite geometric sequence has -1000 and 8 as its second and fifth terms, respectively. Find the sum of this infinite geometric series.

Problem 8.14 Use the principle of telescoping series to exactly evaluate

$$
\sum_{n=1}^{99}\left([n+1]^{4}-n^{4}\right)
$$

Problem 8.15 Use mathematical induction to show that

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1} .
$$

