Math 4050

Problem 4.1 The unit circle and angle θ are shown. Fill in the blanks:

- $\cos \theta =$ _____
- $\sin \theta =$ _____
- $\tan\left(\theta + \pi/2\right) =$
- $\sin(\theta \pi) =$ _____

Problem 4.2 Let $a = \sin 10^{\circ}$ and $b = \cos 10^{\circ}$. Write the following expressions in terms of a, b, or both.

- $\tan 10^\circ =$ _____
- $\sec 10^\circ =$ _____
- $\sin 370^\circ =$ _____
- $\sin 170^\circ =$ _____
- $\cos(-10)^{\circ} =$ _____
- $\sin 80^\circ =$ _____

Problem 4.3 Find all angles θ so that $\sin \theta = -\frac{\sqrt{3}}{2}$.

Problem 4.4 Suppose that $\tan x < 0$ and $\sin x = \frac{2}{3}$. Find all six trigonometric functions of x.

Problem 4.5 Find all angles θ so that $\cos \theta = \frac{1}{2}$.

Problem 4.6 Find all angles θ so that $\tan \theta = -\sqrt{3}$.

Problem 4.7 Suppose that $\sin x < 0$ and $\cos x = \frac{3}{4}$. Find all six trigonometric functions of x.

Problem 4.8 Suppose that $\tan x = -4$ and $\sin x < 0$. Find all six trigonometric functions of x.

Problem 4.9 Simplify the given expressions. No partial credit will be given for incorrect answers.

• $\tan(-x) =$ _____ • $\csc(-\theta) =$ • $\tan(x+\pi) =$ • $\cos(-x) =$ _____ • $\frac{\cos x}{\sin x} =$ • $\tan\left(\frac{\pi}{2} - x\right) =$ _____ • $\cos(\theta - \pi) =$ _____ • $\frac{1}{\tan x} =$ _____ • $\sin(-\theta) =$ _____ • $1 + \cot^2 x =$ _____ • $\frac{\sin x}{\cos x} =$ • $\sec\left(\frac{\pi}{2} - x\right) =$ _____ • $\sin(\theta + 3\pi) =$ • $\sin(\theta + 4\pi) =$ • $\frac{1}{\sec x} =$ _____ • $\sec^2 x - 1 =$ _____

Problem 4.10 Evaluate the given expressions. No partial credit will be given for incorrect answers.

• 40° in radians = _____ • $\cos 4\pi = _$ ____ • $\sin \frac{19\pi}{4} = _$ ____ • $\tan \frac{11\pi}{6} = _$ ____ • $\cos \frac{2\pi}{3} = _$ ____ • $\sin \left(-\frac{3\pi}{2}\right) = _$ ____

Problem 4.11 Solve for c in $\triangle ABC$ if $\alpha = m \angle A = 40^\circ$, $\beta = m \angle B = 60^\circ$, and a = 40. Express your answer accurate to one decimal place.

Problem 4.12 Find $\angle B$ in $\triangle ABC$ if a = 8, b = 14 and $\gamma = m \angle C = 70^{\circ}$. Express your answer in degrees, accurate to one decimal place.