1. State the Fundamental Theorem of Algebra.
2. State Descartes's Rule of Signs.
3. State and prove the Rational Root Test.
4. State the Upper Bound and Lower Bound Rules for polynomials.
5. State and prove the Conjugate Root Theorem.
6. State and prove the Unique Factorization Theorem for polynomials over \mathbb{C}.
7. State the Unique Factorization Theorem for polynomials over \mathbb{R}.
8. Let $f(x)=(x+1)(x-2)(x+2)$, so that $f(0)=-4$ and $f(3)=20$. Use these observations to prove that f is negative on $(-1,2)$ and positive on $(2, \infty)$. (These are called test points.)
9. Prove the following rules for graphing the polynomial $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$.

- The graph is unbroken; that is, it can be drawn without lifting your pencil.
- The graph is smooth; that is, there are no abrupt changes of direction.
- If $f(a)<0$ and $f(b)>0$, then $f(x)=0$ for at least one x between a and b.
- The long-range behavior of $f(x)$ is the same as the long-range behavior of $y=a_{n} x^{n}$.
- The y-intercept of $f(x)$ is $y=a_{0}$.

10. Let $f \in \mathbb{R}[x]$ have degree n. Prove that f has at most $n x$-intercepts.
11. Let $f \in \mathbb{R}[x]$ have degree n. Prove that f has at most $n-1$ local minima and maxima.
12. Let $f \in \mathbb{R}[x]$ have degree n, where n is odd. Prove that f has at least one real root.
13. Prove the Quadratic Formula.
14. Factor $f(x)=a x^{2}+b x+c$ over \mathbb{R} and over \mathbb{C}, given that $b^{2}-4 a c \geq 0$.
15. Factor $f(x)=a x^{2}+b x+c$ over \mathbb{R} and over \mathbb{C}, given that $b^{2}-4 a c<0$.
16. Explain how the two formulas for compound interest can be derived for secondary students.
17. Suppose that $\$ 3,000$ is invested at 4% interest. Find the amount after 5 years if the money is compounded (a) annually, (b) monthly, (c) daily, (d) continuously.
18. Suppose that $n, m \in \mathbb{Z}$. State the most general conditions on x and y for which $\left(x^{n}\right)^{m}=x^{n m}$ and $x^{n} y^{n}=(x y)^{n}$, and give counterexamples for x and/or y outside of your conditions.
19. Repeat the previous problem if $n, m \in \mathbb{R}$.
20. Make hand-drawn rough sketches of the following functions, stating each domain and range:

- $f(x)=x^{2}$
- $f(x)=x^{2 / 3}$
- $f(x)=(0.1)^{x}$
- $f(x)=x^{3 / 2}$
- $f(x)=x^{-7 / 5}$
- $f(x)=e^{x}$
- $f(x)=x^{-2}$
- $f(x)=x^{\pi}$
- $f(x)=e^{-x}$
- $f(x)=x^{-3}$
- $f(x)=2^{x}$
- $f(x)=\log _{2} x$
- $f(x)=x^{1 / 2}$
- $f(x)=10^{x}$
- $f(x)=\log _{1 / 2} x$
- $f(x)=x^{-3 / 2}$
- $f(x)=(0.5)^{x}$
- $f(x)=\ln x$

21. In the previous problem, some pairs of graphs are related to each other by a simple transformation. State which pairs, the transformation, and an algebraic justification for the relationship.
22. Prove that $f(x)=x^{n}$ is an odd function when n is an odd integer.
23. Assume that $\left(z^{n}\right)^{m}=z^{n m}$ for any nonzero complex number z and any $n, m \in \mathbb{Z}^{+}$. Carefully prove that this property remains true if $n, m \in \mathbb{Z}$.
24. Assume that $x^{r} y^{r}=(x y)^{r}$ for any positive real numbers x and y and any $r \in \mathbb{Z}$. Carefully prove that the property remains true if $r \in \mathbb{Q}$.
25. Find $\log _{2 \sqrt{2}} \frac{1}{\sqrt[3]{4}}$ without a calculator.
26. Let $\alpha \in \mathbb{R}^{+} \backslash\{1\}$ and let $r, s \in \mathbb{R}^{+}$. Assuming the Laws of Exponents, prove that $\log _{\alpha}(r / s)=$ $\log _{\alpha} r-\log _{\alpha} s$.
27. Compute $\sum_{n=2}^{1000} \log _{n}(1000!)$
28. Let $f(x)=\log _{\alpha} x$ and $g(x)=\log _{\beta} x$, where $\alpha, \beta \in \mathbb{R}^{+} \backslash\{1\}$.

- Using properties of logarithms, find the constant c so that $g(x)=c f(x)$.
- By what transformation can the graph of g be obtained from the graph of f ?

29. Express $22^{2222} / 5^{5555}$ in scientific notation, accurate to six significant figures.
