1. State the definition of an infinite decimal (in base 10), and prove that an infinite decimal must converge to a real number.
2. Prove: The terminating decimal $D . d_{1} \ldots d_{t}$ (where $d_{t}>0$) has a second decimal representation.
3. Convert the base-twelve duodecimal $3 A . B 5$ to a fraction, written in base 10 .
4. Convert the base-sixteen hexadecimal $7.8 \overline{A F}$ to a fraction, written in base 10 .
5. Which of the following six assertions are true, and which are false? The lowest-terms fraction $\frac{m}{n}$ has a terminating decimal representation:

- if and only if / if / only if n is divisible by no prime other than 2
- if and only if / if / only if n is not divisible by 3

6. A rational number can be expressed as either a decimal, as a lowest-term fraction, and either in the form $\frac{M}{10^{r}}$ or $\frac{M}{10^{r}\left(10^{l}-1\right)}$. Express each rational number below in the other two forms. Do as much work as you can without a calculator.

0.124	$0 . \overline{386100}$	$0.0000 \overline{27}$	$0.12 \overline{345}$
$3 / 64$	$4 / 39$	$11 / 48$	$7 / 250$
$123 / 10000$	$3478 / 9999$	$49732 / 99999900$	$21497323 / 99999900$

7. Use the Division Algorithm and a calculator to find the decimal representation of 8/17.
8. Let $x=4329218107 / 7792592592$. According to a calculator, $x=0.555555555$. Does $x=0 . \overline{5}$?
9. Consider those reciprocals of primes that have simple-periodic decimal representations. Prove:

- There is exactly one with period 1 . What is it?
- There is exactly one with period 2 . What is it?
- There is exactly one with period 3 . What is it?
- There is exactly one with period 4 . What is it?

10. Consider those reciprocals of integers that have simple-periodic decimal representations. Prove:

- There are exactly two with period 1 . What are they?
- There are exactly two with period 2 . What are they?
- There are exactly five with period 3 . What are they?
- There are exactly six with period 4 . What are they?

11. Find a repeating, nonterminating decimal that begins as 0.222222222222222 (fifteen 2's) but is not equal to $0 . \overline{2}$. Write your decimal as a fraction.
12. Prove that $x \in \mathbb{R} \backslash \mathbb{Q}$ if and only if x has an infinite nonrepeating decimal representation.
13. If $z \in \mathbb{C}$, prove that $|\operatorname{Re}(z)| \leq|z|$ and $|\operatorname{Im}(z)| \leq|z|$.
14. If $z \in \mathbb{C}$, prove that $|z|=|-z|=|\bar{z}|$.
15. If $z \in \mathbb{C}$, prove that $|z|^{2}=z \bar{z}$.
16. If $z, w \in \mathbb{C}$, prove that $\overline{w+z}=\bar{w}+\bar{z}$.
17. If $z, w \in \mathbb{C}$, prove that $\overline{w z}=\overline{w z}$.
18. If $a \in \mathbb{R}$ and $z \in \mathbb{C}$, prove that $\overline{a z}=a \bar{z}$.
19. If $z, w \in \mathbb{C}$, prove that $|w+z| \leq|w|+|z|$.
20. If $z, w \in \mathbb{C}$, prove that $|w z|=|w||z|$.
21. State the division algorithm for polynomials.
22. Give a counterexample that shows the division algorithm is false for $\mathbb{Z}[x]$.
23. State and prove the Remainder Theorem for polynomials.
24. State and prove the Factor Theorem for polynomials.
25. Prove: For any odd positive integer $n, x+c$ is a factor of $x^{n}+c^{n}$.
26. Explain when and why synthetic division works.
