Math 4050

- 1. State the definition of an infinite decimal (in base 10), and prove that an infinite decimal must converge to a real number.
- 2. Prove: The terminating decimal $D.d_1 \dots d_t$ (where $d_t > 0$) has a second decimal representation.
- 3. Convert the base-twelve duodecimal 3A.B5 to a fraction, written in base 10.
- 4. Convert the base-sixteen hexadecimal $7.8\overline{AF}$ to a fraction, written in base 10.
- 5. Which of the following six assertions are true, and which are false? The lowest-terms fraction $\frac{m}{n}$ has a terminating decimal representation:
 - if and only if $/ \underline{if} /$ only if n is divisible by no prime other than 2
 - if and only if $/ \underline{if} / only$ if n is not divisible by 3
- 6. A rational number can be expressed as either a decimal, as a lowest-term fraction, and either in the form $\frac{M}{10^r}$ or $\frac{M}{10^r(10^l-1)}$. Express each rational number below in the other two forms. Do as much work as you can without a calculator.

0.124	$0.\overline{386100}$	$0.0000\overline{27}$	$0.12\overline{345}$
3/64	4/39	11/48	7/250
123/10000	3478/9999	49732/99999900	21497323/99999900

- 7. Use the Division Algorithm and a calculator to find the decimal representation of 8/17.
- 8. Let x = 4329218107/7792592592. According to a calculator, x = 0.555555556. Does $x = 0.\overline{5}$?
- 9. Consider those reciprocals of primes that have simple-periodic decimal representations. Prove:
 - There is exactly one with period 1. What is it?
 - There is exactly one with period 2. What is it?
 - There is exactly one with period 3. What is it?
 - There is exactly one with period 4. What is it?
- 10. Consider those reciprocals of integers that have simple-periodic decimal representations. Prove:
 - There are exactly two with period 1. What are they?
 - There are exactly two with period 2. What are they?
 - There are exactly five with period 3. What are they?
 - There are exactly six with period 4. What are they?
- 12. Prove that $x \in \mathbb{R} \setminus \mathbb{Q}$ if and only if x has an infinite nonrepeating decimal representation.
- 13. If $z \in \mathbb{C}$, prove that $|\operatorname{Re}(z)| \le |z|$ and $|\operatorname{Im}(z)| \le |z|$.
- 14. If $z \in \mathbb{C}$, prove that $|z| = |-z| = |\overline{z}|$.
- 15. If $z \in \mathbb{C}$, prove that $|z|^2 = z\overline{z}$.

- 16. If $z, w \in \mathbb{C}$, prove that $\overline{w+z} = \overline{w} + \overline{z}$.
- 17. If $z, w \in \mathbb{C}$, prove that $\overline{wz} = \overline{wz}$.
- 18. If $a \in \mathbb{R}$ and $z \in \mathbb{C}$, prove that $\overline{az} = a\overline{z}$.
- 19. If $z, w \in \mathbb{C}$, prove that $|w + z| \le |w| + |z|$.
- 20. If $z, w \in \mathbb{C}$, prove that |wz| = |w||z|.
- 21. State the division algorithm for polynomials.
- 22. Give a counterexample that shows the division algorithm is false for $\mathbb{Z}[x]$.
- 23. State and prove the Remainder Theorem for polynomials.
- 24. State and prove the Factor Theorem for polynomials.
- 25. Prove: For any odd positive integer n, x + c is a factor of $x^n + c^n$.
- 26. Explain when and why synthetic division works.