Problem 6.1 Prove the trigonometric identity

$$8\sin^2\theta\cos^2\theta = 1 - \cos 4\theta$$

Problem 6.2 Simplify

$$\cos\left(\cos^{-1}x - \tan^{-1}\left(\frac{2}{3}\right)\right)$$

Problem 6.3 Prove the trigonometric identity

$$\frac{\sin x}{\cot x} = \sec x - \cos x$$

Problem 6.4 Use a calculator to compute

$$\sin 20^{\circ} \sin 40^{\circ} \sin 80^{\circ}$$
.

Then prove this result using trigonometric identities.

Problem 6.5 Find the exact value of

$$\sin\left(\frac{17\pi}{24}\right)\sin\left(\frac{\pi}{24}\right)$$

Problem 6.6 Use the substitution $u = 3 \tan \theta$ to simplify

$$\frac{6u^2}{(9+u^2)^{3/2}}$$

Your final answer should contain no fractions.

Problem 6.7 Prove the trigonometric identity

$$\frac{\cos 3x - \cos 7x}{\sin 3x + \sin 7x} = \frac{2\tan x}{1 - \tan^2 x}$$

Problem 6.8 Suppose that $0 < x < 2\pi$, $\sin x = -\frac{5}{13}$, and $\cos x > 0$. Find $\cos \left(\frac{x}{2}\right)$ exactly.

Problem 6.9 Prove the trigonometric identity

$$\sin 3x = (1 + 2\cos 2x)\sin x$$

Problem 6.10 Suppose that $\pi < x < 2\pi$ and $\cos x = \frac{7}{25}$. Use half-angle identities twice to find $\sin\left(\frac{x}{4}\right)$ exactly.

Problem 6.11 Prove the trigonometric identity

$$(1 - \cos 2x)(1 + \cos 2x) = \frac{1}{\csc^2(2x)}$$

Problem 6.12 Exactly evaluate

$$\cos\left(2\tan^{-1}(-3)\right)$$

Problem 6.13 Determine k and ϕ so that

$$-2\sin 2x + 3\cos 2x = k\sin(2x + \phi).$$

Express ϕ in degrees, accurate to one decimal place.