Math 4050

Problem 5.1 Simplify $\sin \left[\cos ^{-1}\left(-\frac{5}{9}\right)\right]$.
Problem 5.2 Simplify the expression

$$
\frac{\tan x}{1+\sec x}-\frac{\tan x}{1-\sec x}
$$

Your final answer should not include any fractions.
Problem 5.3 Change the equation

$$
r=\frac{4}{3-3 \sin \theta}
$$

into an equation in rectangular coordinates. Your final answer should have only y on one side of the equation and an expression involving x on the other side.

Problem 5.4 Evaluate the given expressions. No partial credit will be given for incorrect answers.

- $\tan ^{-1}(1)=$ \qquad
- $\sin ^{-1}\left(\frac{1}{2}\right)=$ \qquad
- $\tan ^{-1}\left(-\frac{1}{\sqrt{3}}\right)=$ \qquad
- $\cos ^{-1}(0)=$ \qquad
- $\sin ^{-1}(-1)=$ \qquad
- $\tan ^{-1}(\sqrt{3})=$ \qquad
- $\cos ^{-1}\left(-\frac{1}{2}\right)=$ \qquad
- $\tan ^{-1}\left(\tan \frac{\pi}{4}\right)=$ \qquad
- $\sin \left(\sin ^{-1}(0.7)\right)=$ \qquad
- $\cos ^{-1}\left(\cos \frac{5 \pi}{6}\right)=$ \qquad
Problem 5.5 As we breathe, our lungs decrease and increase in volume. The volume of air that we inhale and exhale with each breath is called the tidal volume.

Suppose a man watching television breathes once every 5 seconds. His average lung capacity is 2500 mL , and his tidal volume is 500 mL . Assuming that his lung capacity oscillates in simple harmonic motion, find a formula for $V(t)$, the volume of the lungs after t seconds. You may assume that the lungs are at their maximum volume at time 0 .

Problem 5.6 Simplify the expression $\cos \left[\tan ^{-1}(2 x)\right]$.

Problem 5.7 In rectangular coordinates, the point P is represented by $(-4,4)$. Find three different representations of P using polar coordinates.

Problem 5.8 Sketch two cycles of the graph of $y=2 \sin \left(2 x-\frac{\pi}{2}\right)+3$.
Problem 5.9 Use the substitution $u=3 \sec x$ to simplify $\frac{u^{4}}{\left(u^{2}-9\right)^{2}}$.
Problem 5.10 Simplify the expression $\sin x+\cos x \cot x$.
Problem 5.11 Sketch the graph of

$$
r=\frac{3}{1+0.5 \sin \theta}=\frac{6}{2+\sin \theta}
$$

Hint: You can draw an acceptable sketch after plotting only four points.
Problem 5.12 Find numbers a, b, ϕ and c so that the graph below may be represented as

$$
f(x)=a \sin (b[x-\phi])+c
$$

Problem 5.13 Find the angles in $\triangle A B C$ if $a=12, b=14$, and $c=15$.
Problem 5.14 Triangle $\triangle A B C$ has sides $a=9, b=10$, and $c=15$. Find the area of $\triangle A B C$, rounded to two decimal places.

Problem 5.15 Triangle $\triangle A B C$ has sides $a=15, b=19$, and $\alpha=40^{\circ}$. Find c, accurate to one decimal place.

