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THE COMPLEXITY OF SQUARES IN THE GROUP OF
ISOMETRIES OF THE BAIRE SPACE

AARON HILL

Abstract. We prove that in the Polish group of isometries of
the Baire space the collection of n-th powers is non-Borel. We
also prove that in the Polish space of trees on N the collection
of trees that have an automorphism under which every node has
order exactly n is non-Borel.

1. Introduction

The main concern of this paper is the complexity of the set of n-

th powers in a Polish group. This question arose first in the study of

generic automorphisms of a measure space. Let (X,µ) be any Lebesgue

space, for example the unit interval with Lebesge measure. The col-

lection Aut(X,µ) of all invertible measure-preserving transformations

of (X,µ) taken modulo null sets becomes a Polish topological group

when endowed with the weak topology, which comes from viewing it as

a subgroup of the unitary operators on L2(X,µ) with the strong opera-

tor topology. We say that a generic transformation satisfies a property

if the collection of transformations satisfying the property is comeager

in Aut(X,µ).

A series of results over the past decade indicate that the centralizer

of a generic transformation is quite large. In 2000, King [6] answered

an old question of Halmos by showing that a generic transformation

has roots of all orders. This implies that a generic transformation

commutes with something other than its integral powers. The method

that King devised was later used by de Sam Lazaro and de la Rue

[7] to show that R embeds into the centralizer of a generic T (in fact,

successive roots of T can be taken in a way to produce a flow, or one

parameter subgroup, whose 1-value is T ) and by Ageev [1] to show that

every finite abelian group embeds into the centralizer of a generic T
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(essentially, that the identity has abundant roots in the centralizer of

T ).

In the above considerations, the collection of n-th powers plays an

important role and one would like to understand this collection as com-

pletely as possible. In King’s paper showing that a generic transfor-

mation has roots of all orders [6], he asked whether the collection of

n-th powers (for n > 1 fixed) is Borel. If it were Borel, then a concrete

description of it might yield additional insight into the size or structure

of the centralizer of a generic transformation. On the other hand, it

would also be of interest if the collection of n-th powers, an algebraicly

simple set, were non-Borel, i.e., topologically complicated.

Other people have worked on this type of question in other contexts.

In 1989 Humke and Laczkovich [4] showed that in the semi-group of

continuous functions from an interval into itself, the collection of n-th

powers is non-Borel. Gartside and Pejić [2] showed in 2009 that in the

group of homeomorphisms of the circle, the collection of n-th powers

is complete analytic and, in particular, non-Borel.

In both of these cases the underlying structure (the interval or the

circle) carries an ordering which interacts with the functions under

consideration (continuous functions or homeomorphisms). This aspect

of linearity, completely absent in (X,µ), is crucial to the arguments in

[4] and [2].

The main object of the present paper is to move away from this rigid

linearity. We will show that in the group of isometries of the Baire

space, the collection of n-th powers is non-Borel (for each n > 1). In

the Baire space there is no ordering to interact with the functions under

consideration. By restricting our attention to isometries, rather than

considering all homeomorphisms, we have something that looks like a

measure: each basic clopen set has an associated size, and this size

must be preserved under isometries.

2. Prelinimaries

Let NN denote the metric space whose underlying set is the collection

of all sequences of natural numbers and in which the distance between

two sequences α and β is given by 1
1+l(α,β)

, where l(α, β) is the length

of the longest common initial segment of α and β. Let Iso(NN) denote

the group of isometries of NN equipped with the topology of pointwise
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convergence. It is straightforward to check that Iso(NN) is a Polish

group. We will prove the following theorem.

Theorem 1. For any n > 1, the collection of n-th powers is non-Borel

in Iso(NN).

We will prove the theorem using the proposition below about trees

on N. Let N<N denote the set of finite sequences of natural numbers,

including the empty sequence. A tree (on N) is a nonempty subset of

N<N that is closed under taking initial segments. The empty sequence

∅ is an element of every tree; it is called the root. Non-root elements of

a tree are called nodes. A tree is naturally composed of levels; the level

k nodes are precisely those with length k. A node b is a descendent of

a ∈ T if a is a proper initial segment of b; the node b is a child of a

if additionally the length of a is exactly one less than the length of b.

The collection of all trees is a closed subset of 2(N<N) and so is a Polish

space. It is denoted by TrN. An automorphism of a tree T is a bijection

F : T → T satisfying:

(1) F (∅) = ∅
(2) For all a, b ∈ T , b is a child of a iff F (b) is a child of F (a).

It is clear that an automorphism of a tree preserves the levels of the

tree. Each automorphism can be uniquely decomposed into its orbits.

The restriction of an automorphism of a tree to a single orbit is called a

cycle. If the orbit has cardinality n, it is called an n-cycle. If the orbit

is infinite, it is called an infinite cycle, or ∞-cycle. We can construct

an automorphism of a tree by constructing the cycles that make up the

automorphism.

Let T be a tree. An n-matching of T is an automorphism F of T

such that each node of T has order exactly n under F . In essense, a tree

has an n-matching if its level 1 nodes can be partitioned into groups

of size n so that two nodes in the same group have isomorphic “sets of

descendents.” For n > 1, let Dn be the the collection of trees that have

an n-matching and let En be the collection of trees that don’t have an

n-matching.

Proposition 2. For each n > 1, Dn ⊆ TrN is non-Borel.

To prove the proposition we will need the following: the collection of

well-founded trees (i.e., those without an infinite branch) is a complete
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co-analytic subset of TrN. There is a natural co-analytic rank on well-

founded trees, and any collection of well-founded trees with unbounded

rank (in ω1) is non-Borel and, moreover, non-analytic (See Theorem

35.23 in [5]).

3. Proofs

Let TN be the tree containing all finite sequences of natural numbers.

It is easy to see that the isometries of the Baire space correspond exactly

to the automorphisms of TN. In the proof below we will work with

Aut(TN) rather than Iso(NN). For n > 1 let Pn denote the collection

of n-th powers in Aut(TN).

3.1. Proof of the theorem from the proposition. Fix n > 1. We

will describe a continuous function Φ : TrN → Aut(TN). We will show

that the preimage of Pn under Φ is Dn, which by the proposition is

non-Borel. This implies that Pn is non-Borel.

First, partition N into infinite sets (Bi : i ∈ N). Now recursively

define Ac, for c ∈ N<N, by A∅ = {∅} and A〈c0,c1,...,ck〉 = {〈a0, a1, ..., ak〉 :

〈a0, a1, ..., ak−1〉 ∈ A〈c0,c1,...,ck−1〉 and ak ∈ Bck}, for k > 0.

For k > 0 the sets (Ac : c ∈ Nk) form a partition of Nk and any

element of that partition is infinite. We will now describe the function

Φ : TrN → Aut(TN). This will be done in such a way that each Ac is

invariant under each Φ(T ).

Define Φ in such a way that for each T ∈ TrN, Φ(T ) is an automor-

phism of TN satisfying:

(1) If c ∈ T then Φ(T ) � Ac consists of one n-cycle and infinitely

many ∞-cycles.

(2) If c /∈ T , then Φ(T ) � Ac consists of infinitely many ∞-cycles.

Moreover, do this in such a way that for all T1, T2 ∈ TrN:

(1) If c ∈ T1 ∩ T2, then Φ(T1) and Φ(T2) agree on every element of

Ac.

(2) If 〈c0, c1, ..., ck−1〉 ∈ T1 ∩ T2 and c = 〈c0, c1, ..., ck〉 /∈ T1 ∪ T2,

then Φ(T1) and Φ(T2) agree on every element of Ac.

(3) If 〈c0, c1, ..., ck−1〉 ∈ T1∩T2 and c = 〈c0, c1, ..., ck〉 ∈ T1\T2, then

Φ(T1) and Φ(T2) disagree on every element of Ac.

It follows from this that for each c = 〈c0, c1, ..., ck〉 ∈ N<N and each

a ∈ Ac, Φ(T1) agrees with Φ(T2) on a iff {〈c0〉, 〈c0, c1〉, ..., 〈c0, c1, ..., ck〉}∩
T1 = {〈c0〉, 〈c0, c1〉, ..., 〈c0, c1, ..., ck〉} ∩ T2.
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It remains to show that the preimage of of Pn under Φ is Dn. In

other words, we need to show that T ∈ TrN has an n-matching if and

only if Φ(T ) has an n-th root.

First, let T ∈ TrN, let F = Φ(T ), and suppose Gn = F . Consider an

n-cycle in F . The elements of this n-cycle must be part of an n2-cycle

in G. The orbit of size n2 of G that consists of those n2 elements must

be the union of n orbits of size n of F . Moreover, G must permute

these orbits. Since there is a 1-1 correspondence between the nodes of

T and the n-cycles in F , G induces a permutation of all the nodes of

T . It is easy to see that this permutation is, in fact, an n-matching.

Now, let let T ∈ TrN and suppose T has an n-matching. By the

definition of Φ, Φ(T ) has only n-cycles and ∞-cycles. For Φ(T ) to

have an n-th root, there must be a way of grouping, level by level, in

a coherent way, the n-cycles into groups of n and the ∞-cycles into

groups of n. The construction of Φ(T ) was done in such away that at

each stage there are infinitely many∞-cycles, so these can be matched

into groups of n. The n-matching of T decomposes into orbits of size

n, and each element of a given orbit is on the same level. Each of the

nodes in an orbit corresponds to an n-cycle in Φ(T ) and this provides

a way of grouping the n-cycles into groups of n. It is easy to see that

such a grouping gives rise to the desired n-th root of Φ(T ).

We have shown that T ∈ TrN has an n-matching if and only if Φ(T )

has an n-th root. This concludes the proof of the theorem.

3.2. Proof of the proposition. We will describe a continuous func-

tion Ψ : TrN → TrN. The preimage of the collection of well founded

trees will be En. We will show that the image of En under Ψ has un-

bounded rank. This will imply that En, and hence Dn, is non-Borel,

since the image of any Borel set under a continuous function is analytic.

We first order the elements of the N<N as follows: For each a ∈ N<N,

let sa be the sum of the entries of a plus the length of a. If sa is

less than sb, then we say a < b. If sa = sb, then we say a < b if

a is lexicographically less than b. It is clear this is an ω ordering of

N<N. Let {r0, r1, r2, ...} be the enumeration of N<N satisfying: i < j iff

ri < rj.

Given a tree T ∈ TrN we will produce Ψ(T ), a tree of attempts to pro-

duce an n-matching of T . We say that a function f : {r0, r1, ..., rk} → T

is a valid attempt for T if for i, j ≤ k:
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(1) If ri /∈ T , then f(ri) = ∅.
(2) If ri = ∅, then f(ri) = ∅.
(3) If ri is a node of T and a child of rj, then f(ri) is a child of

f(rj).

(4) If ri and rj are distinct nodes of T , then f(ri) 6= f(rj).

(5) If ri is a node of T and ri ∈ dom(fn), then fn(ri) = ri.

(6) If ri is a node of T and ri ∈ dom(fm) with 0 < m < n, then

fm(ri) 6= ri.

The sequence 〈a0, a1, a2, ..., ak〉 is a node of the tree Ψ(T ) if the func-

tion f defined by f(ri) = rai
is a valid attempt.

It is clear Ψ(T ) actually is a tree, for an initial segment of a valid

attempt is a valid attempt. It is easy to see that if T has an n-matching,

then Ψ(T ) has an infinite branch. Indeed, the initial segments of such

an automorphism naturally correspond to valid attempts which in turn

correspond to the nodes of an infinite branch. It is also easy to check

that if Ψ(T ) has an infinite branch, then the sequence of valid attempts

corresponding to those nodes gives rise to an n-matching of T . Thus

T ∈ En if and only if Ψ(T ) is well-founded.

It is clear that Ψ is continuous. It remains to show that Ψ(En) is

unbounded.

We will construct two sequences of trees: (Tα : α < ω1) ⊆ En and

(T ′α : α < ω1) ⊆ Dn. Thus Tα will not be isomorphic to T ′α. The

construction will be such that the rank of Ψ(Tα) will be at least α.

Additionally, the image under Ψ of the tree T ′α ⊕ Tα (defined below)

will be well-founded and have rank greater than the rank of Ψ(Tα).

Let S0 and S1 be trees. The sequence 〈a0, a1, a2, ..., ak〉 is a node of

(S0 ⊕ S1) if either a0 ≤ (n − 2) and 〈a1, a2, ..., ak〉 is a node of S0 or

a0 = (n− 1) and 〈a1, a2, ..., ak〉 is a node of S1. Thus the tree S0 ⊕ S1

has exactly n level one nodes; Beneath (n − 1) of them is a subtree

isomorphic S0 and beneath the last of them is a subtree isomorphic to

S1. Thus (S0 ⊕ S1) has an n-matching iff S0 and S1 are isomorphic.

We now describe T0 and T ′0. The tree T0 consists of the root and

the nodes 〈0〉, 〈1〉, ...〈n− 2〉. The tree T ′0 consists of the root and the

nodes 〈0〉, 〈1〉, ...〈n−1〉. It is clear T0 does not have an n-matching and

that T ′0 does have an n-matching. It is clear also that (T ′0 ⊕ T0) does

not have an n-matching and that its image under Ψ has rank greater

than the rank of Ψ(T0).
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We now describe how to produce Tα+1 and T ′α+1 from Tα and T ′α.

The tree Tα+1 is defined to be T ′α ⊕ Tα and the tree T ′α+1 is defined to

be T ′α⊕T ′α. By assumption the rank of Ψ(T ′α⊕Tα) is at least α+1. We

need further to show that the rank of Ψ(T ′α+1 ⊕ Tα+1) is greater than

the rank of Ψ(Tα+1). Consider the structure of the two trees Tα+1 and

(T ′α+1 ⊕ Tα+1).

The structure of the tree Tα+1 is this: There are exactly n level one

nodes, 〈0〉, 〈1〉, ...〈n − 1〉. Beneath the first n − 1 of these is a subtree

isomorphic to T ′α and beneath the last is subtree isomorphic to Tα.

The structure of the tree (T ′α+1 ⊕ Tα+1) is this: There are exactly

n level one nodes: 〈0〉, 〈1〉, ..., 〈n − 1〉. There are exactly n2 level two

nodes: all 〈i, j〉 with i and j less than n. Beneath the node 〈n−1, n−1〉
there is a subtree isomorphic to Tα, beneath each of the other level two

nodes there is a subtree isomorphic to T ′α.

Notice that in each of these two cases, the entire tree doesn’t have

an n-matching because T ′α and Tα are not isomorphic.

We will define an injective tree homomorphism (a map between trees

which preserves the descendent relation) H : Ψ(Tα+1) → Ψ(T ′α+1 ⊕
Tα+1). The homomorphism H will be such that each level two node in

Ψ(Tα+1) will get sent to a node of Ψ(T ′α+1 ⊕ Tα+1) on a level greater

than two. It is easy to see that Ψ(Tα+1) has only finitely many level

two nodes; it follows that the rank of Ψ(T ′α+1 ⊕ Tα+1) is greater than

the rank of Ψ(Tα+1).

We will first given an informal description ofH and then give a formal

description of H and show that it is a tree homomorphism. There will

similar functions used later in the paper, but only the informal versions

of these later functions will be given.

The informal description of H is this: H takes as an input a valid

attempt for Tα+1. This corresponds to an attempt to show that the

sets of descendants beneath the nodes 〈0〉, 〈1〉, ..., 〈n− 1〉 in Tα+1 are

pairwise isomorphic. This attempt translates directly to an attempt to

show that the sets of descendants beneath the nodes 〈0, n−1〉, 〈1, n−1〉,
..., 〈n−1, n−1〉 in T ′α+1⊕Tα+1 are pairwise isomorphic (the collections

of “sets of descendants” are the same in the two situations).

It is easy to translate this into an attempt to show that the sets of

descendants beneath the nodes 〈0〉, 〈1〉, ..., 〈n− 1〉 in T ′α+1 ⊕ Tα+1 are

pairwise isomorphic, because for each i 6= n−1, the sets of descendants

beneath the nodes 〈0, i〉, 〈1, i〉, ..., 〈n−1, i〉 in T ′α+1⊕Tα+1 are actually
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pairwise isomorphic. This in turn corresponds to a valid attempt for

T ′α+1 ⊕ Tα+1. This is the output of our function H.

We’ll now give the formal description of H. Consider a node of

Ψ(Tα+1). This is a sequence 〈a0, a1, ..., ak〉 that is associated with a

valid attempt f : {r0, r1, ..., rk} → N<N satisfying f(ri) = rai
. For each

nonempty z = 〈z0, z1, ..., zm〉 ∈ N<N, define z to be 〈z0, n, z1, ..., zm〉 (in

the case m = 0, z = 〈z0, n〉). Let ∅ = ∅
We now define a function g as follows. For ri ∈ dom(f), define g(ri)

to be f(ri). This function g serves as a skeleton for a full function

g′ : {r0, r1, ..., rk} → N<N. We extend g to g′ in the following way.

Let rj ∈ {r0, r1, ..., rk} \ dom(g). If rj /∈ T , then define g′(rj) = ∅. If,

on the other hand, rj = 〈c0, c1, ..., cl〉 ∈ T (in this case c1 6= n) define

g′(rj) = 〈d, c1, c2, ..., cl〉, where d is the unique entry of f(c0).

It is easy to check that g′ is a valid attempt for T ′α+1 ⊕ Tα+1. The

node of Ψ(T ′α+1 ⊕ Tα+1) that corresponds to g′ is the definition of

H(〈a0, a1, ..., ak〉).
It is easy to see that if a and b are nodes in Ψ(Tα+1) with b a descen-

dent of a, then F (b) is a descendent of F (a) in Ψ(T ′α+1 ⊕ Tα+1). It is

also straightforward to check that every level 2 node in Ψ(Tα+1) gets

sent to a node in Ψ(T ′α+1⊕Tα+1) that is on a level greater than 2. Since

there are only finitely many level 2 nodes in Ψ(Tα+1), this implies that

the rank of Ψ(T ′α+1⊕Tα+1) is strictly greater than the rank of Ψ(Tα+1).

We will next describe how to produce Tβ and T ′β when β is a limit

ordinal. First choose an increasing sequence of ordinals (αi : i ∈ N)

whose supremum is β.

We now define the auxiliary tree Sj for each j ∈ N. The sequence

〈a0, a1, ..., an〉 is a node of S0 if and only if: for some r ∈ N, ar = 1,

ai = 0 if i < r, and 〈ar+1, ar+2, ..., an〉 ∈ T ′αr
. For j > 0, the sequence

〈a0, a1, a2, ..., an〉 is a node of Sj if and only if either aj = 1, ai = 0 for

i < j, and 〈aj+1, aj+2, ..., an〉 ∈ Tαj
or for some r 6= j, ar = 1, ai = 0 if

i < r, and 〈ar+1, ar+2, ..., an〉 ∈ T ′αr
. Since Tαi

is not isomorphic to T ′αi
,

S0 is not isomorphic to any Sj with j > 0.

We will now describe Tβ and T ′β. For each i ∈ N, 〈i〉 is a level one

node of Tβ. Beneath each of the level one nodes 〈0〉, 〈1〉, ..., 〈n − 2〉
there should be a subtree isomorphic to S0. Beneath each of the other

level one nodes should be a subtree isomorphic to some Sj for some

j > 0. Furthermore, for each j > 0, there should be infinitely many

level 1 nodes such that the nodes beneath them are isomorphic to Sj.
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The tree T ′β is defined in the same way as Tβ, except that the nodes

beneath the node 〈n − 1〉 should also be isomorphic to S0. It is clear

that T ′β has an n-matching and that Tβ does not have an n-matching.

It remains to verify two things. First that the rank of Ψ(Tβ) is at

least β. Second, that the rank of Ψ(T ′β ⊕ Tβ) is greater than the rank

of Ψ(Tβ).

Claim 1. The rank of Ψ(Tβ) is at least β.

Proof. It suffices to show that the rank of Ψ(Tβ) is greater than or equal

to the rank of Ψ(T ′αr
⊕ Tαr) for each r > 0. The structure of the tree

T ′αr
⊕Tαr is this: There are exactly n level one nodes, 〈0〉, 〈1〉, ...〈n−1〉.

Beneath the first n − 1 of these is a subtree isomorphic to T ′αr
and

beneath the last is subtree isomorphic to Tαr .

The structure of the tree Tβ is more complicated and we will describe

in detail only a part of it. Beneath each of the nodes 〈0〉, 〈1〉, ...〈n− 2〉
is a subtree isomorphic with S0. We can also choose some m > n − 2

so that beneath the node 〈m〉 is a subtree isomorphic to Sr. So for

each i ≤ n − 2 there is a subtree isomorphic to T ′αr
beneath the node

〈i, 0, 0, ..., 0, 1〉, where there are r-many zeros written. Also, there is

a subtree isomorphic to Tαr beneath the node 〈m, 0, 0, ..., 0, 1〉, where

again there are r-many zeros written.

We will give an informal description of a functionGr : Ψ(T ′αr
⊕Tαr)→

Ψ(Tβ) that is similar to the function H described above. We leave it

to the reader to completely formalize Gr and show that it is a tree

homomorphism. This will imply that the rank of Ψ(Tβ) is greater than

or equal to the rank of Ψ(T ′αr
⊕ Tαr).

Here is the informal description of Gr: Gi takes as an input a valid

attempt for T ′αr
⊕Tαr , which corresponds to an attempt to show that the

sets of descendants beneath the nodes 〈0〉, 〈1〉, ..., 〈n− 1〉 in T ′αr
⊕ Tαr

are pairwise isomorphic. This translates directly to an attempt to

show that the sets of descendants beneath the nodes 〈0, 0, 0, ..., 0, 1〉,
〈1, 0, 0, ..., 0, 1〉, ..., 〈n − 2, 0, 0, ..., 0, , 1〉 and 〈m, 0, 0, ..., 0, 1〉 in Tβ are

pairwise isomorphic (the collections of “sets of descendants” are the

same in the two situations). It is easy to see that there are no difficulties

translating this into an attempt to show that the sets of descendants

beneath the nodes 〈0〉, 〈1〉, ..., 〈n − 2〉 and 〈m〉 in Tβ are pairwise

isomorphic. It is easy to see that this translates into a valid attempt

for Tβ. This is the output of the function Gr.
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�

Claim 2. The rank of Ψ(T ′β ⊕ Tβ) is greater than the rank of Ψ(Tβ).

Proof. We will give an informal description of a function F : Ψ(Tβ)→
Ψ(T ′β ⊕ Tβ) that is similar the function H described above. We leave

it to the reader to completely formalize Gr and show that it is a tree

homomorphism.

The function F takes as an input a valid attempt for Tβ, which

corresponds to an attempt to show that the sets of descendants beneath

the nodes 〈0〉, 〈1〉, ..., 〈n − 2〉 and 〈m〉 (some m ≥ n − 1) in Tβ are

pairwise isomorphic. This translates directly to an attempt to show

that the sets of descendants beneath the nodes 〈0, n−1〉, 〈1, n−1〉, ...,

〈n − 2, n − 1〉 and 〈n − 1,m〉 in T ′β ⊕ Tβ are pairwise isomorphic (the

collections of “sets of descendants” are the same in the two situations).

It is easy to see that there are no difficulties translating this into an

attempt to show that the sets of descendants beneath the nodes 〈0〉,
〈1〉, ..., 〈n− 2〉 and 〈n− 1〉 in T ′β ⊕ Tβ are pairwise isomorphic, which

corresponds to a valid attempt for T ′β ⊕ Tβ. This is the output of F .

It is easy to see that every level 2 node in Ψ(Tβ) gets sent to a node in

Ψ(T ′β⊕Tβ) on a level greater than 2. Since there are only finitely many

level 2 nodes in Ψ(T ′β ⊕ Tβ), this implies that the rank of Ψ(T ′β ⊕ Tβ)

is greater than the rank of Tβ.

�
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