Supplemental Matrix Theory Problems

In Problems 1-3: Solve the hint problem, and then do the following:

- (a) Find the characteristic polynomial and the eigenvalues of S.
- (b) Find an orthonormal basis of each eigenspace of S.
- (c) Find an orthogonal diagonalization: Q orthogonal and Λ diagonal such that $S = Q \Lambda Q^T$.

1.
$$S = \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix}$$
. Hint problem: find a vector v such that $S + 1 = vv^T$.

2.
$$S = \begin{pmatrix} 0 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 0 \end{pmatrix}$$
. Hint problem: find a constant *c* and a vector *v* such that $S + c = vv^T$.

3. Let
$$S = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 5 & 0 & 1 \\ 1 & 0 & 5 & -2 \\ 0 & 1 & -2 & 1 \end{pmatrix}$$
, $D = \begin{pmatrix} 1 & & & \\ & -1 & & \\ & & -1 & & \\ & & & 1 \end{pmatrix}$, $P = \begin{pmatrix} 0 & 1 & & \\ 1 & 0 & & \\ & & 0 & 1 \\ & & 1 & 0 \end{pmatrix}$.

Hint problem: compute Null(S). Show that the conjugates of S by DP and PD are both 6-S. Use S conjugate to 6-S to see that if λ is an eigenvalue of S, then $6-\lambda$ is too.

4. Let Z be a non-invertible symmetric 2×2 matrix with trace -1.

- (a) Find its characteristic polynomial $\operatorname{char}_Z(t)$.
- (b) Find Z^2 in terms of Z.
- (c) Assume that $(2,1)^T$ is an eigenvector of Z. Find all possibilities for Z.

In Problems 5-6: fix n > 2, and let x and y be non-zero orthogonal elements of \mathbb{R}^n . Let \hat{x} and \hat{y} be the unit vectors along x and y, i.e., $\hat{x} = x/|x|$ and $\hat{y} = y/|y|$.

- 5. Consider the matrix $B = xx^T + yy^T$.
- (a) In terms of x and y, describe an orthonormal eigenbasis for B.
- (b) Find Λ diagonal and Q orthogonal such that $B = Q \Lambda Q^T$. Describe Q.
- (c) Find the characteristic polynomial $\operatorname{char}_B(t)$.

6. Repeat Problem ?? for the matrix $K = xy^T + yx^T$. Hint: consider $\frac{1}{\sqrt{2}}(\hat{x} \pm \hat{y})$.

7. Find the PDS square root of $S = \frac{1}{13} \begin{pmatrix} 40 & -18 \\ -18 & 25 \end{pmatrix}$.

8. Find the PSDS square root of $S = \begin{pmatrix} 5 & -3\sqrt{2} & 5 \\ -3\sqrt{2} & 10 & -3\sqrt{2} \\ 5 & -3\sqrt{2} & 5 \end{pmatrix}$.

9. Find the Cholesky decomposition $C^T C$ of $S = \begin{pmatrix} 9 & 3 & -3 \\ 3 & 5 & 1 \\ -3 & 1 & 3 \end{pmatrix}$.

10. Graph $5x_1^2 - 6x_1x_2 + 5x_2^2 = 8$. Your plot should be neatly and carefully drawn, and large: at least a third of a page. Indicate the directions and lengths of the major and minor axes.

- **11.** The matrix $E = \begin{pmatrix} 5 & -3 \\ -3 & 5 \end{pmatrix}$ has eigenvalues 2 and 8. Set $\Lambda = \begin{pmatrix} 2 & \\ & 8 \end{pmatrix}$.
- (a) Find all orthogonal matrices M such that $E = M\Lambda M^T$.
- (b) Describe the action of E on \mathbb{R}^2 .
- (c) For each M, describe its action on \mathbb{R}^2 . Give its eigenvectors and eigenvalues. If it rotates \mathbb{R}^2 , give the angle and direction. If it reflects \mathbb{R}^2 , give the mirror line.
- 12. Here are two orthogonal matrices. One is a rotation, and one is a reflection:

$$F = \frac{1}{2} \begin{pmatrix} 1 & 1 & \sqrt{2} \\ 1 & 1 & -\sqrt{2} \\ \sqrt{2} & -\sqrt{2} & 0 \end{pmatrix}, \qquad G = \frac{1}{2} \begin{pmatrix} 1 & 1 & -\sqrt{2} \\ 1 & 1 & \sqrt{2} \\ \sqrt{2} & -\sqrt{2} & 0 \end{pmatrix}.$$

- (a) Decide which is which.
- (b) Find the angle, the axis, and the "right hand rule" direction of the rotation.
- (c) Find the axis of the reflection.
- (d) Let $u = \frac{1}{2}(-1, 1, \sqrt{2})^T$. Compute $I 2uu^T$. Explain the connection.

Definitions for reference: • ON means orthonormal.

- PDS means positive definite symmetric and PSDS means positive semidefinite symmetric.
- If S is any PSDS matrix, $S^{1/2}$ denotes its PSDS square root.
- For A any $m \times n$ matrix, $A^T A$ is PSDS. Its modulus |A| is defined to be $(A^T A)^{1/2}$.
- Let A be any square matrix. A *polar decomposition* is a factorization A = Y|A|, where Y is orthogonal. If A is invertible, then Y is unique.

13. Let
$$L = \begin{pmatrix} \sqrt{2} & 0 \\ 1 & \sqrt{2} \end{pmatrix}$$
.

- (a) Find the modulus |L| of L.
- (b) Find the polar decomposition Y|L| of L.
- (c) Find the singular value decomposition of L.

14. Let
$$R = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

- (a) Find the modulus |R| of R.
- (b) Find two polar decompositions Y|R| of R.
- (c) Find two corresponding singular value decompositions of R.

15. Let
$$N = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
.

- (a) Find a reduced SVD and a full SVD.
- (b) Find the Schmidt decomposition.
- (c) Find N^+ , N^+N , and NN^+ .
- (d) For what unit vectors v is the length of Nv maximal?

16. Repeat Problem 15 for
$$B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & -1 \end{pmatrix}$$
.

17. Repeat Problem 15 for
$$C = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & -2 \\ 1 & 2 & 0 \end{pmatrix}$$
. Hint: the σ_i are small integers.

18. Here is an SVD:

$$\begin{pmatrix} 7 & 1 \\ 5 & 5 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \times \sqrt{10} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \times \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix}.$$

(a) Use it to give the reduced SVDs of the following three matrices:

$$\begin{pmatrix} 7 & 1 \\ 0 & 0 \\ 5 & 5 \end{pmatrix}, \begin{pmatrix} 7 & 0 & 1 \\ 5 & 0 & 5 \end{pmatrix}, \begin{pmatrix} 7 & 0 & 1 \\ 0 & 0 & 0 \\ 5 & 0 & 5 \end{pmatrix}$$

- (b) Find also A^+ , AA^+ , and A^+A as A runs through these three matrices.
- **19.** Fix non-zero vectors $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$. Consider the rank $1 \ m \times n$ matrix $Z = xy^T$.
- (a) Find the factors $U_{\rm r}$, $\Sigma_{\rm r}$, and $V_{\rm r}^T$ of a reduced SVD of Z.
- (b) Find the Schmidt decomposition of Z.
- (c) Find the pseudo-inverse Z^+ .
- (d) Compute ZZ^+ and Z^+Z .
- **20.** Let X be an $n \times n$ diagonal matrix with $X_{11} < X_{22} < \cdots < X_{nn} < 0$.
- (a) Find its singular values.
- (b) Describe all of its SVDs.

21. Let Y be an $n \times n$ orthogonal matrix.

- (a) Find its singular values.
- (b) Describe what happens as you go through the steps to produce its SVD.
- (c) At what steps do you have to make arbitrary choices?
- (d) Give all possible SVDs of Y.

22. Let A be an $m \times n$ matrix of rank n.

- (a) Prove that |A| is invertible.
- (b) Let $Y = A|A|^{-1}$. Prove that the columns of Y are an ON basis of $\mathcal{R}(A)$.
- (c) Let $V\Sigma V^T$ be an orthogonal diagonalization of |A|. In terms of Y and V, find U_r such that $U_r\Sigma V^T$ is a reduced SVD of A.

23. Let A be an $m \times n$ matrix with reduced SVD and Schmidt decomposition

$$A = U_{\mathbf{r}} \Sigma_{\mathbf{r}} V_{\mathbf{r}}^T = \sigma_1 u_1 v_1^T + \dots + \sigma_r u_r v_r^T.$$

- (a) Give the reduced SVDs of $(A^+)^T$ and $(A^T)^+$ in terms of U_r , Σ_r , and V_r .
- (b) Show that pseudo-inversion and transposition commute: $(A^+)^T = (A^T)^+$.
- (c) Give the Schmidt decomposition of A^{+T} in terms of that of A.

In Problems 24-29:

- (a) Find a basis for each eigenspace V_{λ} .
- (b) Find a basis for each generalized eigenspace V_{λ}^{g} .
- (c) Find X and Γ such that $X\Gamma X^{-1}$ is a block diagonalization.

24.
$$A = \begin{pmatrix} 3 & -1 \\ 4 & -1 \end{pmatrix}$$
.
25. $B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$.
26. $C = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$.
27. $D = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ & 1 & 0 \\ & & 1 & 0 \end{pmatrix}$.
28. $E = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ & & & 1 & 0 \end{pmatrix}$.
29. $F = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$.
30. Let $G = \begin{pmatrix} 3 & 3 & 0 & 0 \\ 1 & 1 & 4 \\ -4 & -4 & -4 \end{pmatrix}$.

- (a) Find the eigenspaces of G.
- (b) Find λ and r such that $\operatorname{Null}(G \lambda)^r$ is 2-dimensional.
- (c) Find a block diagonalization of G.

31. Find a 3×3 matrix N such that $N^3 = 0$,

$$\operatorname{Ker}(N^2) = \operatorname{Span}\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix} \right\}, \qquad \operatorname{Ker}(N) = \operatorname{Span}\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}.$$

32. Let $X\Gamma X^{-1}$ be a block diagonalization. Describe the generalized eigenspaces V_{λ}^{g} of Γ .

33. Consider the process for finding a block diagonalization $X\Gamma X^{-1}$. Describe the form Γ would have if you were to reverse the order of the basis of \mathbb{R}^n used to form X.