
MATRIX MECHANICS

1. Introduction

These notes study the action of linear transformations on vector spaces, which
amounts to analyzing matrix multiplication. We will emphasize computations over
proofs. Most results will be stated either without proof, or with only an outline of
the proof. The aim is to explain how to use the results in practice.

Many results will be stated in the setting of the real numbers, R. Most of
them are true also in the setting of the complex numbers, C, and some are in fact
only true in general if you allow complex numbers (notably, eigenspace results).
Nevertheless, you may consider that all numbers are real, except in cases in which
non-real numbers arise explicitly.

A word on the various different terms for mathematical results: lemma, theorem,
proposition, and corollary. There is no precise formula determining when to use
which term, and different authors use them differently. Lemmas tend to be small
results, often simple to prove, not really of independent interest, but used as tools in
proving larger results. Theorems tend to be major results of fundamental interest.
Propositions might be said to be between lemmas and theorems: important in
their own right, but not landmarks. Corollaries are results which follow more or
less immediately from the result preceding them. All that said, you are perfectly
welcome to simply treat all four words as synonymous.

A few very small words on notation: “:=” means an equation which defines its
left hand side, and “□” means the end of a proof (or, more likely, its outline).

2. Vector spaces

2.1. Subspaces, linear combinations, and spans.

Definition 2.1.

• An m× n matrix is a rectangular array of numbers, m high and n wide.

• An n-vector is a n× 1 matrix, i.e., a column vector of height n. We write
Rn for the set of all n-vectors.

Rn is a vector space. This means that vectors can be added to each other and
multiplied by scalars:v1

...
vn

+

v′1
...
v′n

 :=

v1 + v′1
...

vn + v′n

 , c

v1
...
vn

 :=

cv1
...

cvn

 .

Definition 2.2. A subset V of Rn is a subspace if it is closed under addition and
scalar multiplication: V + V = V and RV = V . In other words:

• For v1 and v2 in V and c in R, both v1 + v2 and cv1 are in V .

Notation. When we use the term vector space, we will always mean a subspace of
Rn (or, when it is necessary to allow complex numbers, Cn). If V and U are vector
spaces such that V contains U , we say that “U is a subspace of V ”.
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Definition 2.3. Let v1, . . . , vr be n-vectors, and let c1, . . . , cr be scalars.

• A linear combination of v1, . . . , vr is any vector of the form c1v1 + · · · crvr.
• Span{v1, . . . , vr} is the set of all linear combinations of v1, . . . , vr.

Proposition 2.1. Span{v1, . . . , vr} is a subspace of Rn.

If V = Span{v1, . . . , vr}, one says that

• “V is the span of v1, . . . , vr”, or

• “the vectors v1, . . . , vr span V ”.

2.2. Linear dependence and independence.

Definition 2.4. Let v1, . . . , vr be n-vectors.

• They are linearly dependent if there exist scalars c1, . . . , cr, not all zero,
such that c1v1 + · · · crvr = 0.

• Conversely, they are linearly independent if c1v1 + · · · crvr = 0 is only true
when c1, . . . , cr are all zero.

Proposition 2.2. Let V be a vector space. Any collection of vectors which spans
V is at least as large as any collection of linearly independent vectors in V .

This proposition is very important. Let us restate it in a different way:

Proposition 2.2′. Let V = Span{v1, . . . , vs}.
(i) If w1, . . . , wr are linearly independent vectors in V , then r ≤ s.

(ii) If w1, . . . , wr are vectors in V with r > s, then they are linearly dependent.

Idea of proof. Suppose that w1, . . . , wr are in Span{v1, . . . , vs}. Then for 1 ≤ i ≤ r
and 1 ≤ j ≤ s, there are scalars Aij such that

A11v1+ · · ·+A1svs = w1,

A21v1+ · · ·+A2svs = w2,

...

Ar1v1+ · · ·+Arsvs = wr.

If r > s, it is always possible to find a non-trivial linear combination of the left sides
of these equations which is zero. Then the corresponding linear combination of the
right sides is also zero, showing that the wi’s are linearly dependent. The procedure
one uses to carry this out is row reduction of the r× s matrix A of coefficients. □

Definition 2.5. The standard basis of Rn is the set of vectors e1, . . . , en, where ej
is the vector with a 1 in the ith entry and 0’s elsewhere.

Lemma 2.3. The vectors e1, . . . , en are linearly independent and span Rn.

Corollary 2.4. (i) Any n+ 1 vectors in Rn are linearly dependent.

(ii) Any set of linearly independent vectors in Rn is of size at most n.

The next two lemmas are also very important.

Lemma 2.5. Suppose that v1, . . . , vr are linearly independent, and vr+1 is any
vector not in Span{v1, . . . , vr}. Then v1, . . . , vr+1 are also linearly independent.

Lemma 2.6. Suppose that v1, . . . , vr are n-vectors.
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(i) If they are linearly dependent, then we can delete one of them without chang-
ing their span.

(ii) Conversely, if they are linearly independent, then deleting any of them re-
duces their span.

2.3. Bases and dimension. Let V be a vector space, i.e., subspace of Rn.

Definition 2.6. A basis of V is a set of linearly independent vectors spanning V .

Theorem 2.7. (i) Bases of V do exist, and they are of size ≤ n.

(ii) Any set of linearly independent vectors in V is contained in a basis of V .

(iii) Any set of vectors which span V contains a basis of V .

Idea of proof. For (ii), use Lemma 2.5 to repeatedly add vectors to the given linearly
independent set, while maintaining linear independence. This process stops only
when the set spans V .

For (iii), use Lemma 2.6 to repeatedly remove vectors from the given spanning
set, while maintaining full span. This process stops only when the set becomes
linearly independent.

For (i), apply (ii) to the empty set of vectors, and use Corollary 2.4. □

Theorem 2.8. All bases of V have the same size.

Proof. By Proposition 2.2, any one basis is no bigger than any other. □

Definition 2.7. The dimension of V , written as dim(V ), is the size of its bases.

2.4. Sums of vector spaces. Let V1, V2, . . . , Vp be subspaces of Rn.

Definition 2.8. The vector space sum V1 + · · ·+ Vp is

V1 + · · ·+ Vp :=
{
v1 + · · ·+ vp : vi ∈ Vi for 1 ≤ i ≤ p

}
.

Lemma 2.9. V1 + · · ·+ Vp and V1 ∩ · · · ∩ Vp are vector spaces.

Definition 2.9. Suppose that V1, . . . , Vp have the following property: the only way
to write the zero vector as a sum of p vectors, one from each subspace Vi, is to take
all the summand vectors to be zero. To put it another way:

• If v1 + · · ·+ vp = 0, where vi ∈ Vi for 1 ≤ i ≤ p, then vi = 0 for all i.

In this case we say that the sum of the Vi is direct, and we write it as

V1 ⊕ · · · ⊕ Vp.

Proposition 2.10. Dimension “distributes” over direct sums:

dim(V1 ⊕ · · · ⊕ Vp) = dim(V1) + · · ·+ dim(Vp).

Idea of proof. Fix a basis of each the subspaces Vi, and use the direct sum property
to show that the union of all these bases is a basis of the direct sum space. It is
helpful to use “descriptive notation” in writing out the details. For example, you
could write vi1, . . . , v

i
di

for your basis of Vi, where di is dim(Vi). □

Proposition 2.11. The sum of two vector spaces is direct if and only if their
intersection is zero: V1 ∩ V2 = 0 ⇐⇒ V1 + V2 is a direct sum.

Theorem 2.12. Suppose that U is a subspace of a vector space V . Then it is
possible to find a subspace U ′ of V such that U + U ′ = V and the sum is direct:

V = U ⊕ U ′.
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Idea of proof. Let u1, . . . , us be a basis of U . Use Lemma 2.5 to pick vectors
u′
1, . . . , u

′
s′ extending your basis of U to a basis of V . Let U ′ be Span{u′

1, . . . , u
′
s′},

and argue that the sum of U and U ′ is direct. □

Warning. The subspace U ′ in Theorem 2.12 is not unique. The misconception
that it is unique is the “diagonal fallacy”. It is an error that arises in many forms.
Another of its forms is the misconception that if three vector spaces have the
property that any two of them intersect in zero, then the sum of all three is direct.
It is a good exercise to find a counterexample to this statement.

Theorem 2.13. dim(V1 + V2) + dim(V1 ∩ V2) = dim(V1) + dim(V2).

Idea of proof. Use Theorem 2.12 to choose vector spaces U ′
1 and U ′

2 such that

V1 = U ′
1 ⊕ (V1 ∩ V2), V2 = U ′

2 ⊕ (V1 ∩ V2).

Then argue that V1 + V2 = U ′
1 ⊕ U ′

2 ⊕ (V1 ∩ V2). □

3. Matrices

3.1. Matrix multiplication. Let A be an m× n matrix. Here are some observa-
tions and notation:

• A has n columns. Each of them is an m× 1 matrix, i.e., an m-vector. We
write Colj(A) for the jth column.

• A has m rows. Each of them is an 1 × n matrix, i.e., an n-vector “turned
on its side”. We write Rowi(A) for its ith row.

• We write Aij for the entry in the ith row and the jth column of A. Thus

A =

A11 · · · A1n

...
. . .

...
Am1 · · · Amn

 .

It is often useful to picture A in terms of its constituent rows or columns:

A =

 Row1(A)
...

Rowm(A)

 =


C C
o · · · o
l1 ln

(A) (A)

 .

Definition 3.1. Let A and B be matrices, and let c be a scalar.

• Matrices can be multiplied by scalars: the entries of cA are the correspond-
ing entries of A, all multiplied by c:

(cA)ij := cAij .

• Matrices of the same size can be added: if A and B are both m× n, then
the entries of A+B are the sums of the corresponding entries of A and B:

(A+B)ij := Aij +Bij .

• Matrices of equal “contacting” sizes can be multiplied: if B is ℓ×m and A
is m× n, then the product BA is the ℓ× n matrix with ij-entry

(BA)ij = Bi1A1j + · · ·+BimAmj .
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We may think of the matrix product BA in terms of the dot products of the
rows of B with the columns of A. Recall that the dot product of two n-vectors is
the sum of the products of their entries:

v · v′ := v1v
′
1 + · · ·+ vnv

′
n.

Thus the ij-entry of BA is (Rowi B) · (Colj A). It is helpful to visualize this as

BA =

 Row1(B)
...

Rowℓ(B)




C C
o · · · o
l1 ln

(A) (A)



=

Row1(B) · Col1(A) · · · Row1(B) · Coln(A)
...

. . .
...

Rowℓ(B) · Col1(A) · · · Rowℓ(B) · Coln(A)

 .

Remark. In working with matrices it is necessary to be comfortable with summa-
tion notation. For example, we may write the ij-entry of the product BA as

(3.1) (BA)ij =

m∑
r=1

BirArj .

Lemma 3.1. Matrix multiplication has the following properties:

(i) It distributes over matrix addition.

(ii) It commutes with scalar multiplication.

Lemma 3.2. Matrix multiplication is associative: if C, B, and A are of sizes such
that the products (CB)A and C(BA) can be formed, then they are equal.

To say this another way, suppose that C is k × ℓ, B is ℓ×m, and A is m× n.
Then (CB)A and C(BA) are equal: their ij-entries are

(3.2)
(
(CB)A

)
ij
=
(
C(BA)

)
ij
=

ℓ∑
r=1

m∑
s=1

CirBrsAsj .

Idea of proof. Derive (3.2) from (3.1). □

Warning. Matrix multiplication is not commutative. Even when A and B are
both n× n matrices, AB and BA are usually different.

We now define the transpose, an important concept. The main diagonal of a
matrix runs diagonally “southeast” from its upper left corner. Transposition is
“reflection across the main diagonal”:

Definition 3.2. If A is m× n, its transpose AT is the n×m matrix with entries

(AT )ij := Aji.

The transpose can be visualized as follows:

(3.3) AT =

 Col1(A)
...

Coln(A)

 =


R R
o · · · o
w1 wm

(A) (A)

 .

Proposition 3.3. The transpose “anti-distributes” over matrix multiplication:
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• If B is ℓ×m and A is m× n, then (BA)T = ATBT .

Proof. Use (3.3): (ATBT )ij = (Coli A) · (Rowj B) = (BA)ji = ((BA)T )ij . □

3.2. Matrices as linear functions.

Definition 3.3. An m× n matrix A defines a function from Rn to Rm:

A : Rn → Rm, A(v) = Av.

The point here is that if v is an n-vector, i.e., an n× 1 matrix, then the matrix
product Av is an m× 1 matrix, i.e., an m-vector.

Lemma 3.4. The function A is “linear”: for v and v′ in Rn and c ∈ R,
A(v + v′) = Av +Av′, A(cv) = cAv

Proof. This follows from Lemma 3.1. □

Proposition 3.5. Composition of linear functions corresponds to matrix multipli-
cation: for B an ℓ×m matrix, A an m× n matrix, and v ∈ Rn, we have

A(Bv) = (AB)v.

Proof. This follows from Lemma 3.2. □

Lemma 3.6. Suppose that A is an m × n matrix and v is an n-vector. Then we
may write the m-vector Av in terms of either the rows or the columns of A:

A =

 Row1(A) · v
...

Rowm(A) · v

 , A = v1


C
o
l1

(A)

+ · · ·+ vn


C
o
ln

(A)

 .

Definition 3.4. Let A be an m×n matrix, regarded as a function from Rn to Rm.

• The range of A is R(A) := {Av : v ∈ Rn}.
• The null space of A is N (A) := {v ∈ Rn : Av = 0}.

Lemma 3.7. Let A be an m× n matrix.

(i) R(A) is the subspace of Rm spanned by the columns of A.

(ii) N (A) is a subspace of Rn. It consists of all n-vectors whose dot products
with all the rows of A are zero.

Proof. This follows from Lemma 3.6. □

Theorem 3.8. For any matrix, the dimension of the domain is the sum of the
dimensions of the range and null space. In other words, for any m× n matrix A,

dimR(A) + dimN (A) = n.

Idea of proof. Choose a basis w1, . . . , wr ofR(A), and then choose vectors v1, . . . , vr
such that Avi = wi for 1 ≤ i ≤ r. Define

V := Span
{
v1, . . . , vr

}
.

Use the linear independence of the wi’s to verify that the vi’s are also linearly
independent. Hence V and R(A) both have dimension r.

To conclude the argument, deduce that Rn is the direct sum of V and N (A),
and apply Proposition 2.10. □
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Definition 3.5. The rank of a matrix is the dimension of its range:

rank(A) := dimR(A).

4. Invertible matrices

Recall from Definition 2.5 the standard basis e1, . . . , en of Rn.

Proposition 4.1. Let w1, . . . , wn be arbitrary vectors in Rm. Then there exists a
unique m×n matrix A such that Aei = wi for 1 ≤ i ≤ n, namely, the matrix whose
ith column is wi:

A =

 | |
w1 · · · wn

| |

 .

5. Square matrices

Throughout this chapter, A denotes an n× n matrix.

Notation. • If c is a scalar, “A+ c” means A+ cI.

• Blank regions in matrices are understood to contain only zeroes.

• Starred regions in matrices are understood to contain arbitrary entries.

5.1. Eigenvectors, eigenvalues, and eigenspaces.

Definition 5.1. Suppose that v is a non-zero n-vector, λ is a scalar, and Av = λv.
Then v is an eigenvector of A, of eigenvalue λ.

• Eigenvectors of eigenvalue λ may be referred to as λ-eigenvectors.

• If A has λ-eigenvectors, we say that λ is an eigenvalue of A.

Definition 5.2. The λ-eigenspace of A is the set of all λ-eigenvectors of A, together
with the zero vector. We denote it by Vλ:

Vλ :=
{
v ∈ Rn : Av = λv

}
.

Lemma 5.1. The λ-eigenspace of A is the null space of A− λ:

Vλ = N (A− λ).

In particular, λ is an eigenvalue of A if and only if A− λ is not invertible.

Definition 5.3. The characteristic polynomial of A is the determinant of t−A:

charA(t) := det(t−A).

We will usually write the factorization of charA(t) like this:

charA(t) := (t− λ1)
d1 · · · (t− λr)

dr .

Here λ1, . . . , λr are the distinct roots of charA(t), and d1, . . . , dr are their multiplic-
ities. The degree of charA is n, so d1 + · · ·+ dr = n.

Proposition 5.2. (i) The eigenvalues of A are the roots of charA(t).

(ii) The sum of the eigenspaces of A is direct:

Vλ1 + · · ·+ Vλr = Vλ1 ⊕ · · · ⊕ Vλr .

(ii) For 1 ≤ s ≤ r, dim(Vλs
) ≤ ds. Therefore

dim(Vλ1
) + · · ·+ dim(Vλr

) ≤ n.
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Definition 5.4. A is diagonalizable if there is a diagonal matrix Λ and an invertible
matrix P such that A = PΛP−1. In this case, we say that

• “P diagonalizes A”, or

• “PΛP−1 is a diagonalization of A”.

Proposition 5.3. (i) Suppose that PΛP−1 is a diagonalization of A. Then
Coli(P ) is an eigenvector of A, of eigenvalue Λii.

(ii) Conversely, suppose that v1, . . . , vn is a basis of Rn consisting of eigenvec-
tors of A. Let λi be the eigenvalue of vi. Then A = PΛP−1, where

P =

 | |
v1 · · · vn

| |

 , Λ =

λ1

. . .

λn

 .

Theorem 5.4. The following conditions are equivalent:

(i) A is diagonalizable.

(ii) dim(Vλs) = ds for 1 ≤ s ≤ r.

(iii) The direct sum of the eigenspaces of A is all of Rn, i.e.,

Vλ1
⊕ · · · ⊕ Vλr

= Rn.

The next proposition gives one of the many uses of diagonalizations. In fact,
(5.1) is true for any function f(x) with a power series expansion. A particularly
important example is the exponential function ex.

Proposition 5.5. If A = PΛP−1 and f(x) is any polynomial, then

(5.1) f(A) = Pf(Λ)P−1 = P

f(Λ11)
. . .

f(Λnn)

P−1.

Diagonalization. Here is a summary of the procedure:

Step 1. Compute the characteristic polynomial charA(t) = det(t−A). Factor it:

(5.2) charA(t) := (t− λ1)
d1 · · · (t− λr)

dr , d1 + · · ·+ dr = n.

Here λ1, . . . , λr are the distinct eigenvalues, and d1, . . . , dr are their multiplicities.

Step 2. The λs-eigenspace Vλs is N (A − λs). Use row operations to find bases of
all the eigenspaces. A is diagonalizable if and only if dim(Vλs

) = ds for all s.

Step 3. Assume that A is diagonalizable. Let v1, . . . , vn be a list of the basis vectors
of all the eigenspaces, ordered as follows: the basis of Vλ1 first, then the basis of
Vλ2 , and so on, ending with the basis of Vλr . Define P by Coli(P ) = vi. Let Λs be
the ds × ds matrix λsI. Then

A = P ΛP−1, where Λ =

Λ1

. . .

Λr

 .
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5.2. Generalized eigenspaces. For most matrices, the characteristic polynomial
has no repeated roots. In this case there are n distinct eigenvalues, each eigenspace
is 1-dimensional, and the matrix is diagonalizable.

When the characteristic polynomial has repeated roots, the matrix may be di-
agonalizable, but usually it is not. In this section we describe an analog of diago-
nalization for non-diagonalizable matrices. As usual, write the factorization of the
characteristic polynomial as in (5.2).

Definition 5.5. The λs-generalized eigenspace of A is

V
g
λs

:= N (A− λs)
ds .

Theorem 5.6. (i) dim(V g
λs
) = ds for all s.

(ii) The sum of the V g
λs

is direct and is all of Rn:

Rn = V
g
λ1

⊕ · · · ⊕ V
g
λr
.

We now explain how to construct a certain type of basis of V g
λs
.

Proposition 5.7. N (A− λs) ⊆ N (A− λs)
2 ⊆ · · · ⊆ N (A− λs)

ds .

Definition 5.6. Choose a basis vs1, . . . , v
s
ds

of V g
λs

in the following order:

• First, choose a basis of N (A− λs).

• Second, extend it to a basis of N (A− λs)
2.

• Continue extending it to the null spaces of successively higher powers of
A− λs until you have reached a basis of N (A− λs)

ds .

Proposition 5.8. Let P be the matrix whose columns are the following basis of
Rn, in the following order:

(5.3) v11 , . . . , v
1
d1
, v21 , . . . , v

2
d2
, . . . , vr1, . . . , v

r
dr
.

Then A = P ΓP−1, for a “block-diagonal” matrix Γ of the following form:

Γ =

Γ1

. . .

Γr

 ,

where Γs is an upper triangular ds × ds matrix whose diagonal entries are all λs:

Γs =


λs

λs ∗
. . .

λs

λs

 .

We will refer P ΓP−1 as a “generalized diagonalization” of A.

Generalized diagonalization. Here is a summary of the procedure:

Step 1. Exactly as for diagonalization, factor charA(t) as (t− λ1)
d1 · · · (t− λr)

dr .
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Step 2. The generalized eigenspace V g
λs

is N (A− λs)
ds . It is of dimension ds. For

each s, find a basis of N (A − λs). Extend it to a basis of N (A − λs)
2. Continue

until you have a basis of N (A− λs)
ds as in Definition 5.6:

(5.4) vs1, . . . , v
s
ds
.

Step 3. Let v1, . . . , vn be the basis (5.3) of Rn given by combining all the bases (5.4)
of the generalized eigenspaces, in order of increasing s. Define P by Coli(P ) = vi.

At this point you could obtain Γ as P−1AP . However, it can be difficult to find
P−1 and compute the triple product. There is another more conceptual way to
obtain the ds × ds matrices Γs which make up Γ:

Step 4. Check that (A − λs)v
s
1 = 0. Then compute (A − λs)v

s
d for 1 < d ≤ ds. It

will be a linear combination of the preceding basis vectors:

(A− λs)v
s
d = g1,dv

s
1 + g2,dv

s
2 + · · ·+ gd−1,dv

s
d−1.

The scalars gc,d are the entries of Γs above the diagonal: for c < d,

(Γs)c,d = gc,d.

Because Γs is upper triangular with all diagonal entries equal to λs, we now know
all of its entries. Combining all the Γs into Γ completes the process.

Here is a brief justification of Step 4. Because P maps the standard basis of Rn

to the basis in (5.3) and A = P ΓP−1, we have the following statement:

• Γ acts on the standard basis as A acts on the basis in (5.3).

6. Orthogonal matrices

Definition 6.1. Let v and v′ be vectors in Rn.

• The length of v is ∥v∥ :=
√
vT v.

• v is said to be a unit vector if its length is 1.

• v and v′ are said to be orthogonal if their dot product vT v′ is 0.

• For v ̸= 0, we write v̂ for v/∥v∥, the unit vector in the direction of v.

Definition 6.2. A collection of mutually orthogonal unit vectors in Rn is said to
be orthonormal (sometimes abbreviated to ON).

Lemma 6.1. Any collection of orthonormal vectors in Rn is linearly independent
and may be extended to an orthonormal basis of Rn.

More generally, if V is a subspace of Rn, any collection of orthonormal vectors
in V may be extended to an orthonormal basis of V .

Idea of proof. Suppose that u1, . . . , ur are ON vectors in V . To see that they are
linearly independent, suppose that c1u1 + · · · + crur = 0. Check that taking the
dot product of this equation with us gives cs = 0.

The extension property if proven using the Gram-Schmidt process. Suppose that
u1, . . . , ur do not span V . Choose v ∈ V not in their span. Let

(6.1) w = v − (uT
1 v)u1 − · · · − (uT

r v)ur.

Check that uT
s w = 0 for 1 ≤ s ≤ r, but w ̸= 0. Define ur+1 := ŵ. If u1, . . . , ur+1

span V , we are finished. If not, repeat the process. □
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Definition 6.3. A real square matrix M is orthogonal if its transpose is its inverse:

MT = M−1.

Lemma 6.2. (i) The determinant of an orthogonal matrix is ±1.

(ii) Transposes of orthogonal matrices are orthogonal:

• M orthogonal =⇒ MT orthogonal.

(iii) Products of orthogonal matrices are orthogonal:

• M , M ′ both n× n orthogonal =⇒ MM ′ orthogonal.

(iv) M is orthogonal if and only if its columns are orthonormal.

Proposition 6.3. Let M be a 2× 2 orthogonal matrix.

(i) If det(M) = 1, then M is rotation by some angle θ:

M = Rθ :=

(
cos θ − sin θ
sin θ cos θ

)
.

(ii) If det(M) = −1, then M is reflection over some angle θ:

M = Fθ :=

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
.

Definition 6.4. The trace of an n× n matrix A is

tr(A) := A11 + · · ·+Ann.

Proposition 6.4. Let M be a 3× 3 orthogonal matrix.

(i) If det(M) = 1, then M has an eigenvector v of eigenvalue 1, and M rotates
R3 by an angle θ around the axis Rv, where

1 + 2 cos θ = tr(M).

(ii) If det(M) = −1, then M has an eigenvector v of eigenvalue −1, and M
both reflects R3 across the plane v⊥ and rotates it by an angle θ around the
axis Rv, where

−1 + 2 cos θ = tr(M).

7. Symmetric matrices

Definition 7.1. If V is any subspace of Rn, then V ⊥ is the set of all vectors in Rn

orthogonal to every vector in V :

V ⊥ :=
{
w ∈ Rn : wT v = 0 ∀ v ∈ V

}
.

Lemma 7.1. (i) V ⊥ is a subspace of Rn.

(ii) The sum V + V ⊥ is direct and is all of Rn.

(iii) (V ⊥)⊥ = V .

Definition 7.2. Two subspaces V and V ′ of Rn are said to be orthogonal if every
vector in V is orthogonal to every vector in V ′. This is equivalent to the condition

V ′ ⊆ V ⊥.

Lemma 7.2. Suppose that V1, . . . , Vr are “mutually orthogonal” subspaces of Rn:
for all i ̸= j, Vi and Vj are orthogonal to one another. Then the sum V1 + · · ·+ Vr

is direct. Such direct sums are said to be orthogonal.
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Definition 7.3. A real square matrix S is symmetric if it is its own transpose:

S = ST .

Theorem 7.3 (the spectral theorem). Let S be a symmetric n× n matrix.

(i) The eigenvalues of S are real.

(ii) S “admits orthonormal bases of eigenvectors”: it is possible to find an
orthonormal basis of Rn consisting of eigenvectors of S.

(iii) S “may be diagonalized by an orthogonal matrix”: it is possible to find an
orthogonal matrix M and a real diagonal matrix Λ such that

S = MΛMT .

Theorem 7.3′ (a reformulation of the spectral theorem). If S is a symmetric n×n
matrix, then Rn is the orthogonal direct sum of its eigenspaces.

Orthogonal diagonalization. Let S be a symmetric matrix.

Step 1. As for ordinary diagonalization, factor charS(t) as (t− λ1)
d1 · · · (t− λr)

dr .

Step 2. The λs-eigenspace Vλs
is N (S − λs). Use row reduction and the Gram-

Schmidt process to find an ON basis of each eigenspace.

Step 3. Let u1, . . . , un be a list of the ON basis vectors of all the eigenspaces,
ordered according to the order Vλ1 , . . . , Vλr . Define M by Coli(M) = ui. Let Λs

be the ds × ds matrix λsI. Then M will be orthogonal, and

S = MΛMT , where Λ =

Λ1

. . .

Λr

 .

8. Projection matrices

Definition 8.1. Let V be a subspace of Rn. The orthogonal projection matrix PV

is the (unique) matrix with 1-eigenspace V and 0-eigenspace V ⊥.

Lemma 8.1. (i) PV is symmetric, and “idempotent”: P 2
V = PV .

(ii) The sum PV + PV ⊥ is the identity I, and the product PV PV ⊥ is zero.

(iii) If u1, . . . , ur is an orthonormal basis of V , then PV = u1u
T
1 + · · ·+ uru

T
r .

Corollary 8.2. If v is any non-zero vector, then projection to the line Rv is

PRv = v̂v̂T =
vvT

vT v
.

Warning. Suppose that V is a 2-dimensional subspace spanned by unit vectors u1

and u2, which are not orthogonal. Then PV is not u1u
T
1 + u2u

T
2 .

Theorem 7.3′′ (another reformulation of the spectral theorem). Let S be a sym-
metric matrix, with distinct eigenvalues λ1, . . . , λr, and corresponding eigenspaces
Vλ1 , . . . , Vλr . Then

S = λ1PVλ1
+ · · ·+ λrPVλr

Remark. Projections give a better way to write the Gram-Schmidt process (6.1):

w = v − PSpan{u1,...,ur}v.

This gives a concise way to understand a factorization of invertible matrices known
as the QR-decomposition, or, in a more general context, the Iwasawa decomposition:
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Theorem 8.3. Every invertible matrix A has a unique factorization

A = KDU,

where K is orthogonal, D is diagonal with positive diagonal entries, and U is upper
triangular with 1’s on the diagonal.

Idea of proof. Write v1, . . . , vn for the columns of A. Define w1, . . . , wn as follows.
First, set w1 := v1. Define w2, w3, . . . via the Gram-Schmidt process:

w2 := v2 − PRw1v2, w3 := v3 − PSpan{w1,w2}v3, w4 := v4 − PSpan{w1,w2,w3}v4,

and so on. Then w1, . . . , wn are orthogonal, so ŵ1, . . . , ŵn are ON. Set

K :=

 | |
ŵ1 · · · ŵn

| |

 , D :=

∥w1∥
. . .

∥wn∥

 ,

and define U to be the upper triangular matrix with 1’s on the diagonal and super-
diagonal entries Uij := wT

i vj/w
T
i wi. Check that KD has columns w1, . . . , wn, and

U encodes the column operations necessary to reverse the Gram-Schmidt process
and transform KD back into A. The point is that because the wi’s are orthogonal,

PSpan{w1,...,wr} = PRw1
+ · · ·+ PRwr

. □

9. Positive matrices

Definition 9.1. Let S be a symmetric matrix.

• S is positive definite symmetric (PDS) if vTSv > 0 for all vectors v ̸= 0.

• S is positive semidefinite symmetric (PSDS) if vTSv ≥ 0 for all v.

Proposition 9.1. Let S be a symmetric matrix.

(i) S is PDS if and only if its eigenvalues are all positive.

(ii) S is PSDS if and only if its eigenvalues are all non-negative.

Idea of proof. We will only discuss (i); the reasoning for (ii) is similar. If v is an
eigenvector of eigenvalue λ, then

0 < vTSv = λvT v = λ∥v∥2 =⇒ λ > 0.

Conversely, suppose that the eigenvalues λ1, . . . , λn of S are all positive, and
let u1, . . . , un be a corresponding ON eigenbasis. Any non-zero vector v may be
written as c1u1 + · · ·+ cnun, where not all of the ci are 0. Check that

vTSv = λ1c
2
1 + · · ·+ λnc

2
n > 0. □

Corollary 9.2. A PSDS matrix is PDS if and only if it is invertible.

Proposition 9.3. Every PSDS matrix has a unique PSDS square root.

Idea of proof. Let S be PSDS, and let MΛMT be an orthogonal diagonalization.
By Proposition 9.1, the diagonal entries of Λ are non-negative. Define Λ1/2 to

be the diagonal matrix such that for 1 ≤ i ≤ n, the diagonal entry Λ
1/2
ii is the

non-negative square root of Λii. Then the PSDS square root of S is

S1/2 := MΛ1/2MT .

The uniqueness follows from the fact that S and S1/2 have the same eigenspaces:
for every eigenvalue λ of S, the λ-eigenspace of S and the λ1/2-eigenspace of S1/2

are equal. (It is instructive to work out the details!) □
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Lemma 9.4. Let S be PSDS. Then S1/2 and S have the same nullspaces:

N (S1/2) = N (S).

Proof. As noted in the last proof, S and S1/2 have the same 0-eigenspaces. □

The next theorem gives computationally effective criteria for positivity. We will
omit the proof, but it is easier than you might think: try it for small matrices. It
leads to a factorization of PDS matrices called the Cholesky decomposition:

Theorem 9.5. Let S be symmetric. The following conditions are equivalent:

(i) S is PDS.

(ii) For all r, the upper left r × r submatrix of S has positive determinant.

(iii) Performing lower triangular row operations on S reduces it to an upper
triangular matrix whose pivots are all positive. In other words, there is a
lower triangular matrix L with 1’s on the diagonal, and an upper triangular
matrix U with positive diagonal entries, such that

S = LU.

Corollary 9.6. Let S be PDS.

(i) There is a unique lower triangular matrix L with 1’s on the diagonal, and
a unique diagonal matrix D with positive diagonal entries, such that

S = LDLT .

(ii) The Cholesky decomposition: there is a unique lower triangular matrix T
with positive diagonal entries such that

S = TTT .

Proof. Begin by performing lower triangular row operations on S to obtain the
factorization LU in Theorem 9.5(iii). Then let D be the diagonal matrix with the
same diagonal entries as U . Because S is symmetric, U will be DLT , giving (i).
For (ii), define T to be LD1/2. □

10. The polar decomposition

Lemma 10.1. Let A be any m× n matrix.

(i) ATA is n× n and PSDS.

(ii) A and ATA have the same null spaces: N (A) = N (ATA).

(ii) A and ATA have the same rank.

Proof. For (i), note that ATA is symmetric, and for any vector v,

vT (ATA)v = (Av)T (Av) = ∥Av∥2 ≥ 0.

For (ii), note that if Av = 0, then ATAv = 0. Conversely, if ATAv = 0, then
multiplying on the left by vT yields ∥Av∥ = 0, proving Av = 0. □

Definition 10.1. The modulus of an arbitrary m× n A is the PSDS n× n matrix

|A| := (ATA)1/2.

Lemma 10.2. |A| is invertible if and only if the null space N (A) of A is 0.

Proof. Being square, |A| invertible if and only if N (|A|) = 0. By Lemmas 9.4
and 10.1(ii), N (|A|) = N (ATA) = N (A). □
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Definition 10.2. Let A be a square matrix. A polar decomposition of A is a
factorization Y S, where Y is orthogonal and S is PSDS.

Theorem 10.3. (i) If A = Y S is a polar decomposition, then S = |A|.
(ii) Invertible matrices have unique polar deompositions

(iii) Every square matrix has at least one polar decomposition.

Proof. For (i), note that ATA = STY TY S = S2, as Y T = Y −1. This means that
S is a PSDS square root of ATA, so it must be |A|.

For (ii), if A is invertible, then |A| is invertible, so the only choice for Y is
A|A|−1. We must check that this matrix is orthogonal, i.e., its transpose is its
inverse. Keeping in mind that |A| and hence also |A|−1 are symmetric, compute:

(A|A|−1)T (A|A|−1) = |A|−1(ATA)|A|−1 = |A|−1|A|2|A|−1 = I.

For (iii), use A’s singular value decomposition KΣMT , given in the next section:
it has the property that |A| = MΣMT , so Y = KMT gives A = Y |A|. □

11. The singular value and Schmidt decompositions

Let A be an arbitrary m× n matrix of rank r.

Definition 11.1. A singular value decomposition (SVD) of A is a factorization

A = KΣMT , where

• K is m×m orthogonal;

• M is n× n orthogonal;

• Σ is “m×n diagonal”: its only non-zero entries are Σ11,Σ22, . . . ,Σrr, which
are assumed to be positive and non-increasing.

Definition 11.2. A reduced SVD (rSVD) of A is a factorization

A = K̃Σ̃M̃T , where

• K̃ is m× r with ON columns;

• M̃ is n× r with ON columns;

• Σ̃ is diagonal with non-increasing positive diagonal entries.

Definition 11.3. A Schmidt decomposition of A is a sum:

(11.1) A = σ1w1u
T
1 + · · ·+ σrwru

T
r , where

• w1, . . . , wr are ON vectors in Rm;

• u1, . . . , ur are ON vectors in Rn;

• σ1 ≥ · · · ≥ σr are positive scalars.

Before explaining how to compute these decompositions, we give some proposi-
tions showing that they are all equivalent, and although none of them is unique,
the scalars appearing in them are.

Proposition 11.1. The non-zero entries of Σ in any SVD, the diagonal entries of
Σ̃ in any rSVD, and the scalars σi in any Schmidt decomposition are all the same:
they are the non-zero eigenvalues of the modulus |A|, listed in non-increasing order:

σi = Σ̃ii = Σii for 1 ≤ i ≤ r.
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Idea of proof. Suppose we have all three types of decompositions of A:

A = KΣMT = K̃Σ̃M̃T = σ1w1u
T
1 + · · ·+ σrwru

T
r .

Transposing everything gives all three types of decompositions of AT :

AT = MΣTKT = M̃ Σ̃K̃T = σ1u1w
T
1 + · · ·+ σrurw

T
r .

Because K̃ has ON columns, K̃T K̃ = Ir×r. Hence

ATA = MΣTΣMT = M̃ Σ̃2M̃T = σ2
1u1u

T
1 + · · ·+ σ2

ruru
T
r .

It follows that as i runs from 1 to r, the σ2
i , the Σ̃2

ii, and the Σ2
ii all run through

the positive eigenvalues of ATA. Hence they are all the same. □

Corollary 11.2. SVDs, rSVDs, and Schmidt decompositions all have the following
property: the transpose of the decomposition is the decomposition of the transpose.

In other words, the transpose of an SVD, rSVD, or Schmidt decomposition of A
is an SVD, rSVD, or Schmidt decomposition of AT .

Proposition 11.3. To convert an rSVD to a Schmidt decomposition and vice versa,
use the following equations:

K̃ :=

 | |
w1 · · · wr

| |

 , Σ̃ :=

σ1

. . .

σr

 , M̃ :=

 | |
u1 · · · ur

| |

 .

Proof. Just check that for this K̃, Σ̃, and M̃ , K̃Σ̃M̃ is nothing but (11.1). □

Proposition 11.4. To convert an SVD KΣMT to an rSVD K̃Σ̃M̃T ,

• let K̃ be the first r columns of K;

• let M̃ be the first r columns of M ;

• let Σ̃ be the upper left r × r block of Σ.

Conversely, to convert an rSVD K̃Σ̃M̃T to an rSVD KΣMT ,

• let the first r columns of K be K̃, and let the remaining columns be any
extension of the first r to an ON basis of Rm;

• let the first r columns of M be M̃ , and let the remaining columns be any
extension of the first r to an ON basis of Rn;

• let Σ be the m× n matrix with Σ as its upper left block and 0’s elsewhere.

Proof. Note that Σ and Σ̃ have the following shapes:

Σ =

(
Σ̃ 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
, where Σ̃ :=

σ1

. . .

σr

 .

This implies that only the first r columns of K and M affect the SVD:

KΣMT = Σ11 Col1(K) Col1(M)T + · · ·+Σrr Colr(K) Colr(M)T . □

Definition 11.4. • The scalars σ1 ≥ · · · ≥ σr are called the singular values.

• The ON vectors u1, . . . , ur are called the right singular vectors.

• The ON vectors w1, . . . , wr are called the left singular vectors.
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So far we have seen that SVDs, rSVDs, and Schmidt decompositions are essen-
tially identical. We summarize this in one equation, with matrix sizes as subscripts:

Am×n = Km×m Σm×n M
T
n×n = K̃m×r Σ̃r×r M̃

T
n×r =

r∑
i=1

σi (wi)m×1 (ui)
T
n×1.

• K is orthogonal, and K̃ is its first r columns: w1, . . . , wr;

• M is orthogonal, and M̃ is its first r columns: u1, . . . , ur;

• Σ̃ is invertible and diagonal, with the singular values σ1 ≥ · · · ≥ σr > 0 on
the diagonal, and Σ has Σ̃ as its upper left block and 0’s elsewhere.

Notation. For p, q ≥ r, it will be convenient to write Σp×q for the p × q matrix

with Σ̃ as its upper left block and 0’s elsewhere.

Proposition 11.5. Suppose that KΣMT is an SVD of A.

(i) ATA = MΣ2
n×nM

T is an orthogonal diagonalization.

(ii) AAT = KΣ2
m×mKT is an orthogonal diagonalization.

(iii) |A| = MΣn×nM
T and |AT | = KΣm×mKT are orthogonal diagonalizations.

Proof. First, (iii) follows from (i) and (ii). For (i) and (ii), use Σ = Σm×n to verify

ΣTΣ = Σ2
n×n, ΣΣT = Σ2

m×m.

Since K and M are orthogonal, this gives

ATA = MΣTΣMT = MΣ2
n×nM

T , AAT = KΣΣTKT = KΣ2
m×mKT . □

This proposition gives a sense of how to construct SVDs: the columns of M are
eigenvectors of ATA, the columns of K are eigenvectors of AAT , and the singular
values are the square roots of their eigenvalues. Here are the details.

Theorem 11.6. Every matrix A has SVDs, rSVDs, and Schmidt decompositions.

Proof. By Propositions 11.3 and 11.4, it is enough to construct any one of the three.
The following procedure constructs a Schmidt decomposition.

Step 1. Recall that A is an arbitrary m × n matrix of rank r. Its modulus |A| is
PSDS, and also of rank r. Therefore it admits an ON basis u1, . . . , un of eigenvectors
with non-negative eigenvalues, precisely r of which are positive. Order this basis so
its eigenvalues are non-increasing. Then the first r will be positive: write them as

σ1 ≥ · · · ≥ σr.

Step 2. Define vectors w1, . . . , wr in Rm by

wi :=
1
σi
Aui.

We claim that they are ON. To see this, use ATA = |A|2 and |A|ui = σiui:

wT
i wi =

1
σ2
i
uT
i (A

TA)ui =
1
σ2
i
uT
i |A|2ui = uT

i ui = 1,

wT
j wi =

1
σjσi

uT
j (A

TA)ui =
1

σjσi
uT
j |A|2ui =

σi

σj
uT
j ui = 0 for i ̸= j.

Step 3. Define A′ := σ1w1u
T
1 + · · · + σrwru

T
r . We need to show that A′ = A. It

will suffice to show that they have the same action on the ON basis u1, . . . , un.
We ordered the ui so that for i > r, |A|ui = 0. Since A has the same null space

as |A|, Aui>r is also 0. And because the ui are ON, A′ui>r is 0 too.
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For i ≤ r, every summand of A′ except for the ith kills ui, and because uT
i ui = 1,

the ith summand sends ui to σiwi. By the definition of wi, this is Aui. □

Remark. SVDs, rSVDs, and Schmidt decompositions are not unique. For example,
ui and wi can be replaced by −ui and −wi. We saw an analogous phenomenon
when studying diagonalization: eigenvectors are not intrinsic, but eigenspaces are.
This points the way to a form of the SVD which does possess uniqueness, which
we refer to as the intrinsic SVD (iSVD). In it, right and left singular vectors are
replaced by right and left “singular spaces”. We now briefly describe it, but you
may skip this material.

Definition 11.5. Let σ1 > · · · > σd > 0 be the distinct singular values of A.
(Warning: this indexing is different from the indexing σ1 ≥ · · · ≥ σr used earlier.)

• Let Uδ be the σδ-eigenspace of |A|.
• Let Wδ be the σδ-eigenspace of |AT |.
• Let ιδ be 1

σδ
A|Uδ

, the restriction of 1
σδ
A to Uδ.

The spaces Uδ and Wδ are the right and left singular spaces. The iSVD is the
following statement. Recall that PUδ

denotes orthogonal projection from Rn to Uδ.

Proposition 11.7. (i) A = σ1ι1PU1
+ · · ·+ σdιdPUd

.

(ii) ιδ is a bijection from Uδ to Wδ, and its inverse is 1
σδ
AT |Wδ

.

(iii) ιδ is an isometry: for all u, u′ ∈ Uδ, (ιδu) · (ιδu′) = u · u′.

12. The pseudoinverse

Let A be an arbitrary m× n matrix of rank r.

Definition 12.1. The pseudo-inverse A+ of A may be defined in terms of any
rSVD of A, or equivalently, any Schmidt decomposition of A:

(12.1) A+ := M̃ Σ̃−1K̃T =
1

σ1
u1w

T
1 + · · ·+ 1

σr
urw

T
r .

This definition shows you how to compute A+, and it even gives you the Schmidt
decomposition of A+, but it has two flaws: it does not tell you what A+ really is,
and it does not explain why you get the same A+ no matter which rSVD you choose.
We now rectify this by giving an intrinsic definition of A+.

Theorem 12.1. Consider the restriction of A to R(AT ), written A|R(AT ).

(i) Rn = R(AT )⊕⊥ N (A).

(ii) Rm = R(A)⊕⊥ N (AT ).

(iii) A|R(AT ) is a bijection from R(AT ) to R(A).

(iv) AT |R(A) is a bijection from R(A) to R(AT ).

Proposition 12.2. A+ is the unique n×m matrix with the following properties:

(i) N (A+) = N (AT ).
(ii) R(A+) = R(AT ).

(iii) The restriction A+|R(A) is the inverse of A|R(AT ).

Corollary 12.3. (i) A+A is the projection PR(AT ).

(ii) AA+ is the projection PR(A).
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Remark. The following variation of (12.1) can be easier for computations, because
it often contains no irrational square roots. Write Ai for the ith summand in the
Schmidt decomposition of A, the rank 1 matrix σiwiu

T
i . Then

A+ =
1

σ2
1

A1 + · · ·+ 1

σ2
r

Ar.


