8.3 Infinite Series

- **Definition.** Given a sequence of numbers \(\{ a_n \} \), an expression of the form

\[
a_1 + a_2 + a_3 + \cdots + a_n + \cdots
\]

is an infinite series. The number \(a_n \) is the \textit{nth term} of the series. The partial sums of the series form a sequence

\[
\begin{align*}
s_1 &= a_1 \\
s_2 &= a_1 + a_2 \\
s_3 &= a_1 + a_2 + a_3 \\
&\vdots \\
s_n &= \sum_{k=1}^{n} a_k \\
&\vdots
\end{align*}
\]

of real numbers, each defined as a finite sum. If the sequence of partial sums has a limit \(S \) as \(n \to \infty \), we say that the series converges to the sum \(S \), and we write

\[
a_1 + a_2 + a_3 + \cdots + a_n + \cdots = \sum_{k=1}^{\infty} a_k = S.
\]

Otherwise, we say that the series diverges.

- **Geometric series** are series of the form

\[
a + ar + ar^2 + \cdots + ar^{n-1} + \cdots = \sum_{n=1}^{\infty} ar^{n-1}
\]

in which \(a \) and \(r \) are fixed numbers and \(a \neq 0 \). The ratio \(r \) can be positive or negative. If \(|r| \neq 1\), we can show that the \textit{nth} partial sum is

\[
s_n = \frac{a(1 - r^n)}{1 - r}, \quad (r \neq 1).
\]

If \(|r| < 1\), then \(r^n \to 0 \) as \(n \to \infty \) and \(s_n \to a/(1 - r) \). If \(|r| > 1\), then \(|r^n| \to \infty \) and the series diverges.

If \(r = 1 \), the \textit{nth} partial sum of the geometric series is

\[
s_n = a + a(1) + a(1)^2 + \cdots a(1)^{n-1} = na,
\]

and the series diverges. If \(r = -1 \), the series diverges because the \textit{nth} partial sums alternate between \(a \) and 0. [2,8,20,42,6,Example 6]

- **Theorem 6: Limit of the \textit{nth} Term of a Convergent Series.** If \(\sum_{n=1}^{\infty} a_n \) converges, then \(a_n \to 0 \).

 \textbf{Proof.} Let \(S \) represent the series’ sum and \(s_n = a_1 + a_2 + a_3 + \cdots + a_n \) the \textit{nth} partial sum. When \(n \) is large, both \(s_n \) and \(s_{n-1} \) are close to \(S \), so

\[
a_n = s_n - s_{n-1} \to S - S = 0.
\]

- **\textit{nth}-Term Test for Divergence.** \(\sum_{n=1}^{\infty} a_n \) diverges if \(\lim_{n \to \infty} a_n \) fails to exist or is different from zero. [Example 8,9]

- **Theorem 7: Properties of Convergent Series.** If \(\sum a_n = A \) and \(\sum b_n = B \) are convergent series, then

 1. **Sum Rule:** \(\sum (a_n + b_n) = \sum a_n + \sum b_n = A + B \)
 2. **Difference Rule:** \(\sum (a_n - b_n) = \sum a_n - \sum b_n = A - B \)
 3. **Constant Multiple Rule:** \(\sum ka_n = k \sum a_n = kA \) (any number \(k \)). [10]