Section 4.1 Exponential Functions

- For \(a > 0 \), the \textbf{exponential function with base} \(a \) is defined by

\[f(x) = a^x. \]

For \(a \neq 1 \), the domain of \(f \) is \((-\infty, \infty)\), the range of \(f \) is \((0, \infty)\). The graph of \(f \) approaches \(y = 0 \) as \(x \) decreases through negative values if \(a > 1 \), and it approaches \(y = 0 \) as \(x \) increases indefinitely if \(0 < a < 1 \).

\(\text{eg. } f(x) = 2^x, \ g(x) = \left(\frac{1}{2} \right)^x \) \(40,26,30 \)

- The number \(e \) is defined as the value that \(\left(1 + \frac{1}{n} \right)^n \) approaches as \(n \) becomes large. This number is irrational and is approximately equal to 2.72. More accurately, \(e \approx 2.71828 \ldots \)

- The \textbf{natural exponential function} is the exponential function

\[f(x) = e^x \]

with base \(e \). It is often referred to as the \textbf{exponential function}. \(48 \)

- If an amount of money \(P \), called the \textbf{principal}, is invested at a simple interest rate \(i \), then after one time period the interest is \(Pi \), and the amount \(A \) of money is

\[A = P + Pi = P(1 + i). \]

If the interest is reinvested, then after \(k \) periods the amount is

\[A = P(1 + i)^k. \]

Notice that this is an exponential function with base \(1 + i \). If the annual interest rate is \(r \) and if interest is compounded \(n \) times per year, then each time period the interest rate is \(i = r/n \), and there are \(nt \) time periods in \(t \) years. So \textbf{compound interest} is calculated by the formula

\[A(t) = P \left(1 + \frac{r}{n} \right)^{nt}. \]

- If we let \(m = n/r \), then

\[A(t) = P \left(1 + \frac{1}{m} \right)^{mt}. \]

Recall that as \(m \) becomes large, the quantity \(\left(1 + \frac{1}{m} \right)^m \) approaches the number \(e \). Thus \textbf{continuously compounded interest} is calculated by the formula

\[A(t) = Pe^{rt}. \] \(36 \)

Section 4.2 Logarithmic Functions

- Let \(a \) be a positive number with \(a \neq 1 \). The \textbf{logarithmic function with base} \(a \), denoted by \(\log_a \), is defined by

\[\log_a x = y \iff a^y = x. \]

The first equation is in \textbf{logarithmic form} and the second equivalent equation is in \textbf{exponential form}. In words, this says that \(\log_a x \) is the exponent to which the base \(a \) must be raised to give \(x \).

\(4,6,8,16,18,20,22,24,30 \)

- Basic Logarithmic Properties Involving One

1. \(\log_a 1 = 0 \)
2. \(\log_a a = 1 \) \(32,34 \)

- Inverse Properties of Logarithms
1. \(\log_a a^x = x \)
2. \(a^{\log_a x} = x \)

- **Graphs of Logarithmic Functions.** Since the logarithmic function is the inverse of the exponential function, the logarithmic function reverses the coordinates of the exponential function. Therefore the graph of the logarithmic function is a reflection of the graph of the exponential function about the line \(y = x \).

- In Section 4.1 we learned that the domain of an exponential function is \((-\infty, \infty) \) and its range is \((0, \infty) \). Because the logarithmic function reverses the domain and the range of the exponential function, the **domain of a logarithmic function is the set of all positive real numbers**.

- The logarithm with base 10 is called the **common logarithm** and is denoted by omitting the base:
 \[\log x = \log_{10} x \]

- The logarithm with base \(e \) is called the **natural logarithm** and is denoted by \(\ln \):
 \[\ln x = \log_e x \]

Section 4.3 Properties of Logarithms

- Since logarithms are exponents, the Laws of Exponents give rise to the Laws of Logarithms. Let \(a \) be a positive number, with \(a \neq 1 \). Let \(A > 0 \), \(B > 0 \), and \(C \) be any real numbers. Then

 1. \(\log_a (AB) = \log_a A + \log_a B \)
 (The Product Rule)
 [Proof: Let \(u = \log_a A \) and \(v = \log_a B \). Then \(a^u a^v = AB \). So \(\log_a (AB) = \log_a a^{u+v} = \log_a A + \log_a B \).] [2,4]

 2. \(\log_a \left(\frac{A}{B} \right) = \log_a A - \log_a B \)
 (The Quotient Rule)
 [8,14]

 3. \(\log_a (A^C) = C \log_a A \)
 (The Power Rule)
 [Proof: Let \(u = \log_a A \). Then \(a^u = A \Rightarrow A^C = (a^u)^C \Rightarrow \log_a (A^C) = C \log_a A \).] [16,20,22,28,36,40,44,52]

 - The Change-of-Base Property
 \[\log_b x = \frac{\log_a x}{\log_a b} \]
 [54]

Section 4.4 Exponential and Logarithmic Equations

- An **exponential equation** is one in which the variable occurs in the exponent. [6,10,14,20]

- A **logarithmic equation** is one in which a logarithm of the variable occurs. [26,32,40,46]

Section 4.5 Applications of Exponential Functions

- **Compound Interest** [2,6,8,12,14,18,20,22,24]

- **Population Growth** [25,28,30]

- **Radioactive Decay** [40,42,43,44]

- **Newton’s Law of Cooling** states that the temperature of an object placed in a surrounding medium of constant temperature is given by the formula:
 \[T = S + (T_0 - S) e^{kt} \]

 where

 - \(T \) = the temperature of the object at time \(t \)
 - \(S \) = the temperature of the surrounding medium
 - \(T_0 \) = the initial temperature of the object
 - \(t \) = the time since the object was put in the medium

 and \(k \) is a constant which depends on the specific heats of the object and the medium. [56,57]