A-1 Find, with explanation, the maximum value of $f(x)=x^{3}-3 x$ on the set of all real numbers x satisfying $x^{4}+36 \leq 13 x^{2}$.

A-2 What is the units (i.e., rightmost) digit of

$$
\left\lfloor\frac{10^{20000}}{10^{100}+3}\right\rfloor ?
$$

A-3 Evaluate $\sum_{n=0}^{\infty} \operatorname{Arccot}\left(n^{2}+n+1\right)$, where $\operatorname{Arccot} t$ for $t \geq 0$ denotes the number θ in the interval $0<\theta \leq \pi / 2$ with $\cot \theta=t$.

A-4 A transversal of an $n \times n$ matrix A consists of n entries of A, no two in the same row or column. Let $f(n)$ be the number of $n \times n$ matrices A satisfying the following two conditions:
(a) Each entry $\alpha_{i, j}$ of A is in the set $\{-1,0,1\}$.
(b) The sum of the n entries of a transversal is the same for all transversals of A.

An example of such a matrix A is

$$
A=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Determine with proof a formula for $f(n)$ of the form

$$
f(n)=a_{1} b_{1}^{n}+a_{2} b_{2}^{n}+a_{3} b_{3}^{n}+a_{4}
$$

where the a_{i} 's and b_{i} 's are rational numbers.
A-5 Suppose $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are functions of n real variables $x=\left(x_{1}, \ldots, x_{n}\right)$ with continuous second-order partial derivatives everywhere on \mathbf{R}^{n}. Suppose further that there are constants $c_{i j}$ such that

$$
\frac{\partial f_{i}}{\partial x_{j}}-\frac{\partial f_{j}}{\partial x_{i}}=c_{i j}
$$

for all i and $j, 1 \leq i \leq n, 1 \leq j \leq n$. Prove that there is a function $g(x)$ on \mathbf{R}^{n} such that $f_{i}+\partial g / \partial x_{i}$ is linear for all $i, 1 \leq i \leq n$. (A linear function is one of the form

$$
\left.a_{0}+a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} .\right)
$$

A-6 Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers, and let $b_{1}, b_{2}, \ldots, b_{n}$ be distinct positive integers. Suppose that there is a polynomial $f(x)$ satisfying the identity

$$
(1-x)^{n} f(x)=1+\sum_{i=1}^{n} a_{i} x^{b_{i}}
$$

Find a simple expression (not involving any sums) for $f(1)$ in terms of $b_{1}, b_{2}, \ldots, b_{n}$ and n (but independent of $a_{1}, a_{2}, \ldots, a_{n}$).

