A-1 Determine, with proof, the number of ordered triples $\left(A_{1}, A_{2}, A_{3}\right)$ of sets which have the property that
(i) $A_{1} \cup A_{2} \cup A_{3}=\{1,2,3,4,5,6,7,8,9,10\}$, and
(ii) $A_{1} \cap A_{2} \cap A_{3}=\emptyset$.

Express your answer in the form $2^{a} 3^{b} 5^{c} 7^{d}$, where a, b, c, d are nonnegative integers.
A-2 Let T be an acute triangle. Inscribe a rectangle R in T with one side along a side of T. Then inscribe a rectangle S in the triangle formed by the side of R opposite the side on the boundary of T, and the other two sides of T, with one side along the side of R. For any polygon X, let $A(X)$ denote the area of X. Find the maximum value, or show that no maximum exists, of $\frac{A(R)+A(S)}{A(T)}$, where T ranges over all triangles and R, S over all rectangles as above.

A-3 Let d be a real number. For each integer $m \geq 0$, define a sequence $\left\{a_{m}(j)\right\}, j=$ $0,1,2, \ldots$ by the condition

$$
\begin{aligned}
a_{m}(0) & =d / 2^{m}, \\
a_{m}(j+1) & =\left(a_{m}(j)\right)^{2}+2 a_{m}(j), \quad j \geq 0 .
\end{aligned}
$$

Evaluate $\lim _{n \rightarrow \infty} a_{n}(n)$.
A-4 Define a sequence $\left\{a_{i}\right\}$ by $a_{1}=3$ and $a_{i+1}=3^{a_{i}}$ for $i \geq 1$. Which integers between 00 and 99 inclusive occur as the last two digits in the decimal expansion of infinitely many a_{i} ?
A-5 Let $I_{m}=\int_{0}^{2 \pi} \cos (x) \cos (2 x) \cdots \cos (m x) d x$. For which integers $m, 1 \leq m \leq 10$ is $I_{m} \neq 0$?

A-6 If $p(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$ is a polynomial with real coefficients a_{i}, then set

$$
\Gamma(p(x))=a_{0}^{2}+a_{1}^{2}+\cdots+a_{m}^{2} .
$$

Let $F(x)=3 x^{2}+7 x+2$. Find, with proof, a polynomial $g(x)$ with real coefficients such that
(i) $g(0)=1$, and
(ii) $\Gamma\left(f(x)^{n}\right)=\Gamma\left(g(x)^{n}\right)$
for every integer $n \geq 1$.

