1. Compute $\int_{0}^{1} \cos (\pi x) d x$.
2. Compute $\int_{1}^{2} \frac{3 x}{\sqrt[4]{2 x^{2}+7}} d x$.
3. Compute $\int_{4}^{16} \frac{1-\sqrt{u}}{\sqrt{u}} d u$ two different ways.
4. Compute $\int_{0}^{1} t \sqrt[3]{t^{2}+2} d t$.
5. Compute $\int \frac{1}{\sqrt{x} \sqrt{\sqrt{x}+1}} d x$.
6. Compute $D_{x} \int_{x}^{x^{2}} 3 t \cos \sqrt{t} d t$.
7. Compute $\frac{d}{d t} \int_{-t}^{2 t} x^{2} \frac{x-3}{x^{2}+1} d x$.
8. Let $F(x)=\int_{0}^{\tan x} \frac{1}{1+t^{2}} d t$ for $0 \leq x<$ $\frac{\pi}{2}$.
a) Compute $F^{\prime}(x)$ and simplify your answer as far as possible.
b) Based on your answer to part a), find a simple formula for $F(x)$.
c) Based on part b), find a formula for $\int \frac{1}{1+t^{2}} d t$
d) Convert the formula in part c) to a formula involving a derivative instead of an integral.
9. Find the area bounded between the x axis and the function $f(x)=x^{3}-6 x^{2}+$ $8 x$.
10. Find the area bounded between the function $f(x)=2\left(x^{3}-x\right)$ and the function $f(x)=x^{3}$.
11. Find the area bounded between the graphs of $y=2 \sin x$ and $y=\sin (2 x)$ where $0 \leq x \leq \pi$.
12. Find the volume obtained by revolving the region in the first quadrant bounded by $y=x$ and $y=x^{4}$ about the x-axis using
a) the washer or disk method.
b) the cylindrical shell method.
13. Derive the formula for the volume of a sphere.
14. Derive the formula for the volume of a cone.
15. Find the volume obtained by revolving the region in the plane bounded by $y=$ $\sin x$ and the x-axis, for $0 \leq x \leq \pi$ about the x -axis.
16. Find the volume obtained by rotating the region bounded by $y=2 x-1$, $y=\sqrt{x}$, and $x=0$ about the y-axis.
17. Find the volume obtained by rotating the region bounded by $y=2 x^{2}+2 x+13$, and $y=x^{2}-4 x+5$ about the x-axis. Then compute the volume if rotated about the y-axis
18. Two solid cylinders each have radius of 5 cm and their axes meet at right angles. Find the volume that is contained in the intersection of the solid cylinders.
19. The triangle whose vertices are $(2,1)$, $(2,3)$, and $(4,2)$ is rotated about the y axis. Find the volume.
20. Find the length of the curve $x=t^{3}, y=$ $\frac{3 t^{2}}{2}, 0 \leq t \leq \sqrt{3}$
21. Find the length of the curve $x=\frac{y^{3}}{6}+\frac{1}{2 y}$ from $y=1$ to $y=2$.
22. Solve the initial value problem by first writing your answer as a definite integral and then evaluating: $\frac{d y}{d x}=\left(x+\frac{1}{x}\right)^{2}$, $y(1)=1$.
23. Explicitly compute a limit of Riemann sums to evaluate $\int_{1}^{3} x^{2} d x$.
24. Explicitly compute a limit of Riemann sums to evaluate $\int_{-1}^{2}\left(2 x-x^{2}\right) d x$.
25. True of False. There is a function whose derivative is $\sin \left(x^{2}\right)$. Either give a formula for the function, explain how you know there is such a function, or explain how you know there isn't.
26. Derive the formula for the surface area of a cone.
27. Derive the formula for the surface area of a sphere.
28. Find the surface area if the curve in the plane $y=\sqrt{x}$ for $\frac{3}{4} \leq x \leq \frac{15}{4}$ is rotated about the x-axis.
29. Find the surface area obtained by rotating the curve in the plane $x=y^{3} / 3$ for $0 \leq y \leq 1$ about the y-axis.
30. An object moving along a straight line is at position $x(t)$ at time t. Its acceleration is given by $a(t)=\sin (2 t)$ and at time $t=0$, it is not moving at the origin. Find its position at time t.
31. An object moving along a straight line is at position $x(t)$ at time t. Its acceleration is given by $a(t)=-3.8$ and at time $t=4$, it is at the point $x=2$ moving with velocity $v=-3$. Find its position at time t.
32. An object is moving with velocity function given by $v(t)=3.5+2 \cos (1.8 t)$. Find the acceleration and position functions for the object assuming that its position at time $t=0$ is $x=2$.
