- 1. Compute the limit. $\lim_{x \to 3} (x^2 + 3x 1)$
- 2. Compute the limit. $\lim_{x \to 1} ((x-1)\cos x)$

3. Compute
$$\lim_{x \to 2} \frac{3x^3 + 2x^2 + 3x - 38}{x^2 - 3x + 2}$$

4. Compute
$$\lim_{t \to -1} \frac{t^3 + 2t^2 - 4t - 5}{t^3 + t^2 + t + 1}$$
.

- 5. Explain why $\lim_{x \to -1} \frac{x+1}{|x+1|}$ does not exist.
- 6. Explain why $\lim_{x\to 0} \sin \frac{1}{x}$ does not exist.
- 7. Explain why $\lim_{x \to 1} \frac{x^2 + 3x + 1}{x^2 3x + 2}$ does not exist.
- 8. Use the definition of derivative to compute f'(x) given that $f(x) = 3x^2 + 2x - 9$
- 9. Use the definition of derivative to compute f'(x) given that $f(x) = \sqrt{x+2+3}$
- 10. Use the definition of derivative to compute f'(x) given that $f(x) = \frac{1}{\sqrt[3]{x+1}}$
- 11. Let

$$f(x) = \begin{cases} \frac{\sin 3x}{x} & : & x < 0\\ \frac{\tan 2x}{x} & : & 0 < x\\ 0 & : & x = 0 \end{cases}$$

Is f continuous at x = 0? If so show why. If not, determine if 0 is a removable discontinuity.

12. Let

$$f(x) = \begin{cases} 2x + c & : \quad x < 1\\ 5x - c & : \quad 1 \le x \end{cases}$$

Is there a value of c that makes f continuous at x = 1? If so, find c. If not, show why.

13. Compute $\lim_{x \to 0} \frac{\tan x}{x}$.

14. Compute
$$\lim_{\theta \to 0} \frac{1 - \cos^2 \theta}{\theta^2}$$

15. Compute
$$\lim_{t \to 0} \frac{\sin(2t)}{3t}$$

16. Compute $\lim_{x\to 3^+} f(x)$ and $\lim_{x\to 3^-} f(x)$. Does $\lim_{x\to 3} f(x)$ exist? If so state how you know, if not state why.

$$f(x) = \begin{cases} \sin x & : x \le 0\\ x & : 0 < x \le 3\\ x^2 - 4 & : x > 3 \end{cases}$$

- 17. The function f(x) is given by $f(x) = \frac{x + \sin x}{x}$. Note that f(0) is not defined. Is it possible to assign a value to f(0) to make f(x) continuous at 0? If so, what should f(0) be?
- 18. Is there a number c that makes the function f continuous, where f is defined below? If so, find c.

$$f(x) = \begin{cases} x^2 + 3 & : x \le 1\\ -2x^2 + c & : x > 1 \end{cases}$$

19. Compute
$$\frac{d}{dx}(x^2\sin(2x))$$

20. Compute $\frac{d}{dx}\frac{x^2+1}{x^2+x-4}$

- 21. Compute $\frac{d}{dx}(\tan(x^2+3))^3$
- 22. Compute $\frac{d}{dx} \sqrt[5]{(x^3+2)^2}$

23. Compute
$$\frac{d}{dx} \frac{\sin(2x-1)}{1+\sec x}$$

24. Compute
$$\frac{d}{dx} \frac{\csc^2(x^2) + 3}{\pi}$$

- 25. Find an equation of the tangent line to $y = \sin^3 x \cos x$ at the point where $x = \frac{\pi}{4}$.
- 26. Find an equation of the tangent line to $y = x \sin x$ at the point where $x = \frac{\pi}{3}$.
- 27. Find an equation of the tangent line to $y = \sqrt{3x-2}$ at the point where x = 6.
- 28. Find equations for all the lines that pass through the point (2, 10) and are tangent to the graph of $y = x^2 + 2x + 3$. (Note that the point is not on the graph.)
- 29. Find equations for all the lines that pass through the point (1, 50/9) and are tangent to the graph of $y = \frac{10}{x}$. (Note that the point is not on the graph.)
- 30. Use the linearization of the appropriate function to estimate $\sqrt[3]{999}$.
- 31. Explain why radians are easier to use than degrees when doing a calculus problem.
- 32. Look at the first few derivatives of the function $f(x) = \frac{1}{x}$ and guess a formula for $f^{[n]}(x)$, the n^{th} derivative of f(x).

- 33. Suppose that f(x) is a polynomial of degree n with leading coefficient 7. (That is, the term with the highest power of x is $7x^n$.) Find a formula for the n^{th} derivative of f(x).
- 34. Compute y' given that $x^4 + y^4 = a^4$ where a is a constant. Find equations of the lines tangent to this graph at the points where $x = \frac{a}{\sqrt[4]{2}}$.
- 35. Compute $\frac{dy}{dx}$ given that $x^2y + y^2x xy = 1$. Also find an equation of the tangent line through (1, 1).
- 36. The position of an object along a line is given by $x(t) = 10t + \sin(3t)$ where t is measured in seconds and x is measured in meters. Find the object's velocity and acceleration at time t. State the units.
- 37. The velocity of an object is given by $v(t) = t^2 + 3t 7$ where the distance units are feet and the time units are seconds. Find a formula for position and a formula for the acceleration and state the units for each.
- 38. The acceleration of an object is given by a(t) = 28t where the distance unit is meters and the time unit is minutes. Find formulas for the velocity and position of the object. State the units of each.