1. Compute the limit. $\lim _{x \rightarrow 3}\left(x^{2}+3 x-1\right)$
2. Compute the limit. $\lim _{x \rightarrow 1}((x-1) \cos x)$
3. Compute $\lim _{x \rightarrow 2} \frac{3 x^{3}+2 x^{2}+3 x-38}{x^{2}-3 x+2}$.
4. Compute $\lim _{t \rightarrow-1} \frac{t^{3}+2 t^{2}-4 t-5}{t^{3}+t^{2}+t+1}$.
5. Explain why $\lim _{x \rightarrow-1} \frac{x+1}{|x+1|}$ does not exist.
6. Explain why $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist.
7. Explain why $\lim _{x \rightarrow 1} \frac{x^{2}+3 x+1}{x^{2}-3 x+2}$ does not exist.
8. Use the definition of derivative to compute $f^{\prime}(x)$ given that $f(x)=3 x^{2}+2 x-9$
9. Use the definition of derivative to compute $f^{\prime}(x)$ given that $f(x)=\sqrt{x+2+3}$
10. Use the definition of derivative to compute $f^{\prime}(x)$ given that $f(x)=\frac{1}{\sqrt[3]{x+1}}$
11. Let

$$
f(x)=\left\{\begin{array}{rll}
\frac{\sin 3 x}{x} & : & x<0 \\
\frac{\tan 2 x}{x} & : & 0<x \\
0 & : & x=0
\end{array}\right.
$$

Is f continuous at $x=0$? If so show why. If not, determine if 0 is a removable discontinuity.
12. Let

$$
f(x)=\left\{\begin{array}{lll}
2 x+c & : & x<1 \\
5 x-c & : & 1 \leq x
\end{array}\right.
$$

Is there a value of c that makes f continuous at $x=1$? If so, find c. If not, show why.
13. Compute $\lim _{x \rightarrow 0} \frac{\tan x}{x}$.
14. Compute $\lim _{\theta \rightarrow 0} \frac{1-\cos ^{2} \theta}{\theta^{2}}$.
15. Compute $\lim _{t \rightarrow 0} \frac{\sin (2 t)}{3 t}$.
16. Compute $\lim _{x \rightarrow 3^{+}} f(x)$ and $\lim _{x \rightarrow 3^{-}} f(x)$. Does $\lim _{x \rightarrow 3} f(x)$ exist? If so state how you know, if not state why.

$$
f(x)=\left\{\begin{array}{rll}
\sin x & : & x \leq 0 \\
x & : & 0<x \leq 3 \\
x^{2}-4 & : & x>3
\end{array}\right.
$$

17. The function $f(x)$ is given by $f(x)=$ $\frac{x+\sin x}{x}$. Note that $f(0)$ is not defined. Is it possible to assign a value to $f(0)$ to make $f(x)$ continous at 0 ? If so, what should $f(0)$ be?
18. Is there a number c that makes the function f continuous, where f is defined below? If so, find c.

$$
f(x)=\left\{\begin{array}{rll}
x^{2}+3 & : & x \leq 1 \\
-2 x^{2}+c & : & x>1
\end{array}\right.
$$

19. Compute $\frac{d}{d x}\left(x^{2} \sin (2 x)\right)$
20. Compute $\frac{d}{d x} \frac{x^{2}+1}{x^{2}+x-4}$
21. Compute $\frac{d}{d x}\left(\tan \left(x^{2}+3\right)\right)^{3}$
22. Compute $\frac{d}{d x} \sqrt[5]{\left(x^{3}+2\right)^{2}}$
23. Compute $\frac{d}{d x} \frac{\sin (2 x-1)}{1+\sec x}$
24. Compute $\frac{d}{d x} \frac{\csc ^{2}\left(x^{2}\right)+3}{\pi}$
25. Find an equation of the tangent line to $y=\sin ^{3} x \cos x$ at the point where $x=$ $\frac{\pi}{4}$.
26. Find an equation of the tangent line to $y=x \sin x$ at the point where $x=\frac{\pi}{3}$.
27. Find an equation of the tangent line to $y=\sqrt{3 x-2}$ at the point where $x=6$.
28. Find equations for all the lines that pass through the point $(2,10)$ and are tangent to the graph of $y=x^{2}+2 x+3$. (Note that the point is not on the graph.)
29. Find equations for all the lines that pass through the point $(1,50 / 9)$ and are tangent to the graph of $y=\frac{10}{x}$. (Note that the point is not on the graph.)
30. Use the linearization of the appropriate function to estimate $\sqrt[3]{999}$.
31. Explain why radians are easier to use than degrees when doing a calculus problem.
32. Look at the first few derivatives of the function $f(x)=\frac{1}{x}$ and guess a formula for $f^{[n]}(x)$, the $n^{\text {th }}$ derivative of $f(x)$.
33. Suppose that $f(x)$ is a polynomial of degree n with leading coefficient 7. (That is, the term with the highest power of x is $7 x^{n}$.) Find a formula for the $n^{\text {th }}$ derivative of $f(x)$.
34. Compute y^{\prime} given that $x^{4}+y^{4}=a^{4}$ where a is a constant. Find equations of the lines tangent to this graph at the points where $x=\frac{a}{\sqrt[4]{2}}$.
35. Compute $\frac{d y}{d x}$ given that $x^{2} y+y^{2} x-x y=$ 1. Also find an equation of the tangent line through $(1,1)$.
36. The position of an object along a line is given by $x(t)=10 t+\sin (3 t)$ where t is measured in seconds and x is measured in meters. Find the object's velocity and acceleration at time t. State the units.
37. The velocity of an object is given by $v(t)=t^{2}+3 t-7$ where the distance units are feet and the time units are seconds. Find a formula for position and a formula for the acceleration and state the units for each.
38. The acceleration of an object is given by $a(t)=28 t$ where the distance unit is meters and the time unit is minutes. Find formulas for the velocity and position of the object. State the units of each.
