Math 3000 Homework due November 18

1. Prove that if $A \subseteq \mathbf{R}$ and $f, g: A \rightarrow \mathbf{R}$ are both continuous, then
a. For any $c \in \mathbf{R}$, the function $w: A \rightarrow \mathbf{R}$ given by $w(x)=c f(x)$ is also continous. (Hint: if $\epsilon>0$, then $\epsilon^{\prime}=\frac{\epsilon}{k}>0$ for any positive value of k. Choose a value for k wisely.)
b. The function $s: A \rightarrow \mathbf{R}$ given by $s(x)=f(x)+g(x)$ is continouous. (Hint: if $\epsilon>0$, then $\frac{\epsilon}{2}>0$.)
c. The function $p: A \rightarrow \mathbf{R}$ given by $p(x)=f(x) g(x)$ is continous. (Hint: $\mid f(x) g(x)-$ $f(a) g(a)|=|f(x) g(x)-f(a) g(x)+f(a) g(x)-f(a) g(a)|$.
2. Prove that if $C \subseteq \mathbf{R}$ is compact and $C \neq \emptyset$, then $\sup (C) \in C$.
3. Prove that if $f: A \rightarrow \mathbf{R}$ is continuous, then for any closed set $C \subseteq \mathbf{R}, f^{-1}(C)=K \cap A$ for some closed set $K \subseteq \mathbf{R}$. (Hint: Use a similar fact about open sets proved in class and Theorem 2.3.16 in the book.)
4. Suppose that $A \subseteq[a, b], a \in A$, and $A=[a, b] \cap K=[a, b] \cap V$ where $K \subseteq \mathbf{R}$ is closed and $V \subseteq \mathbf{R}$ is open. Prove that $A=[a, b]$. (Hint: Let $S=\{x \in[a, b] \mid$ if $t \in[a, b]$ and $t \leq$ x, then $t \in A\}$. Then do pretty much what we did to prove the Intermediate Value Theorem.)
