- 1. Prove that if $A \subseteq \mathbf{R}$ and $f, g: A \to \mathbf{R}$ are both continuous, then
 - a. For any $c \in \mathbf{R}$, the function $w : A \to \mathbf{R}$ given by w(x) = cf(x) is also continuous. (Hint: if $\epsilon > 0$, then $\epsilon' = \frac{\epsilon}{k} > 0$ for any positive value of k. Choose a value for k wisely.)
 - b. The function $s: A \to \mathbf{R}$ given by s(x) = f(x) + g(x) is continuous. (Hint: if $\epsilon > 0$, then $\frac{\epsilon}{2} > 0$.)
 - c. The function $p: A \to \mathbf{R}$ given by p(x) = f(x)g(x) is continuous. (Hint: |f(x)g(x) f(a)g(a)| = |f(x)g(x) f(a)g(x) + f(a)g(x) f(a)g(a)|.)

2. Prove that if $C \subseteq \mathbf{R}$ is compact and $C \neq \emptyset$, then $\sup(C) \in C$.

3. Prove that if $f: A \to \mathbf{R}$ is continuous, then for any closed set $C \subseteq \mathbf{R}$, $f^{-1}(C) = K \cap A$ for some closed set $K \subseteq \mathbf{R}$. (Hint: Use a similar fact about open sets proved in class and Theorem 2.3.16 in the book.)

4. Suppose that $A \subseteq [a, b]$, $a \in A$, and $A = [a, b] \cap K = [a, b] \cap V$ where $K \subseteq \mathbf{R}$ is closed and $V \subseteq \mathbf{R}$ is open. Prove that A = [a, b]. (Hint: Let $S = \{x \in [a, b] \mid \text{if } t \in [a, b] \text{ and } t \leq x$, then $t \in A\}$. Then do pretty much what we did to prove the Intermediate Value Theorem.)