1. Let $f(x)=x^{2}+6 x+13$.
a) First think of the function f as $f: \mathbf{R} \rightarrow \mathbf{R}$. Sketch a graph of f.
b) Next think of $f: \mathbf{C} \rightarrow \mathbf{C}$. Find all the complex numbers x so that $f(x)$ is a real number.
c) Now find a relation between a and b so that if $x=a+b i$, then $f(x)$ is an imaginary number. (Recall that a number is imaginary if it is of the form $b i$ for some real number i.)
2. Let $f(x)=x^{2}-2 x+10$. Do parts a), b), and c) from exercise 1$)$.
3. Let $f(x)=x^{2}+3 x-10$. Do parts a), b), and c) from exercise 1).
4. Is the following a true statement? Justify your answer.

Let $f: X \rightarrow Y$ be a function and suppose that $x_{0} \in X$ and $y_{0} \in Y$ satisfy $\left(x_{0}, y_{0}\right) \in f$. If $(x, y) \in f$ and $x \neq x_{0}$, then $y \neq y_{0}$.
5. Review the interpretations of the first and second derivative of a function. Describe the geometry of the first derivative and the geometry of the second derivative as they relate to the graph of a function. Also, give the interpretation of the first and second derivative if the function is the position of an object at time t where t is the variable. Carefully write this up as if you were explaining these interpretations to someone. You may draw pictures to help with your explanations.

