1. Determine if the series converges or diverges. Justify carefully.

$$
\sum_{n=1}^{\infty} 1.000001^{n}
$$

2. Determine if the series converges or diverges. Justify carefully.

$$
\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}+n+\sqrt{n}}
$$

3. Determine if the series converges or diverges. Justify carefully.

$$
\sum_{n=1}^{\infty} \frac{1}{3 n+7}
$$

4. Determine if the series converges or diverges. Justify carefully.

$$
\sum_{n=1}^{\infty} \frac{n^{2}+2 n+1}{10 n^{3}+3 n^{2}+4 n-1}
$$

5. Determine if the series converges or diverges. Justify carefully.

$$
\sum_{n=1}^{\infty}(2 n!) e^{-n / 2}
$$

6. Determine if the series converges or diverges. Justify carefully.

$$
\sum_{n=1}^{\infty} \frac{3}{\sqrt{n^{2}+n+3}}
$$

7. Determine if the series converges or diverges. Justify carefully. $\sum_{n=1}^{\infty}\left(1-\frac{1}{n}\right)^{n^{2}}$
8. Determine if the series converges or diverges. Justify carefully.

$$
\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n+1)!}
$$

9. Determine if the series converges or diverges. Justify carefully.

$$
\sum_{n=1}^{\infty} \tan \left(\frac{1}{n^{2}}\right)
$$

10. Determine if the series converges absolutely, converges, or diverges. Justify carefully.

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{3}}{3^{n}}
$$

11. Determine if the series converges absolutely, converges, or diverges. Justify carefully.

$$
\sum_{n=1}^{\infty}(-1)^{n}(\sqrt[3]{n+1}-\sqrt[3]{n})
$$

12. Determine if the series converges absolutely, converges, or diverges. Justify carefully.

$$
\sum_{n=1}^{\infty} \frac{\cos \left(\frac{n \pi}{2}\right)}{n}
$$

13. Determine if the series converges absolutely, converges, or diverges. Justify carefully. $\sum_{n=1}^{\infty}\left(\frac{1}{n}-1\right)^{n}$
14. Determine if the series converges absolutely, converges, or diverges. Justify carefully.

$$
\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}
$$

15. How many terms do you need to add to get a number that is within 0.0001 of the infinite sum for

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(4 n+3)^{3}}
$$

16. How many terms do you need to add to get a number that is within 0.01 of the infinite sum for

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}+7}
$$

17. How many terms do you need to add to get a number that is within 0.0001 of the infinite sum for

$$
\sum_{n=0}^{\infty} \frac{1}{3 n+1}
$$

Explain your answer.
18. Find the interval of convergence and the radius of convergence for

$$
\sum_{n=0}^{\infty} \frac{\sqrt{n} x^{n}}{5^{n}}
$$

19. Find the interval of convergence and the radius of convergence for

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}
$$

20. Find the interval of convergence and the radius of convergence for

$$
\sum_{n=0}^{\infty} n^{2} x^{n}
$$

21. Find the interval of convergence and the radius of convergence for

$$
\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{n+1}
$$

22. Find the interval of convergence and the radius of convergence for

$$
\sum_{n=0}^{\infty} n!x^{n}
$$

23. Find the interval of convergence and the radius of convergence for

$$
\sum_{n=0}^{\infty} \frac{2 n+1}{2^{n}+3^{n}}(x-1)^{n}
$$

24. Find the power series for the function $\sqrt[3]{(1+x)^{4}}$ expanded about $x=0$.
25. Find the power series for the function $\sqrt[5]{(1+x)^{6}}$ expanded about $x=0$.
26. Find the power series for the function $\left(\frac{1}{x+2}\right)^{3}$ expanded about $x=0$.
27. Use the error term for the the Maclaurin series for e^{x} to estimate how close $1+x+$ $x^{2} / 2$ is to e^{x} if $-0.1 \leq x \leq 0.1$.
28. What degree Maclaurin polynomial does one need in order to approximate $\cos x$ to within 0.00005 for $0 \leq x \leq 0.5$?
29. What degree Maclaurin polynomial does one need in order to approximate e^{x} to within 0.000005 for $-1 \leq x \leq 1$?
30. Compute the derivative of the power series and compare the intervals of convergence of the series and its derivative.

$$
\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n}
$$

31. Compute the derivative of the power series and compare the intervals of convergence of the series and its derivative.

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

32. Find the third degree Maclaurin polynomial for the function $f(x)=\tan x$.
33. Find the fourth degree Taylor polynomial for the function $\ln x$ expanded about $x=1$.
34. Derive the Taylor series for $\sin x$ expanded about $x=0$.
35. Derive the Maclaurin series for e^{x}.
36. Use the error term for the the Maclaurin series for e^{x} to estimate how close $1+x+$ $x^{2} / 2$ is to e^{x} if $-0.1 \leq x \leq 0.1$.
37. What degree Maclaurin polynomial does one need in order to approximate $\cos x$ to within 0.00005 for $0 \leq x \leq 0.5$?
38. What degree Maclaurin polynomial does one need in order to approximate e^{x} to within 0.000005 for $-1 \leq x \leq 1$?
39. Derive the power series for $\arctan x$ (expand about $x=0$). Use this to compute the sum of the series

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots
$$

40. Derive the Maclaurin series for $\ln (1+x)$. Use this to compute the sum of the series

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots
$$

