Math 1720 Exam 2 Review

1. Determine if the series converges or di-

verges. Justify carefully.

3" 1.000001"

n=1

2. Determine if the series converges or di-

verges. Justify carefully.
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3. Determine if the series converges or di-

verges. Justify carefully.
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4. Determine if the series converges or di-

verges. Justify carefully.
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5. Determine if the series converges or di-

verges. Justify carefully.
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6. Determine if the series converges or di-

verges. Justify carefully.
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7. Determine if the series converges or di-

verges. Justify carefully. >
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. Determine if the series converges or di-

verges. Justify carefully.
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. Determine if the series converges or di-

verges. Justify carefully.
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Determine if the series converges abso-
lutely, converges, or diverges. Justify

carefully.
3

> -1

Determine if the series converges abso-
lutely, converges, or diverges. Justify
carefully.
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Determine if the series converges abso-
lutely, converges, or diverges. Justify
carefully.
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Determine if the series converges abso-
lutely, converges, or diverges. Justify
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Determine if the series converges abso-
lutely, converges, or diverges. Justify
carefully.
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How many terms do you need to add to
get a number that is within 0.0001 of the
infinite sum for

§
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How many terms do you need to add to

get a number that is within 0.01 of the
infinite sum for
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How many terms do you need to add to
get a number that is within 0.0001 of the
infinite sum for
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Explain your answer.

Find the interval of convergence and the
radius of convergence for
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Find the interval of convergence and the
radius of convergence for
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Find the interval of convergence and the
radius of convergence for
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Find the interval of convergence and the
radius of convergence for
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Find the interval of convergence and the
radius of convergence for
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Find the interval of convergence and the
radius of convergence for
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Find the power series for the function
?/(1 + z)* expanded about = = 0.

Find the power series for the function
°/(1 4 x)6 expanded about z = 0.

Find the power series for the function

3
(#2) expanded about x = 0.

Use the error term for the the Maclaurin
series for e* to estimate how close 1+x -+
2?/2is to e* if —0.1 <2 <0.1.

What degree Maclaurin polynomial does
one need in order to approximate cosx
to within 0.00005 for 0 < z < 0.57

What degree Maclaurin polynomial does
one need in order to approximate e* to
within 0.000005 for —1 <z < 17
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30.
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34.
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Compute the derivative of the power se-
ries and compare the intervals of conver-
gence of the series and its derivative.
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Compute the derivative of the power se-
ries and compare the intervals of conver-
gence of the series and its derivative.
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Find the third degree Maclaurin polyno-
mial for the function f(z) = tanzx.

Find the fourth degree Taylor poly-
nomial for the function Inz expanded
about z = 1.

Derive the Taylor series for sinx ex-
panded about z = 0.

Derive the Maclaurin series for e®.

Use the error term for the the Maclaurin
series for e* to estimate how close 1+ +
r?/2is to e* if —0.1 <z <0.1.

What degree Maclaurin polynomial does
one need in order to approximate cosx
to within 0.00005 for 0 < z < 0.57

What degree Maclaurin polynomial does
one need in order to approximate e* to
within 0.000005 for —1 <z < 17

39.

40.

Derive the power series for arctan z (ex-
pand about z = 0). Use this to compute
the sum of the series
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Derive the Maclaurin series for In(1+z).
Use this to compute the sum of the series
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