1. Compute the following:
$\frac{d}{d x} e^{x} \ln (x)$
2. Compute the following:

$$
\frac{d}{d x} x^{2} \arcsin x
$$

3. Compute the following:

$$
\frac{d}{d x} \frac{\arctan (x)}{1+x^{2}}
$$

4. Compute the following:

$$
\frac{d}{d x} \log _{2}\left(2 x^{2}\right)
$$

5. Compute the following:
$\frac{d}{d x} \log _{x} 10$
6. Compute the following:
$\frac{d}{d x} 3^{2 x+4}$
7. Compute the following:

$$
\frac{d}{d x} e^{x^{2}+3 x-5}
$$

8. Compute the following:

$$
\frac{d}{d x}\left(x \operatorname{arcsec}\left(x^{2} / 2\right)\right)
$$

9. Compute the derivatives and explain why you use the differentiation rules that you do.
a) $\frac{d}{d x} \sqrt{2}^{x}$
b) $\frac{d}{d x} x^{\sqrt{2}}$
10. Compute the following:
$\int_{\pi / 8}^{\pi / 6} \tan (2 x) d x$
11. Compute the following:
$\int \frac{3 \ln x^{2}}{x} d x$
12. Compute the following:
$\int \frac{1}{x \log _{2} x} d x$
13. Compute: $\int \cot (x) d x$
14. Compute the following:

$$
\int \frac{\sec ^{2}(3 x)}{4+\tan (3 x)} d x
$$

15. Compute the following:

$$
\int \frac{e^{x}}{1+e^{x}} d x
$$

16. Compute the following:

$$
\int_{-\frac{1}{2} \ln 3}^{0}\left(\frac{e^{x}}{1+e^{2 x}}\right) d x
$$

17. Compute the following:

$$
\int 3^{x} d x
$$

18. Compute the following:

$$
\int \sin (x) e^{\cos (x)} d x
$$

19. Compute the following:

$$
\int \frac{1}{\sqrt{9-4 x^{2}}} d x
$$

20. Compute the following:

$$
\int \frac{1}{2+x^{2}} d x
$$

21. Compute the following:

$$
\int x 3^{x^{2}} d x
$$

22. Compute the following:
$\int \frac{1}{\sqrt{4 x^{2}-9}} d x$
23. Compute the following:
$\int \frac{1}{1-16 x^{2}} d x$
24. Compute the following:
$\int \frac{1}{x \sqrt{4 x^{2}-1}} d x$
25. Compute the following:
$\int \frac{\arcsin (x)}{\sqrt{1-x^{2}}} d x$
26. Compute the following:

$$
\int \frac{1}{3 x+2} d x
$$

27. Compute $\int \frac{3}{9-t^{2}} d t$
28. Compute $\int \frac{1}{t \sqrt{25-t^{2}}} d t$
29. Compute $\int \frac{3}{t \sqrt{9+t^{2}}} d t$
30. Compute the following:
$\frac{d}{d x} \int_{e^{-x}}^{e^{x}} \ln t d t$
31. Compute two different ways:
$\frac{d}{d x} x^{2 x}$
32. Compute the following:
$\frac{d}{d x} \log _{x}(x+1)$
33. Compute using logrithmic differentiation.
$\frac{d}{d x} \sqrt[4]{\frac{\left(x^{2}+1\right) x^{3}}{(2 x-1)^{3} \sqrt{x-1}}}$
34. Find an equation of the line tangent to $y=\arctan x$ at the point where $x=1$.
35. Find an equation of the line tangent to the graph of $y=x e^{x^{2}}$ at the point where $x=2$.
36. Find an equation for the line tangent to $y=x \ln x$ at the point where $x=e$.
37. Find the area bounded by the graphs of $y=e^{x}$ and $y=(e-1) x+1$.
38. Find the volume of the solid of revolution obtained by rotating the region bounded by the coordinate axes, $y=3$, and $x=$ $\frac{2}{\sqrt{y+1}}$ about the y-axes.
39. Find the absolute maximum and minimum values of the function $f(x)=e^{x}-$ $2 x$ for $-1 \leq x \leq 2$.
40. Show that any curve of the form $y=$ $-\frac{1}{2} x^{2}+k$ and any curve of the form $y=\ln (x)+c$ intersect each other at right angles.
41. Find $\lim _{x \rightarrow 0} \frac{e^{x}-1}{\sin x}$
42. Find $\lim _{x \rightarrow 0} \frac{\cos x-1+x^{2} / 2}{x^{4}}$
43. Find $\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{2 n}$
44. Find $\lim _{n \rightarrow \infty} n^{\frac{1}{n}}$
45. Find $\lim _{n \rightarrow \infty} \frac{n^{2}}{1.00001^{n}}$
46. Find $\lim _{t \rightarrow 0^{+}} t \ln t$
47. Using the definition of \ln, prove that for any positve real numbers a and b, $\ln (a b)=\ln (a)+\ln (b)$.
48. Using the definition of \ln, prove that $\ln x$ is an increasing function.
49. Using the definition of the exponential function Exp, derive the formula for the derivative of $\operatorname{Exp}(x)$.
50. Derive the formula for $\frac{d}{d x} \arctan x$.
51. Derive the formula for $\frac{d}{d x} \arccos x$.
52. Use the definition of $\log _{a} x$ and properties of \ln, prove that for any positive $a, b, c, \log _{a}(b c)=\log _{a}(b)+\log _{a}(c)$.
53. Use the definition of the expontential function $\operatorname{Exp}(x)$, prove that $\operatorname{Exp}(x+$ $y)=\operatorname{Exp}(x) \operatorname{Exp}(y)$.
54. Let $a>0$. Give the definition of a^{x} in terms of the exponential function. Use this definition (and properties of the exponential function) to show that $a^{x+y}=$ $a^{x} a^{y}$ for any real numbers x and y.
55. Give the domain and range for each of the inverse trigonometric functions.
56. Prove that $\arcsin x+\arccos x=\frac{\pi}{2}$.
57. How many zeros does the function $f(x)=2^{x}-1-x^{2}$ have on the real line?
(Prove your answer.)
58. Find the formula for the $n^{\text {th }}$ term of the sequence that starts

$$
1,1,3,3,5,5,7,7, \cdots
$$

59. Find the formula for the $n^{\text {th }}$ term of the sequence that starts

$$
0,7,0,7,0,7, \cdots
$$

60. Find the formula for the $n^{\text {th }}$ term of the sequence that starts

$$
1, \frac{1}{5}, \frac{1}{25}, \frac{1}{125}, \cdots
$$

61. Does the sequence below converge? If so find its limit.

$$
a_{n}=\sqrt{\frac{2 n+3}{3 n-1}}
$$

62. Does the sequence below converge? If so find its limit.

$$
a_{n}=\frac{3 n^{2}+2 n-1}{1+5 n+7 n^{2}}
$$

63. Does the sequence below converge? If so find its limit.

$$
a_{n}=(-1)^{n}+1
$$

64. Does the sequence below converge? If so find its limit.

$$
b_{n}=\frac{n!}{n^{n}}
$$

65. Does the sequence below converge? If so find its limit.

$$
c_{n}=\sqrt[n]{n+1}
$$

66. Determine if the sequence below is bounded above, bounded below, nondecreasing, or nonincreasing.

$$
a_{n}=\frac{n+1}{2 n+3}
$$

67. Determine if the sequence below is bounded above, bounded below, nondecreasing, or nonincreasing.

$$
a_{n}=\sin n+\frac{1}{n}
$$

68. If 10 g of a radioactive substance decays to 8 g in 3 years, find its half life. If the half life of another substance is 1 year, find how long it takes 10 g of the substance to decay to 8 g .
69. Suppose that after 10 years of earning interest at the rate of 7% per year, you have $\$ 100,000$ in an account. How much money was invested in this account 10 years ago to earn this amount? (No money was aded in the mean time.)
70. A rectangle with sides parallel to the axis is to have one corner at the origin and the other on the curve $y=e^{-x^{2}}$. What is the largest rectangular area that can be formed in this way?
71. In a solution, the product of the hydronium ion concentration $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and the hydroxyl ion concentration $\left[\mathrm{OH}^{-}\right]$(both in moles per liter) is 10^{-14}.
a) What value of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$minimizes the sum $S=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?
b) What is the pH of solution you found in part a)?
c) What ratio of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$to $\left[\mathrm{OH}^{-}\right]$ minimizes S ?
72. Compute

$$
\sum_{n=0}^{\infty} \frac{\pi^{n}}{4^{n}}
$$

73. Compute

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{5^{n}}
$$

74. Compute

$$
\sum_{n=1}^{\infty} \frac{4}{(4 n-3)(4 n+1)}
$$

75. Determine if the series converges or diverges. Justify carefully.

$$
\sum_{n=1}^{\infty} 1.000001^{n}
$$

76. Compute and state for which values of x the series converges

$$
\sum_{n=0}^{\infty} e^{n x}
$$

77. Compute

$$
\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1}
$$

78. Compute write the number 2.373737... as a ratio of two integers.
79. Assume that $|x|<1$ and compute the sum

$$
\sum_{n=0}^{\infty} x^{n} .
$$

Use your answer to compute the sum

$$
\sum_{n=1}^{\infty} n x^{n-1}
$$

