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Abstract. In this paper we describe the formation of fingers from ionization fronts for a hydro-
dynamic plasma model. The fingers result from a balance between the destabilizing effect of impact
ionization and the stabilizing effect of electron diffusion on ionization fronts. We show that electron
diffusion acts as an effective surface tension on moving fronts and estimate analytically the size of
the fingers and its dependence on both the electric field and electron diffusion coefficient. We also
verify and extend our results by direct numerical simulation of the model and compute finger-like
travelling waves analogous to structures such as Saffman-Taylor fingers and Ivantsov paraboloid in
the context of Hele-Shaw and Stefan problems respectively.
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1. Introduction. Lightning is a stream of electrified air, known as plasma.
Charged particles are bound in the air by powerful electric forces to form electri-
cally neutral atoms and molecules. As a result, the air is an excellent insulator. This
means that if we apply an electric field to a volume filled with neutral particles, electric
currents will not flow. However, if a very strong electric field is applied to matter of
low conductivity and some electrons or ions are created, then the few mobile charges
can generate an avalanche of more charges by impact ionization. A low temperature
plasma is created, resulting in an electric discharge. The change in the properties of a
dielectric that causes it to become conductive is known as electric breakdown. Break-
down is a threshold process: no changes in the state of the medium are noticeable
while the electric field across a discharge gap is gradually increased but, suddenly, at
a certain value of the electric field, a current is detected.

Discharges can assume different appearances depending on the characteristics of
the electric field and the properties of the medium. Phenomenologically, discharges
can be classified into stationary ones, such as arc, glow or dark discharges, and tran-
sient ones, such as sparks and leaders [16].

At atmospheric pressure and at distances over 1 cm between anode and cathode,
the discharge channels are sharp and narrow, and we have a streamer discharge. A
streamer is a sharp ionization wave that propagates into a non-ionized gas, leaving
a non-equilibrium plasma behind. They have been also reported in early stages of
atmospheric discharges [15]. Streamers can split into branches spontaneously, but how
this branching is determined by the underlying physics is one of the greatest unsolved
problems in the physics of electric discharges. The pattern of this branching resembles
the ones observed in the propagation of cracks, dendritic growth and viscous fingering.
Those phenomena are known to be governed by deterministic equations rather than
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by stochastic events. In this paper, we extend and generalize the results announced in
[7] and verify them by using full numerical simulations of these deterministic models.

1.1. The minimal model for streamers. We consider a fluid description of a
low-ionized plasma. The electron density N d

e varies in time as

∂Nd
e

∂τd
+∇dR · Jde = Sde . (1.1)

In this expression, the superscript d means that the quantity has physical dimen-
sions, so that τd is the physical time, ∇dR is the gradient operator, Sde is the source
term, i.e. the net creation rate of electrons per unit volume and Jde(R

d, τd) =
Nd
e (R

d, τd)Ud
e(R

d, τd) is the electron current density, Ud
e being the average velocity

of electrons. Similar expressions can be obtained for positive N d
p and negative Nd

n

ion densities. On time-scales of interest for the case of negative streamers, the ion
currents can be neglected because they are more than two orders of magnitude smaller
than the electron one, so we will take

∂Nd
p

∂τd
= Sdp , (1.2)

∂Nd
n

∂τd
= Sdn, (1.3)

Sdp,n being source terms for positive and negative ions. Conservation of charge has to

be imposed in all processes, so that the condition Sdp = Sde + Sdn holds.

A usual procedure is to approximate the electron current Jde as the sum of a drift
(electric force) and a diffusion term

Jde = −µeEdNd
e −Dd

e∇dRNd
e , (1.4)

where Ed is the total electric field (the sum of the external electric field applied to
initiate the propagation of a ionization wave and the electric field created by the
local point charges) and µde and Dd

e are the mobility and diffusion coefficients of the
electrons. Note that, as the initial charge density is low and there is no applied
magnetic field, the magnetic effects in equation (1.4) are neglected. In principle,
the diffusion coefficient is not completely determined but, in the case of equilibrium,
diffusion is linked to mobility through the Einstein relation Dd

e/µe = kT/e, k being
the Boltzmann constant, T the temperature and e the absolute value of the electron
charge.

Several physical processes can be considered to give rise to the source terms
Sde,p,n. The most important of them are impact ionization (an accelerated electron
collides with a neutral molecule and ionizes it), attachment (an electron may become
attached when collides with a neutral gas atom or molecule, forming a negative ion),
recombination (of a free electron with a positive ion or a negative ion with a positive
ion) and photoionization (photons created by recombination or scattering processes
can interact with a neutral atom or molecule, producing a free electron and a positive
ion).

A model to describe streamers is obtained when explicit expressions for the source
terms, the electron mobility µe and the diffusion coefficient Dd

e are provided. It is also
necessary to impose equations for the evolution of the electric field Ed. It is usual to
consider that this evolution is given by Poisson’s law,

∇dR · Ed =
e

ε0

(

Nd
p −Nd

n −Nd
e

)

, (1.5)
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where ε0 is the permittivity of the gas and we are assuming that the absolute value
of the charge of positive and negative ions is e.

A simplification occurs when the streamer development out of a macroscopic
initial ionization seed is considered in a non-attaching gas like argon or nitrogen
[11]. In this case, attachment, recombination and photoionization processes can be
neglected. As a consequence, the negative ion density N d

n can be considered to be
constant. The balance equations turn out to be

∂Nd
e

∂τd
= ∇dR ·

(

µeE
dNd

e +Dd
e∇dRNd

e

)

+ νiN
d
e , (1.6)

∂Nd
p

∂τd
= νiN

d
e . (1.7)

This is called the minimal streamer model for a non-attaching gas. In these equa-
tions νiN

d
e is a model for the impact ionization source term, in which the ionization

coefficient νi is given by the phenomenological Townsend’s approximation,

νi = µe|Ed|α0e
−E0/|Ed|, (1.8)

where α0 is the inverse of ionization length, and E0 is the characteristic impact ion-
ization electric field. The value of α0 is proportional to the pressure of the ambient
gas according to Townsend’s theory [8].

Townsend approximation provides physical scales and intrinsic parameters for the
model as long as only impact ionization is present in the gas. It is then convenient
to reduce the equations to dimensionless form, as functions of the gas pressure p (in
bars). The natural units for nitrogen are the ionization length

R0 =
1

α0
= 2.3× 10−6 m

( p

1 bar

)−1

, (1.9)

as a length unit, the characteristic impact ionization field

E0 = 2× 107 V/m
( p

1 bar

)

, (1.10)

as an electric field unit, and the electron mobility

µe = 3.8× 10−2 m2/(V · s)
( p

1 bar

)−1

, (1.11)

as a unit of velocity divided by electric field. These natural units lead to the velocity
scale

U0 = µeE0 = 7.6× 105 m/s, (1.12)

the time scale

τ0 =
R0

U0
= 3× 10−12 s

( p

1 bar

)−1

, (1.13)

the particle density scale

N0 =
ε0E0
eR0

= 4.7× 1020 m−3
( p

1 bar

)2

, (1.14)
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and the electron diffusion scale

D0 = R0U0 = 1.8m2/s
( p

1 bar

)−1

. (1.15)

We introduce the dimensionless variables r = Rd/R0, τ = τd/τ0, the dimensionless
field E = Ed/E0, the dimensionless electron and positive ion particle densities Ne =
Nd
e /N0 and Np = Nd

p /N0, and the dimensionless diffusion constant De = Dd
e/D0.

The dimensionless minimal model reads

∂Ne

∂τ
= ∇ · (NeE +De∇Ne) +Ne|E |e−1/|E|, (1.16)

∂Np

∂τ
= Ne|E |e−1/|E|, (1.17)

Np −Ne = ∇ · E . (1.18)

This model exhibits spontaneous branching of the streamers, as indicated by numerical
simulations [4], in agreement with experimental situations [15]. In order to understand
this branching, the dispersion relation for transversal Fourier-modes of planar negative
shock fronts without diffusion (De) has been derived [5]. For perturbations of small
wave number k, the planar shock front becomes unstable with a linear growth rate
proportional to k. It has been also shown that all the modes with large enough wave
number k (small wave length perturbations) grow at the same rate (it does not depend
on k when k is large). However, it could be expected from the physics of the problem
that a particular mode would be selected. To address this problem, we consider in
this paper the effect of diffusion.

1.2. Outline of this paper. Our analysis will show that the electron density
Ne may develop sharp fronts of thickness O(

√
De). Moreover, it satisfies an equation

analogous to Fisher equation, which is a well known model in some biological contexts
(see [12]). A surprising fact established during the last 30 years is that the combination
of sharp interfaces with small diffusive effects may result in asymptotic limits (for
De << 1) in which the motion of the interface is described by equations involving
solely geometrical properties such as its mean curvature. A pioneer attempt to achieve
such a description is due to Allen and Cahn [2] and it concerned a model, today known
as Allen-Cahn equation, for the kinetics of melted Fe-Al alloys. Subsequent work by
Rosenberg et al. [17] showed that the points of the interface separating both species
move along the normal direction with a velocity proportional to its mean curvature.
This kind of dynamics is termed ”mean curvature flow”. Many mathematicians have
contributed to provide a rigorous proof of the convergence of Allen-Cahn model to
motion by mean curvature. These ideas have also been extended to some other rather
different contexts. An improvement of the above model is the so called Cahn-Hilliard
model [9], described by a fourth order differential equation. This model leads to an
asymptotic limit given by the motion of sharp interfaces in Hele-Shaw (or Mullins-
Sekerka) problem for the evolution of a fluid between two plates separated by a small
distance [1]. A biological model consisting of reaction-diffusion equations [10] for
competing species separated by a sharp interface gives rise to a limiting problem
similar to Stefan problem for phase transformation (for example, ice solidifying water).
Remarkably, some of these limiting models have solutions that develop branch-like
patterns: fingers in Hele-Shaw or dendrites in the Stefan problem.

In this paper we exploit some of the ideas introduced in the references above
in order to study the motion of ionization fronts. We will show that a planar front
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separating a (partly) ionized region from a region without charge is affected by two
opposing effects: electrostatic repulsion of electrons and electron diffusion. The first
effect tends to destabilize the front while the second acts effectively as a mean cur-
vature contribution to the velocity of the front that stabilizes it. The net result is
the appearance of fingers with a characteristic thickness determined by the balance of
these two opposing actions. The common underlying mathematical structure among
the minimal streamer model and other pattern forming systems such as Hele-Shaw
or Stefan problems strongly suggests that the basic mechanisms governing important
phenomena such as the development of complex patterns through branching of single
”fingers” should be very similar.

2. Streamer evolution in strong electric fields. In order to study the evo-
lution and branching of ionization fronts, we consider the following experimental sit-
uation. The space between two plates is filled with a non-attaching gas like nitrogen.
A stationary potential difference is applied to these plates, so that an electric field is
produced in the gas. The electric field is directed from the anode to the cathode. To
initiate the avalanche, an initial seed of ionization is set near the cathode. We study
the evolution of negative ionization fronts towards the anode.

We will assume that the distance between the cathode and the anode is much
larger than the space scale R0 (in experiments, this distance is more than one thousand
times larger than R0), so that we can consider that the anode is at infinite distance
from the initial seed of ionization. Moreover, we will concentrate in the study of the
dynamics under the effect of strong external electric fields, larger than the electric
field unit E0. This means that the modulus of the dimensionless electric field |E |
is larger than 1. Strictly speaking, if we denote the modulus of the dimensionless
electric field at large distance from the cathode as E∞, we will assume that E∞ À 1.
Under these circumstances, it is natural to rescale the dimensionless quantities in the
minimal model as

E = E∞E (2.1)

Ne = E∞ ne (2.2)

Np = E∞ np (2.3)

τ =
t

E∞
(2.4)

so that we have

∂ne
∂t
−∇ · (neE+D∇ne) = ne|E|e−1/(E∞|E|), (2.5)

∂np
∂t

= ne|E|e−1/(E∞|E|), (2.6)

∇ ·E = np − ne, (2.7)

where

D =
De

E∞
, (2.8)
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is, in general, a small parameter. For E∞ À 1, this system can be approximated by

∂ne
∂t
−∇ · (neE+D∇ne) = ne|E|, (2.9)

∂np
∂t

= ne|E|, (2.10)

∇ ·E = np − ne. (2.11)

Our approximation will be valid in all regions where E∞|E| À 1. These are the
regions of interest in the situations studied in this paper since by equation (2.11) the
intensity of the electric field varies continuosly as long as ne and np are bounded, and
hence should not vary much in the neighborhood of the ionization front. We will show
that this is indeed the case and it is in this region where the mechanisms leading to
branching take place.

3. Planar fronts. We will concentrate in the planar case. Experimentally, this
means that we have two large planar plates situated at x = 0 (cathode) and x = d
(anode) respectively (x is the horizontal axis and we suppose that dÀ 1). The space
between the plates is filled with a non-attaching gas like nitrogen. A stationary electric
potential difference is applied to the plates, so that an electric field is produced in
the gas. The initial electric field is directed from the anode to the cathode, and is
uniform in the space between the plates, with a value E∞ À 1. As in this section we
are interested in the evolution of the ionization wave along the x axis, the rescaled
electric field can be written as E = Eux where E < 0, so that |E| = |E| = −E, and
ux is an unitary vector in the x direction. We are left then with the following system,

∂ne
∂t

=
∂

∂x

(

neE +D
∂ne
∂x

)

+ ne|E|, (3.1)

∂np
∂t

= ne|E|, (3.2)

∂E

∂x
= np − ne. (3.3)

3.1. The travelling waves with D = 0. It is very simple to compute travelling
wave solutions when D = 0. In this case, the equation for the evolution of the electron
density is

∂ne
∂t

=
∂(neE)

∂x
− neE. (3.4)

Substrating (3.1) from (3.2) with D = 0, and taking the time derivative of (3.3), we
obtain the equation

∂2E

∂x∂t
+

∂

∂x
(neE) = 0. (3.5)

Integrating this expression once in x, one obtains

∂E

∂t
= −neE + C(t), (3.6)

where C(t) can be fixed by the boundary conditions at infinity, E → −1 and ne → 0.
This implies C(t) = 0, so that,

∂E

∂t
= −neE. (3.7)
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In physical terms, the right hand side of (3.6) is the curl of the magnetic field, due
to Ampére’s law, which is zero because the magnetic effects are neglected in the
framework of the minimal model.

We look for travelling wave solutions of the system (3.4)-(3.7) introducing the
ansatz

ne = f(x− ct), E = −g(x− ct), (3.8)

into the above system. The minus sign in the electric field is due to the fact that the
electric field is negative, so g is a positive function. Introducing (3.8) into (3.4) and
(3.7), we obtain

−c df
dξ

=
d

dξ
(fg) + fg, (3.9)

c
dg

dξ
= fg. (3.10)

Introducing dg/dξ given by (3.10) into (3.9), we obtain an equation for df/dξ and
hence the following system of ode’s,

df

dξ
=
−fg + 1

cf
2g

c− g , (3.11)

dg

dξ
=

1

c
fg, (3.12)

where ξ = x− ct. This system can be explicitly solved by noticing that

df

dg
= −c− f

c− g , (3.13)

so that

(c− f)(c− g) = c(c− 1), (3.14)

the constant c(c − 1) being given by conditions at ξ → ∞, namely that the electron
density vanishes and the electric field is equal to −1 there. Therefore,

dg

dξ
=
g(1− g)
c− g , (3.15)

allowing direct integration to yield the implicit solution (up to translations in ξ),

c log g + (1− c) log (1− g) = ξ. (3.16)

This expression yields solutions for any c ≥ 1. We will be interested in the limit c→ 1
since it is well known [6] that a compactly supported initial data (representing a seed
of ionization located in some region) develops fronts travelling with this velocity. In
the case c = 1 the solution can be obtained straightforwardly, giving

g(ξ) =

{

eξ, for ξ < 0
1, for ξ ≥ 0

, f(ξ) =

{

1, for ξ < 0
0, for ξ ≥ 0

. (3.17)

We can also find the solution for the positive ion density np in the case c = 1. Taking
np = h(x− t), we have

h(ξ) =

{

1− eξ, for ξ < 0
0, for ξ ≥ 0

. (3.18)

This solution for ne represents a shock front moving with velocity c = 1 (see figure
3.1).
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Fig. 3.1. The moving fronts with D=0 and c=1. The same with 0 < D ¿ 1 and c = 1 + 2
√
D.

3.2. The travelling waves with D 6= 0. We proceed now to investigate the
travelling waves for 0 < D ¿ 1. As D is a small parameter, the travelling wave
solutions for the electron and positive ion densities and the electric field are expected
to be not very different to that corresponding to D = 0 found in the previous subsec-
tion. Consequently, we look for solutions such that ne and np decay exponentially at
infinity and E is also an exponentially small correction of −1 at infinity. This means
that we can take

ne = Ae−λ(x−ct), (3.19)

np = Be−λ(x−ct), (3.20)

E = −1 + Ce−λ(x−ct). (3.21)

If we introduce this expressions into (3.1) we obtain, for x− ct→∞, the relation

−cλ+ λ+Dλ2 = −1, (3.22)

which has real solutions if and only if (c− 1)2 − 4D ≥ 0. Therefore,

c ≥ 1 + 2
√
D. (3.23)

All initial data decaying at infinity faster than Ae−λ
∗x, with λ∗ = 1/

√
D, will develop

travelling waves [11] with velocity c = 1 + 2
√
D. If D ¿ 1, the profiles for np and E

will vary very little from the profiles with D = 0. On the other hand, ne will develop
a boundary layer at the front smoothing the jump from ne = 1 to ne = 0. If we write
the equation for the travelling wave ne = f(x− (1 + 2

√
D)t) into the expression

∂ne
∂t
− ne

∂E

∂x
− E∂ne

∂x
−D∂2ne

∂x2
= ne|E|, (3.24)
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and we take, from equation (3.3), ∂xE = np − ne, approximating at the boundary
layer np = 0, E = −1, we obtain the equation

−2
√
D
∂f

∂ξ
−D∂2f

∂ξ2
= f(1− f), (3.25)

where ξ = x − (1 + 2
√
D)t. Defining χ = ξ/

√
D, we obtain an equation for the

boundary layer,

−2∂f
∂χ
− ∂2f

∂χ2
= f(1− f) (3.26)

together with the matching conditions,

f(−∞) = 1, f(+∞) = 0. (3.27)

Expression (3.26) is the well known equation for travelling waves of Fisher’s equation.
It appears in the context of mathematical biology [14] and is known to have solutions
subject to (3.27). This means that we have a boundary layer of width

√
D at ξ = 0

in which equation (3.26) gives the solution for the electron density ne. Before this
layer, we have ne ≈ 1, and after the layer, ne ≈ 0. When D = 0, this is the shock
front found in the previous subsection. It will be useful to analyze the structure of
np at the boundary layer. Introducing

np =
√
Dh(χ), (3.28)

one obtains from (3.2) the following formula at zero order in D, with χ = [x − (1 +
2
√
D)t]/

√
D,

dh(χ)

dχ
= f(χ), (3.29)

so that

h(χ) = −
∫ ∞

χ

f(z)dz. (3.30)

Notice that it follows

∂np
∂x

= f(χ) = O(1), at the boundary layer. (3.31)

Analogously, from Poisson’s equation ∂xE = np−ne, we can deduce E = −1+O(
√
D)

across the boundary layer. We will write this solution as

E = −1 +
√
DEbl +O(D). (3.32)

These solutions can be seen in figure 3.1.

4. The dispersion relation. Next we introduce a perturbation in the transver-
sal direction y (see figure 4.1). We will do it by introducing a new system of coordi-
nates in the form

t = t, (4.1)

y = y, (4.2)

x = x− δ ϕ(x, y, t), (4.3)
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n  = 1e
n  = 0

δ

D

p
n  = 0en  > 0p

0<n <1e

x

y

Fig. 4.1. Schematic representation of the perturbed front.

so that, at t = 0, n
(0)
e (x) and E(0)(x) correspond to the profiles of a travelling wave

computed in the previous section, and δ is a sufficiently small parameter compared
to
√
D. By doing this, we follow a strategy analogous to the one used in Rubinstein

et al. [17] to deduce the asymptotic approximation of Allen-Cahn equation by mean
curvature flow. We can compute straightforwardly the relations between derivatives
up to order δ2,

∂

∂x
=

∂

∂x
− δ ∂ϕ

∂x

∂

∂x
, (4.4)

∂

∂y
=

∂

∂y
− δ ∂ϕ

∂y

∂

∂x
, (4.5)

∂

∂t
=

∂

∂t
− δ ∂ϕ

∂t

∂

∂x
, (4.6)

∂2

∂x2
=

∂2

∂x2 − δ
∂2ϕ

∂x2

∂

∂x
− 2δ

∂ϕ

∂x

∂2

∂x2 +O(δ2), (4.7)

∂2

∂y2
=

∂2

∂y2 − δ
∂2ϕ

∂y2

∂

∂x
− 2δ

∂ϕ

∂y

∂2

∂x∂y
+O(δ2). (4.8)

We introduce the perturbed electric field and electron density as

E = E(0) ux + δ
(

E(1)
x ux + E(1)

y uy

)

, (4.9)

ne = n(0)
e + δ n(1)

e , (4.10)

np = n(0)
p + δ n(1)

p , (4.11)
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4.1. Equations for the corrections at first order. Inserting these expres-
sions into equation (2.9) we obtain,

∂n
(0)
e

∂t
− E(0) ∂n

(0)
e

∂x
= n(0)

e |E(0)|+ n(0)
e

(

n(0)
p − n(0)

e

)

+ D

(

1− 2δ
∂ϕ

∂x

)

∂2n
(0)
e

∂x2

+ δ

[

∂ϕ

∂t
+ E(1)

x − E(0) ∂ϕ

∂x
−D∆(x,y)ϕ

]

∂n
(0)
e

∂x

+ δ
(

|E(1)
x |+

(

n(1)
p − n(1)

e

))

n(0)
e

+ δ

(

−∂n
(1)
e

∂t
+ n(1)

e

(

n(0)
p − n(0)

e

)

+ E(0) ∂n
(1)
e

∂x
+ n(1)

e |E(0)|
)

+ δ D∆(x,y)n
(1)
e +O(δ2), (4.12)

where ∆(x,y) = ∂2/∂x2 + ∂2/∂y2 and ∆(x,y) = ∂2/∂x2 + ∂2/∂y2. From (2.10) we
obtain

∂n
(0)
p

∂t
+ δ

∂n
(1)
p

∂t
= n(0)

e |E(0)|+ δ
∂ϕ

∂t

∂n
(0)
p

∂x
+ δ |E(1)

x |n(0)
e + δ |E(0)|n(1)

e +O(δ2), (4.13)

and from (2.11)

∂E(0)

∂x
+ δ

(

∂E
(1)
x

∂x
+
∂E

(1)
y

∂y

)

= n(0)
p − n(0)

e + δ
(

n(1)
p − n(1)

e

)

+ δ
∂ϕ

∂x

∂E(0)

∂x
+O(δ2).

(4.14)
We can construct a solution up to O(δ2), by imposing that O(δ0) terms and O(δ1)
terms in (4.12), (4.13) and (4.14) vanish. The O(δ0) terms give

∂n
(0)
e

∂t
= E(0) ∂n

(0)
e

∂x
+ n(0)

e |E(0)|+ n(0)
e

(

n(0)
p − n(0)

e

)

+D
∂2n

(0)
e

∂x2 , (4.15)

∂n
(0)
p

∂t
= n(0)

e |E(0)|, (4.16)

∂E(0)

∂x
= n(0)

p − n(0)
e , (4.17)

and the O(δ1) terms give

0 =

[

∂ϕ

∂t
+ E(1)

x − E(0) ∂ϕ

∂x
−D∆(x,y)ϕ

]

∂n
(0)
e

∂x

− 2D
∂ϕ

∂x

∂2n
(0)
e

∂x2 +
(

|E(1)
x |+ n(1)

p − n(1)
e

)

n(0)
e

− ∂n
(1)
e

∂t
+ n(1)

e

(

n(0)
p − n(0)

e

)

+ E(0) ∂n
(1)
e

∂x
+ n(1)

e |E(0)|

+ D∆(x,y)n
(1)
e , (4.18)

0 =
∂n

(1)
p

∂t
+

1

1 + 2
√
D

∂ϕ

∂t
n(0)
e − |E(1)

x |n(0)
e − |E(0)|n(1)

e , (4.19)

0 =
∂E

(1)
x

∂x
+
∂E

(1)
y

∂y
−
(

n(1)
p − n(1)

e

)

− ∂ϕ

∂x

(

n(0)
p − n(0)

e

)

, (4.20)
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in which we have replaced, at order δ, derivatives with respect to x by derivatives

with respect to x, and we have used (4.17) to replace ∂E(0)/∂x by n
(0)
p − n

(0)
e , and

(4.16), (3.29) and (3.30) to replace ∂n
(0)
p /∂x by

∂n
(0)
p

∂x
=

−1
1 + 2

√
D

∂n
(0)
p

∂t
=

−1
1 + 2

√
D
n(0)
e . (4.21)

The solution of the system given by equations (4.15), (4.16) and (4.17) is the travelling
wave found in the previous section, so that

n(0)
e = f(ξ), (4.22)

where ξ = x− ct.
Now we consider a particular type of geometrical perturbation of the ionization

front, in which the function ϕ(x, y, t) is chosen in such a way that the correction to

the travelling wave profiles for ne is O(δ2), i.e. the quantity n
(1)
e in equations (4.18)-

(4.20) is equal to zero. This leads to the following system for ϕ(x, y, t) and the O(δ)

corrections E
(1)
x , E

(1)
y , n

(1)
p :

0 =

[

∂ϕ

∂t
+ E(1)

x − E(0) ∂ϕ

∂x
−D∆(x,y)ϕ

]

∂n
(0)
e

∂x

− 2D
∂ϕ

∂x

∂2n
(0)
e

∂x2 +
(

|E(1)
x |+ n(1)

p

)

n(0)
e , (4.23)

0 =
∂n

(1)
p

∂t
+

1

1 + 2
√
D

∂ϕ

∂t
n(0)
e − |E(1)

x |n(0)
e , (4.24)

0 =
∂E

(1)
x

∂x
+
∂E

(1)
y

∂y
− n(1)

p −
∂ϕ

∂x

(

n(0)
p − n(0)

e

)

. (4.25)

In order to analyze the system (4.23)-(4.25), we introduce changes of coordinates in
two stages: first, we change coordinates to a frame in which the planar front remains
stationary and, second, we rescale coordinates in the boundary layer in order to make
it of O(1) size.

The first change of coordinates is of the form

x′ = x− ct, y′ = y, t′ = t, (4.26)

where c = 1 + 2
√
D. Hence, the system (4.23)-(4.25) transforms into

0 =

[

∂ϕ

∂t′
+ E(1)

x −D∆(x′,y′)ϕ

]

∂n
(0)
e

∂x′

− (E(0) + c)
∂ϕ

∂x′
∂n

(0)
e

∂x′
− 2D

∂ϕ

∂x′
∂2n

(0)
e

∂x′2
+
(

|E(1)
x |+ n(1)

p

)

n(0)
e , (4.27)

0 =

(

∂

∂t′
− c ∂

∂x′

)

n(1)
p +

1

1 + 2
√
D

[(

∂

∂t′
− c ∂

∂x′

)

ϕ

]

n(0)
e − |E(1)

x |n(0)
e , (4.28)

0 =
∂E

(1)
x

∂x′
+
∂E

(1)
y

∂y′
− n(1)

p −
∂ϕ

∂x′

(

n(0)
p − n(0)

e

)

. (4.29)

Secondly, noticing that x′ is of order
√
D at the boundary layer, as we saw in the

previous section, we write

x′ =
√
D x̃, y′ =

√
D ỹ, t′ = t̃, (4.30)
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to obtain the rescaled system

0 =

[

∂ϕ

∂t̃
+ E(1)

x −∆(x̃,ỹ)ϕ

]

∂n
(0)
e

∂x̃
− 2

∂ϕ

∂x̃

∂2n
(0)
e

∂x̃2

− E(0) + c√
D

∂ϕ

∂x̃

∂n
(0)
e

∂x̃
+
√
D
(

|E(1)
x |+ n(1)

p

)

n(0)
e , (4.31)

0 =

(

∂

∂t̃
− c√

D

∂

∂x̃

)

n(1)
p

+
1

1 + 2
√
D

[(

∂

∂t̃
− c√

D

∂

∂x̃

)

ϕ

]

n(0)
e − |E(1)

x |n(0)
e , (4.32)

0 =
∂E

(1)
x

∂x̃
+
∂E

(1)
y

∂ỹ
−
√
Dn(1)

p −
∂ϕ

∂x̃

(

n(0)
p − n(0)

e

)

. (4.33)

Observe that at the boundary layer, by equation (3.32), (E(0) + c)/
√
D = Ebl + 2 +

O(
√
D). If D is small, then (4.32) decouples from (4.31) and (4.33), the O(

√
D)

terms in (4.31)-(4.33) are lower order in D, and we can describe the evolution of the
perturbed system as

∂ϕ

∂t̃
+ E(1)

x −∆(x̃,ỹ)ϕ− 2
∂ϕ

∂x̃

∂2n
(0)
e /∂x̃2

∂n
(0)
e /∂x̃

− (Ebl + 2)
∂ϕ

∂x̃
= 0, (4.34)

∂E
(1)
x

∂x̃
+
∂E

(1)
y

∂ỹ
− ∂ϕ

∂x̃

(

n(0)
p − n(0)

e

)

= 0. (4.35)

To do such simplification, it is necessary that all the terms in (4.34) and (4.35) are
dominant with respect to the O(

√
D) terms that we have dropped from the equations

above. In particular, derivatives with respect to ỹ are dominant since, as we will see
later in equation (4.59), the perturbations that we are applying have a typical length
of order D−1/6 so that the derivatives with respect to ỹ are of order D1/6, which is
much larger than D1/2 when D ¿ 1 . This means that we can write the evolution of
the perturbed system as done in equations (4.34) and (4.35) safely.

It will be more convenient for us to formulate equation (4.35) in terms of the elec-
tric potential in the next subsection. Observe that the system (4.34)-(4.35) simplifies
if one assumes that ϕ is independent of x̃. This is a very strong assumption since one

can expect E
(1)
x to depend on x̃, but we will see below that it is correct near the front

(in the boundary layer, x̃ = O(1)).

4.2. The first order correction to the electric field. To establish conditions
for the behavior of the perturbation of the electric field, we first note that the total
electric field has to be irrotational since the magnetic field is negligible. So we will
write E = −∇V , where V is an electric potential. Then, equation (2.11) can be
written as

−∆(x,y)V = n(0)
p − n(0)

e + δ n(1)
p +O(δ2). (4.36)

Changing variables, we have

− ∆(x,y)V + δ∆(x,y)ϕ
∂V

∂x
+ 2δ

(

∂ϕ

∂y

∂2V

∂x∂y
+
∂ϕ

∂x

∂2V

∂x2

)

= n(0)
p − n(0)

e + δ n(1)
p +O(δ2). (4.37)
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We write the electric potential as

V (x, y) = V (0)(x) + δ V (1)(x, y), (4.38)

so that (4.37) can be written, at the first two orders in δ, as

−∂
2V (0)(x)

∂x2 = n(0)
p − n(0)

e , (4.39)

−∆(x,y)V
(1)(x, y) = −∆(x,y)ϕ

∂V (0)(x)

∂x
− 2

∂ϕ

∂x

∂2V (0)(x)

∂x2 + n(1)
p . (4.40)

Expression (4.39) implies that V (0)(x) is an electric potential associated to the electric
field E(0)(x). The electric potential V (1) satisfies equation (4.40) with the condition
of decaying at |x| → ∞. Using (4.39) and (4.40), and the relation E(0) = −∂V (0)/∂x,
we arrive at

−∆(x,y)V
(1)(x, y) = ∆(x,y)ϕE

(0) + 2
∂ϕ

∂x

(

n(0)
p − n(0)

e

)

+ n(1)
p . (4.41)

Changing coordinates as in (4.26) and (4.30), we obtain

−∆(x̃,ỹ)V
(1) = ∆(x̃,ỹ)ϕE

(0)(
√
Dx̃)

+ 2
√
D
∂ϕ

∂x

(

n(0)
p (
√
Dx̃)− n(0)

e (
√
Dx̃)

)

+Dn(1)
p , (4.42)

and neglecting O(
√
D) and O(D) terms, we arrive at

−∆(x̃,ỹ)V
(1) = ∆(x̃,ỹ)ϕE

(0)(
√
Dx̃). (4.43)

We assume at this point that ϕ does not depend on x̃ across the boundary layer,
as it does vary very slowly compared with the variation in ỹ. This assumption will
simplify the computations, and its validity will be justified a posteriori. Therefore,
we will study the equation

−∆(x̃,ỹ)V
(1) =

∂2ϕ

∂ỹ2
E(0)(

√
Dx̃). (4.44)

If we take the derivative of equation (4.44) with respect to x, taking into account that

∂V (1)

∂x
= −E(1)

x , (4.45)

and the relation between E(0) = −∂V (0)/∂x and n
(0)
p − n(0)

e given by (4.39) we find

∆(x̃,ỹ)E
(1)
x =

∂2ϕ

∂ỹ2

∂E(0)

∂x
=
∂2ϕ

∂ỹ2

(

n(0)
p (
√
Dx̃)− n(0)

e (
√
Dx̃)

)

, (4.46)

Taking Fourier transform in x̃ (associated with the wave number ω) and ỹ (associated

with the wave number k), and denoting the Fourier transform of function f as f̂ and

the double Fourier transform as
ˆ̂
f , one obtains

(k2 + ω2)
ˆ̂
E(1)
x (ω, k) =

k2ϕ̂(k)√
2π

∫ ∞

−∞
ds e−iωsq(

√
Ds), (4.47)
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where we have defined the net charge density as q(
√
Dx̃) = n

(0)
p (
√
Dx̃)− n(0)

e (
√
Dx̃).

Taking the inverse Fourier transform in ω of (4.47), it follows

Ê(1)
x (x̃, k) =

1

2π

∫ ∞

−∞
dω eiωx̃

k2ϕ̂(k)

k2 + ω2

∫ ∞

−∞
ds e−iωsq(

√
Ds)

=
1

2π
k2ϕ̂(k)

∫ ∞

−∞
ds q(

√
Ds)

∫ ∞

−∞
dω

eiω(x̃−s)

k2 + ω2
. (4.48)

The integral in ω can be done by deforming the integration contour in the complex
plane. The result is

Ê(1)
x (x̃, k) =

|k|ϕ̂(k)
2

∫ ∞

−∞
ds q(

√
Ds)e−|k| |x̃−s|. (4.49)

Since the correction of the travelling waves with small diffusion with respect to
the travelling waves without diffusion is O(D1/2), we can approximate the profile for
the net charge density q(

√
Dx̃), by the profile for the diffusionless travelling waves

calculated in the previous section, i.e.

q(
√
Dx̃) =

{

−e
√
Dx̃, for x̃ < 0

0, for x̃ > 0
. (4.50)

With this approximation, equation (4.49) reads

Ê(1)
x (x̃, k) = −|k|ϕ̂(k)

2

∫ 0

−∞
ds e

√
Dse−|k| |x̃−s|. (4.51)

The integral in (4.51) can be computed for both x̃ < 0 and x̃ > 0. The result is

Ê(1)
x (x̃, k) = −|k|ϕ̂(k)

2
√
D
×
{ 1

1+|k|/
√
D
e−|k|x̃, for x̃ ≥ 0

−2|k|/
√
D

1−|k|2/D e
√
Dx̃ + 1

1−|k|/
√
D
e|k|x̃, for x̃ ≤ 0

. (4.52)

The front is at a neighborhood of O(1) width around x̃ = 0. While |k| ¿ 1, the
exponentials in (4.52) can be neglected in this region, and we can write

Ê(1)
x (0, k) = − |k|ϕ̂(k)

2(
√
D + |k|)

, (4.53)

i.e. a field independent of x̃.

4.3. The dispersion relation. As we discussed above, E
(1)
x will be independent

of x̃ at the boundary layer. Assuming again that ϕ does not depend on x̃, we can
write equation (4.34) in the form

∂ϕ

∂t̃
+ E(1)

x −
∂2ϕ

∂ỹ2
= 0. (4.54)

Taking Fourier transform in ỹ, and using the result (4.53), we find

∂ϕ̂(k)

∂t̃
− |k|ϕ̂(k)

2(
√
D + |k|)

+ |k|2ϕ̂(k) = 0. (4.55)
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Let us write the following ansatz for ϕ̂,

ϕ̂(k, t̃) = emtφ̂(k). (4.56)

Introducing this expression into equation (4.55), we obtain the relation

m =
|k|

2(
√
D + |k|)

− |k|2, (4.57)

that is the dispersion relation of the perturbations of the fronts. Note that there exists
a maximum of m(|k|) that selects the wavelength of the perturbation. It is easy to
obtain the following expansion (in D) for the location of the maximum of m,

kmax =
1

22/3
D1/6 − 2

3
D1/2 +

22/3

9
D5/6 +

27/3

81
D7/6 +O(D3/2). (4.58)

When D is a small parameter, this maximum is approximately located at

kmax ≈
D1/6

22/3
. (4.59)

Notice that kmax is O(D1/6), so that |k|x̃ can be safely approximated by zero for

x̃ = O(1), i.e. in the boundary layer. This justifies the assumption that E
(1)
x , and

hence ϕ, are independent of x̃ at this order. The value of kmax corresponds to a
typical spacing between fingers given by

λmax =
2πD1/2

kmax
≈ 10D1/3. (4.60)

In the original non-dimensional quantities, this is

λmax ≈ 10

(

De

E∞

)1/3

. (4.61)

The typical spacing can be put into physical quantities for nitrogen using the relations
(1.9), (1.10) and (1.15). In this way, we can give the dependence of the physical spacing
λd between consecutive fingers in terms of the gas pressure p (in bars), the physical
external electric field Ed∞ and the diffusion coefficient Dd

e . We obtain

λdmax ≈ 10R0

( E0
D0

)1/3(
Dd
e

Ed∞

)1/3

≈ 2.3× 10−5 m

(

2× 107 V · bar/m
1.8m2/s

)1/3(
Dd
e

p Ed∞

)1/3

, (4.62)

so that the spacing decreases as the gas pressure or the external electric field in-
creases, and increases as the diffusion coefficient increases. This expression shows the
possibility of validating the main results of this work through experiments of electric
discharges in nitrogen.
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5. Numerical studies of stability of planar fronts and non planar waves.

The theory developed in previous sections applies solely to waves travelling at velocity
c = 1 in the non diffusive case and c = 1+ 2

√
D when D 6= 0. These travelling waves

only appear for a certain class of initial data, namely those for which ne is identically
zero beyond a certain point in space. From the numerical point of view, solutions
tend to develop travelling waves which do not propagate exactly with that velocity.
Nevertheless, we will show in this numerical section that the main stability/instability
features of our theoretical results remain valid in general. Specifically, we show the
existence of travelling waves in the form of fingers when the diffusion coefficient is
small enough and that, for a given diffusion coefficient, stability of planar fronts
depends critically on the wavelength of the perturbations.

We developed a numerical code to solve the initial value problem and study the
evolution of non planar travelling waves. We discretized the equations with finite
differences on a domain of size Lx × Ly with a uniform square grid of spacing h. For
the temporal integration we used an improved Euler scheme. We first compute an
approximation for the solution of the system (2.9-2.11) at t+ δt/2 as

∆aφ
(k) = − (np − ne)(k) , (5.1)

n(k+1/2)
e = n(k)

e +
δt

2
(E · ∇une + ne(np − ne) +D∆ane + ne|E|)(k) , (5.2)

n(k+1/2)
p = n(k)

p +
δt

2
(ne|E|)(k) , (5.3)

and then we obtain a second order approximation by using the derivatives at the
center of the interval (t, t+ δt),

∆aφ
(k+1/2) = − (np − ne)(k+1/2)

, (5.4)

n(k+1)
e = n(k)

e + δt (E · ∇cne + ne(np − ne) +D∆ane + ne|E|)(k+1/2)
, (5.5)

n(k+1)
p = n(k)

p + δt (ne|E|)(k+1/2)
, (5.6)

where the superscript (k) denotes the time step at time kδt, E = −∇cφ and

∆aφ =
1

6h2
[φi+1,j+1 + φi+1,j−1 + φi−1,j+1 + φi−1,j−1

+ 4(φi+1,jφi−1,j + φi,j+1 + φi,j−1)− 20φij ], (5.7)

is the second order accurate approximation of the laplacian that is symmetrical up to
third order. In equations (5.2,5.5), ∇u is the upwind gradient respect to the electric
field, and ∇c is the centered second-order accurate gradient. In order to solve the
Poisson equations (5.1,5.4), we used succesive overrelaxations (SOR) [3], which in our
case is convenient because at each time step we have a good approximation of the
solution from the previous step.

We found empirically that the scheme is stable provided we satisfy the following
CFL-like condition

δt < min(h/(2Em), h2/4D), (5.8)

where Em is the maximum value of the absolute value of the electric field in the
domain of integration (which in our equations plays the role of a velocity).
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Fig. 5.1. Validation with an explicit solution for c = 2 and D = 0. The size of the domain
is Lx = 50 and we used 200 gridpoints. The curves on the left indicate the initial condition for
ne (upper line) and np (lower line), and the curves on the right show the comparison between the
numerical calculation and the exact solution at t = tq.

We enforce the following boundary conditions

∂φ

∂x
(Lx, y) = 1 φ(0, y) = 0

∂φ

∂y
(x, Ly) =

∂φ

∂y
(x, 0) = 0, (5.9)

ne(Lx, y) =
∂ne
∂x

(0, y) = 0
∂ne
∂y

(x, Ly) =
∂ne
∂y

(x, 0) = 0, (5.10)

np(Lx, y) =
∂np
∂x

(0, y) = 0
∂np
∂y

(x, Ly) =
∂np
∂y

(x, 0) = 0, (5.11)

which correspond to a constant electric field on the top end of the domain, and zero-
flux conditions on the sides.

5.1. Validation with traveling waves. We validated the scheme by compar-
ing the numerical solution with the following exact solutions for the traveling waves
without diffusion:

nexe (ζ) = 1− eζ
√

eζ(4 + eζ)
, (5.12)

nexp (ζ) = 1 +
eζ

2
− eζ/2

√
4 + eζ

2
+

log 2

2

− log
(

eζ/2 +
√

4 + eζ
)

+
1

2
log
(

2 + eζ + eζ/2
√

4 + eζ
)

, (5.13)

where ζ = x− 2t. This solution is convenient for the validation because it is smooth,
and our numerical scheme is best suited to calculate differentiable solutions. We
first set as an initial condition the exact solution at t = 0 and then we compute the
numerical solution at tq = 9.5. In Fig. (5.1) we show the comparison between both
solutions. In Fig. (5.2) we show the total error calculated as

error =

∫ Lx

0

(ne(x, tq)− nexe (x, tq))
2
dx. (5.14)
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Fig. 5.2. Errors integrated along the domain of integration for D = 0 at time tq = 9.5. The
size of the domain is L = 50 and we used 200 gridpoints. The points indicate the resulting numerical
errors, and the line is a power with exponent 2, indicating that que scheme is second order accurate.

This measure of error takes into account the accumulation of all arithmetic and trun-
cation errors on the time interval (0, tq). The figure shows that the error is propor-
tional to the square of the interspacing h, indicating that the scheme is second order
accurate.

5.2. Computing two dimensional travelling waves. One difficulty that
arises with a finite computational domain is that travelling waves eventually arrive to
the end of the domain of integration. This is a problem because given an arbitrary
initial condition, sometimes it takes a long time for travelling waves to converge to a
steady state.

We solve this difficulty by making use of a displacement technique that keeps
the waves near the center of the domain at all times. Each time that the position
of the front of a wave (defined, for example, as the point where ne = 0.1) is beyond
the middle of the domain, then we translate backwards the solution by exactly one
gridpoint,

nei,j ← nei+1,j , npi,j ← npi+1,j . (5.15)

At the end of the domain (i = nx) we set zero values for the charge densities. Using
this procedure, we can compute two dimensional traveling waves. In the following
calculations, we have λ = 10, Ly = 2λ, Lx = 3Ly and the domain is discretized by
300× 100 points. The initial condition has a plane front perturbed with a cosenoidal
perturbation of wavelength λ and amplitude λ/40.

We observed that after the wave travels a distance equivalent to ten times the
length of the computational domain, the numerical solution reaches a steady state,
which is insensitive on the initial conditions. In Fig. 5.3 we show traveling waves
with D = 0, 0.1, 0.2 and 0.3. Notice that the aspect of the travelling waves is very
sensitive to the value of the diffusion coefficient. In particular, when D is close to zero



20 M. Arrayás, S. Betelú, M. A. Fontelos and J. L. Trueba

-10 -5 0 5 10
0

10

20

30

40

50

60

-10 -5 0 5 10
0

10

20

30

40

50

60

-10 -5 0 5 10
0

10

20

30

40

50

60

-10 -5 0 5 10
0

10

20

30

40

50

60

Fig. 5.3. Two dimensional contour plots for the electronic charge density for the travelling
waves with D = 0, 0.1, 0.2 and 0.3. The x-axis is in the vertical direction.
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Fig. 5.4. Level curves of the electron density ne with diffusion coefficient D = 0.1 and time
interval 2. The wavelength of the perturbation is, in each case, (a) λ = 6, (b) λ = 3, (c) λ = 5/6,
(d) λ = 10/6, and (e) λ = 20/6. These values correspond to wave numbers k = 2π/λ.
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Fig. 5.5. A representation in perspective of the electron density in the cases (b) and (c) of Fig.
5.4, respectively.

well developed fingers do appear, while the fronts remain essentially planar when D
is large enough.

In Fig. 5.4 we perturb a planar travelling wave, which was found with the displace-
ment procedure described above. The perturbation was introduced by translating all
the contour lines a distance cos(2πy/λ) on the x direction. Then we evolved the
solution on a time interval of length 2. In all cases D = 0.1, and we take several
wavelengths λ. It is evident from the figures that there is a tendency to form fingers
when the wavelength is above some critical value while the perturbation decays and
disappears for small enough wavelengths. In Fig. 5.5, the cases (b) and (c) of Fig.
5.4 have been plotted in perspective. This confirms the results obtained in previous
sections concerning stability.

6. Conclusions. In this paper we have used a fluid approximation to describe
the process of electric breakdown in non-attaching gases such as nitrogen. We have
shown that a planar negative front separating an ionized region from a region without
charge may become unstable under the combined action of the external electric field
and the electron diffusion. The common underlaying mathematical structure allows
us to exploit some of the ideas developed for other pattern forming systems such as
Hele-Shaw or Stefan problems.

We have calculated the dispersion relation for a perturbation in the transversal
direction of a planar travelling wave in the limit of small diffusion. An analytical
expression for the typical spacing between fingers is obtained.

In order to test the analytical results, we have developed a numerical code to study
the evolution of planar travelling waves. The travelling waves are then perturbed and
we follow the evolution after that. Under some circumstances the solutions converge
to travelling waves in the form of fingers that we have computed numerically for
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several diffusion coefficients. Our numerical results clearly support the conclusions on
the branching and stability developed analytically.
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REFERENCES

[1] N. D. Alikakos, P. W. Bates, X. Chen, The convergence of solutions of the Cahn-Hilliard
equation to the solution of Hele-Shaw model. Arch. Rat. Mech. Anal. 128 (1994), 165–205.

[2] S. M. Allen, J. W. Cahn, A macroscopic theory for antiphase boundary motion and its appli-
cation to antiphase domain coarsening, Acta. Metal. 27 (1979), 1085–1095.

[3] W. F. Ames, Numerical Methods for Partial Diferential Equations (Academic Press, third
edition, 1992).

[4] M. Arrayás, U. Ebert, W. Hundsdorfer, Spontaneous branching of anode-directed streamers
between planar electrodes, Phys. Rev. Lett. 88 (2002), 174502.

[5] M. Arrayás, U. Ebert, Stability of negative ionization fronts: regularization by electric screen-
ing?, Phys. Rev. E 69 (2004), 036214.

[6] M. Arrayás, M. A. Fontelos, J. L. Trueba, Power laws and self-similar bahavior in negative
ionization fronts, arxiv:physics/0504005, 2005.

[7] M. Arrayás, M. A. Fontelos, J. L. Trueba, Mechanism of branching in negative ionization fronts,
Phys. Rev. Lett. 95, 165001 (2005).

[8] M. Arrayás, J. L. Trueba, Investigations of pre-breakdown phenomena: streamer discharges,
Cont. Phys. 46 (2005) 265–276.

[9] J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system I: Interfacial free energy. J.
Chem. Phys. 28 (1958), 258–351.

[10] E. N. Dancer, D. Hilhorst, M. Mimura, L. A. Peletier, Spatial segregation limit of a competition-
diffusion system, European J. Appl. Math. 10 (1999), 97–115.

[11] U. Ebert, W. van Saarloos, C. Caroli, Propagation and structure of planar streamer fronts,
Phys. Rev. E 55 (1997), 1530–1549.

[12] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, Study of the diffusion equation with growth
of the quantity of matter and its application to a biology problem, in: Selected Works of
A. N. Kolmogorov (Kluwer Academic, Amsterdam, 1991).

[13] N. Liu, V. P. Pasko, Effects of photoionization on propagation and branching of positive and
negative streamers in sprites, J. Geophys. Res. 109 (2004), 1–17.

[14] J. D. Murray, Mathematical Biology (Springer-Verlag, New York, 1990).
[15] V. P. Pasko, M. A. Stanley, J. D. Mathews, U. S. Inan, T. G. Wood, Electrical discharge from

a thundercloud top to the lower ionosphere, Nature 416 (2002), 152–154.
[16] Y. P. Raizer, Gas Discharge Physics (Springer, Berlin 1991).
[17] J. Rubinstein, P. Sternberg, J. B. Keller, Fast reaction, slow diffusion and curve shortening,

SIAM J. Appl. Math. 49 (1989), no. 1, 116–133.


