Invariant Theory and Hochschild Cohomology of Skew Group Algebras

Briana Foster-Greenwood

UNT

April 23, 2011

Outline

Mochschild Cohomology and Associative Deformations

4 Hochschild Cohomology of Skew Group Algebras

Classical invariant theory tools

Hochschild Cohomology and Associative Deformations

Deformations of algebras

Start with an associative \mathbb{F} -algebra: A

Adjoin a central parameter: A[t] (this will be underlying vector space structure)

Define a new multiplication: $a*b = ab + \mu_1(a,b)t + \mu_2(a,b)t^2 + \cdots$ (first define for pairs of elements in A; then extend $\mathbb{F}[t]$ -bilinearly)

Specialize to $t \in \mathbb{F}$ to get many algebras t=0 o original algebra t=1 o ???

Hochschild cohomology and associative deformations

$$A \stackrel{\mathsf{deform}}{\leadsto} A[t]$$
 with multiplication $a * b = ab + \mu_1(a,b)t + \mu_2(a,b)t^2 + \cdots$

- ullet picking any old μ_k 's will not usually yield an **associative** algebra
- to even get started, μ_1 must be a Hochschild 2-cocycle:

$$a\mu_1(b,c) - \mu_1(ab,c) + \mu_1(a,bc) - \mu_1(a,b)c = 0$$

What is Hochschild cohomology?

Hochschild cohomology of an algebra A

- 1-maps: *A* → *A*
- 2-maps: $A \otimes A \rightarrow A$
- 3-maps: $A \otimes A \otimes A \rightarrow A$
 - :
- $HH^k(A)$ = equivalence classes of k-maps satisfying cocycle conditions

What is Hochschild cohomology?

Hochschild cohomology of an algebra A

- 1-maps: *A* → *A*
- 2-maps: $A \otimes A \rightarrow A$
- 3-maps: $A \otimes A \otimes A \rightarrow A$

:

• $HH^k(A)$ = equivalence classes of k-maps satisfying cocycle conditions

$$HH^0(A) = center of A$$

$$\mathsf{HH}^1(A) = \frac{\mathsf{derivations}}{\mathsf{inner\ derivations}}$$
 (can use to construct some 2-cocycles!)

- $HH^2(A)$ \supset first multiplication maps of deformations
- $\mathsf{HH}^3(A)$ \supset "obstructions" to obtaining associative deformations

Hochschild Cohomology of Skew Group Algebras

Skew group algebras

group G

 $\xrightarrow{\text{acts on}}$

vectorspace V

group algebra $\mathbb{C} G$

 $\xrightarrow{\mathsf{acts}}$ on

polynomial algebra $S(V) \cong \mathbb{C}[v_1, \ldots, v_n]$

Skew group algebra S(V)#G

Elements: \mathbb{C} -linear combos of monomials $v_1^{e_1} \cdots v_n^{e_n} \mathbf{g}$

Relations:

- vw wv = 0
- group elements multiply as in group
- $\mathbf{g}v = \vec{g}(v)\mathbf{g}$

$HH^0(S(V)\#G)$ - Invariant polynomials

The center of a skew group algebra is the set of G-invariant polynomials:

$$S(V)^G = \{ f \in S(V) : \vec{g}(f) = f \text{ for all } g \in G \}$$

$HH^0(S(V)\#G)$ - Invariant polynomials

The center of a skew group algebra is the set of G-invariant polynomials:

$$S(V)^G = \{ f \in S(V) : \vec{g}(f) = f \text{ for all } g \in G \}$$

Example - Sym₃ acts on $\mathbb{C}[x, y, z]$ by permuting the variables

elementary symmetric polynomials

$$f_1 = x + y + z$$

$$f_2 = yz + xz + xy$$

$$f_3 = xyz$$

$\mathsf{HH}^0(S(V)\#G)$ - Invariant polynomials

The center of a skew group algebra is the set of G-invariant polynomials:

$$S(V)^G = \{ f \in S(V) : \vec{g}(f) = f \text{ for all } g \in G \}$$

Example - Sym₃ acts on $\mathbb{C}[x, y, z]$ by permuting the variables

elementary symmetric polynomials

$$f_1 = x + y + z$$

$$f_2 = yz + xz + xy$$

$$f_3 = xyz$$

• use these to build more: e.g. $3f_1^5 - 7f_2f_3$ is also invariant

$HH^0(S(V)\#G)$ - Invariant polynomials

The center of a skew group algebra is the set of G-invariant polynomials:

$$S(V)^G = \{ f \in S(V) : \vec{g}(f) = f \text{ for all } g \in G \}$$

Example - Sym₃ acts on $\mathbb{C}[x,y,z]$ by permuting the variables

elementary symmetric polynomials

$$f_1 = x + y + z$$

$$f_2 = yz + xz + xy$$

$$f_3 = xyz$$

- use these to build more: e.g. $3f_1^5 7f_2f_3$ is also invariant
- How many invariant polynomials are there?

◆□ ト ←□ ト ← 亘 ト ← 亘 ・ り へ ○

$HH^1(S(V)\#G)$ - Invariant derivations

 $\mathsf{HH}^1(S(V)\#G)\cong\{\mathsf{invariant}\;\mathsf{derivations}\;\mathsf{on}\;S(V)\}$

$\mathrm{HH}^1(S(V)\#G)$ - Invariant derivations

$$\mathsf{HH}^1(S(V)\#G)\cong\{\mathsf{invariant}\;\mathsf{derivations}\;\mathsf{on}\;S(V)\}$$

Example - Sym₃ also permutes the "dual vectors" ∂_x , ∂_y , ∂_z

a few invariant derivations

$$\theta_0 = \partial_x + \partial_y + \partial_z$$

$$\theta_1 = x\partial_x + y\partial_y + z\partial_z$$

$$\theta_2 = yz\partial_x + xz\partial_y + xy\partial_z$$

$\mathrm{HH}^1(S(V)\#G)$ - Invariant derivations

$$\mathsf{HH}^1(S(V)\#G)\cong\{\mathsf{invariant\ derivations\ on\ }S(V)\}$$

Example - Sym₃ also permutes the "dual vectors" ∂_x , ∂_y , ∂_z

a few invariant derivations

$$\theta_{0} = \partial_{x} + \partial_{y} + \partial_{z}$$

$$\theta_{1} = x\partial_{x} + y\partial_{y} + z\partial_{z}$$

$$\theta_{2} = yz\partial_{x} + xz\partial_{y} + xy\partial_{z}$$

build more by multiplying by invariant polynomials:

$$f_3\theta_2 = xy^2z^2\partial_x + x^2yz^2\partial_y + x^2y^2z\partial_z$$

$\mathrm{HH}^1(S(V)\#G)$ - Invariant derivations

$$\mathsf{HH}^1(S(V)\#G)\cong\{\mathsf{invariant\ derivations\ on\ }S(V)\}$$

Example - Sym₃ also permutes the "dual vectors" ∂_x , ∂_y , ∂_z

a few invariant derivations

$$\theta_0 = \partial_x + \partial_y + \partial_z$$

$$\theta_1 = x\partial_x + y\partial_y + z\partial_z$$

$$\theta_2 = yz\partial_x + xz\partial_y + xy\partial_z$$

build more by multiplying by invariant polynomials:

$$f_3\theta_2 = xy^2z^2\partial_x + x^2yz^2\partial_y + x^2y^2z\partial_z$$

• How many invariant derivations are there?

Big invariant theory description of HH(S(V)#G)

Theorem (Ginzburg-Kaledin, Farinati)

$$HH^k(S(V)\#G)\cong (S(V)\otimes \bigwedge^k V^*)^G\oplus more!$$

Big invariant theory description of HH(S(V)#G)

Theorem (Ginzburg-Kaledin, Farinati)

$$HH^k(S(V)\#G)\cong (S(V)\otimes \bigwedge^k V^*)^G\oplus more!$$

The remaining summands are spaces of semi-invariants under centralizer subgroups:

$$\left(S(V^g)\otimes \bigwedge^{k-c}(V^g)^*\otimes \mathbb{C}_\chi\right)^{Z(g)}$$

(one summand per conjugacy class)

Classical invariant theory tools

Graded vector spaces and Poincaré series

Start with a graded vector space:

$$S = \bigoplus_{d \geq 0} S_d$$
 (with $S_d S_e \subset S_{d+e}$)

The Poincaré series for S is a power series with the coefficient of t^d recording the dimension of S_d :

$$P_t(S) = \sum_{d \ge 0} (\dim_{\mathbb{C}} S_d) t^d$$

$$f_1 = x + y + z$$
, $f_2 = yz + xz + xy$, $f_3 = xyz$

Build more polynomials \rightarrow

Note: f_1 , f_2 , f_3 are algebraically independent, which forces all these new polynomials to be linearly independent.

degree	polynomials
0	1
1	f_1
2	f_1^2 , f_2
3	f_1^3 , f_1f_2 , f_3
÷	:

$$f_1 = x + y + z$$
, $f_2 = yz + xz + xy$, $f_3 = xyz$

Build more polynomials \rightarrow

Note: f₁, f₂, f₃ are algebraically independent, which forces all these new polynomials to be linearly independent.

degree	polynomials
0	1
1	f_1
2	f_1^2, f_2
3	f_1^3 , f_1f_2 , f_3
:	:

$$P_t(\mathbb{C}[f_1, f_2, f_3]) = 1 + t + 2t^2 + 3t^3 + \cdots$$

$$f_1 = x + y + z$$
, $f_2 = yz + xz + xy$, $f_3 = xyz$

Build more polynomials \rightarrow

Note: f_1 , f_2 , f_3 are algebraically independent, which forces all these new polynomials to be linearly independent.

degree	polynomials
0	1
1	$ f_1 $
2	f_1^2, f_2
3	f_1^3 , f_1f_2 , f_3
÷	:

$$P_t(\mathbb{C}[f_1, f_2, f_3]) = 1 + t + 2t^2 + 3t^3 + \cdots$$

= $(1 + t + t^2 + \cdots)(1 + t^2 + t^4 + \cdots)(1 + t^3 + t^6 + \cdots)$

$$f_1 = x + y + z$$
, $f_2 = yz + xz + xy$, $f_3 = xyz$

Build more polynomials \rightarrow

Note: f₁, f₂, f₃ are algebraically independent, which forces all these new polynomials to be linearly independent.

degree	polynomials
0	1
1	f_1
2	f_1^2, f_2
3	f_1^3 , f_1f_2 , f_3
:	:

$$P_{t}(\mathbb{C}[f_{1}, f_{2}, f_{3}]) = 1 + t + 2t^{2} + 3t^{3} + \cdots$$

$$= (1 + t + t^{2} + \cdots)(1 + t^{2} + t^{4} + \cdots)(1 + t^{3} + t^{6} + \cdots)$$

$$= \frac{1}{(1 - t)(1 - t^{2})(1 - t^{3})}$$

Molien's theorem (1897)

Poincaré series for ring of invariant polynomials

Poincaré series for S^G

$$P_t(S^G) = \frac{1}{|G|} \sum_{g \in G} \frac{1}{\det(1 - gt)}$$

det(1-gt) is the characteristic polynomial for the matrix of g.

Poincaré series for $\mathbb{C}[x,y,z]^{\operatorname{Sym}_3}$

elements	eigenvalues	characteristic polynomial
1	1, 1, 1	$(1-t)^3$
(12), (13), (23)	1, 1, -1	$(1-t)^2(1+t)$
(123), (321)	$1, \omega, \omega^2$	$(1-t)(1-\omega t)(1-\omega^2 t)$

Poincaré series for $\mathbb{C}[x, y, z]^{\operatorname{Sym}_3}$

elements	eigenvalues	characteristic polynomial
1	1, 1, 1	$(1-t)^3$
(12), (13), (23)	1, 1, -1	$(1-t)^2(1+t)$
(123), (321)	$1, \omega, \omega^2$	$(1-t)(1-\omega t)(1-\omega^2 t)$

$$P_t(S^G) = \frac{1}{6} \left[\frac{1}{(1-t)^3} + \frac{3}{(1-t)^2(1+t)} + \frac{2}{(1-t^3)} \right]$$
$$= \frac{1}{(1-t)(1-t^2)(1-t^3)}$$

Poincaré series for $\mathbb{C}[x, y, z]^{\operatorname{Sym}_3}$

elements	eigenvalues	characteristic polynomial
1	1, 1, 1	$(1-t)^3$
(12), (13), (23)	1, 1, -1	$(1-t)^2(1+t)$
(123), (321)	$1, \omega, \omega^2$	$(1-t)(1-\omega t)(1-\omega^2 t)$

$$P_t(S^G) = \frac{1}{6} \left[\frac{1}{(1-t)^3} + \frac{3}{(1-t)^2(1+t)} + \frac{2}{(1-t^3)} \right]$$
$$= \frac{1}{(1-t)(1-t^2)(1-t^3)}$$

By comparing Poincaré series: $\mathbb{C}[f_1, f_2, f_3] = \mathbb{C}[x, y, z]^{\mathsf{Sym}_3}$

Big invariant theory description of HH(S(V)#G)

Theorem (Ginzburg-Kaledin, Farinati)

$$HH^k(S(V)\#G)\cong (S(V)\otimes \bigwedge^k V^*)^G\oplus more!$$

The remaining summands are spaces of semi-invariants under centralizer subgroups:

$$\left(S(V^g)\otimes \bigwedge^{k-c}(V^g)^*\otimes \mathbb{C}_\chi\right)^{Z(g)}$$

(one summand per conjugacy class)

Generalizations of Molien's theorem

Tensoring with an exterior algebra

Poincaré series for $(S(V) \otimes \bigwedge V^*)^G$

$$P_{X,Y} = \frac{1}{|G|} \sum_{g \in G} \frac{\det(1 + g^* Y)}{\det(1 - gX)}$$

The coefficient of $X^i Y^j$ tells you the dimension of $(S_i(V) \otimes \bigwedge^j V^*)^G$.

Generalizations of Molien's theorem

Tensoring with an exterior algebra

Poincaré series for $(S(V) \otimes \bigwedge V^*)^G$

$$P_{X,Y} = \frac{1}{|G|} \sum_{g \in G} \frac{\det(1 + g^*Y)}{\det(1 - gX)}$$

The coefficient of $X^i Y^j$ tells you the dimension of $(S_i(V) \otimes \bigwedge^j V^*)^G$.

More generally, the Poincaré series for $(S(V) \otimes \bigwedge V^* \otimes \mathbb{C}_{\chi})^G$ is

$$P_{X,Y} = \frac{1}{|G|} \sum_{g \in G} \frac{\chi^*(g) \det(1 + g^*Y)}{\det(1 - gX)}$$

Module structure for identity component of $HH(S(V)\#Alt_4)$

Let $G = Alt_4$ act irreducibly on $V \cong \mathbb{C}^3$.

Module structure for identity component of $HH(S(V)\#Alt_4)$

Let $G = \mathsf{Alt}_4$ act irreducibly on $V \cong \mathbb{C}^3$.

Poincaré series for identity component of HH(S(V)#G):

$$\frac{1+x^6}{(1-x^2)(1-x^3)(1-x^4)} + \frac{x+x^2+2x^3+x^4+x^5}{(1-x^2)(1-x^3)(1-x^4)}y + \frac{x+x^2+2x^3+x^4+x^5}{(1-x^2)(1-x^3)(1-x^4)}y^2 + \frac{1+x^6}{(1-x^2)(1-x^3)(1-x^4)}y^3$$

invariant polynomials

invariant derivations

invariant 2-forms

invariant 3-forms

Module structure for identity component of $HH(S(V)\#Alt_4)$

Let $G = \mathsf{Alt}_4$ act irreducibly on $V \cong \mathbb{C}^3$.

Poincaré series for identity component of HH(S(V)#G):

$$\frac{1+x^6}{(1-x^2)(1-x^3)(1-x^4)} + \frac{x+x^2+2x^3+x^4+x^5}{(1-x^2)(1-x^3)(1-x^4)}y + \frac{x+x^2+2x^3+x^4+x^5}{(1-x^2)(1-x^3)(1-x^4)}y^2 + \frac{1+x^6}{(1-x^2)(1-x^3)(1-x^4)}y^3$$

invariant polynomials

invariant derivations

invariant 2-forms

invariant 3-forms

Read off finitely-generated free module structure:

Module structure for identity component of $HH(S(V)\#Alt_4)$

Let $G = Alt_4$ act irreducibly on $V \cong \mathbb{C}^3$.

Poincaré series for identity component of HH(S(V)#G):

$$\frac{1+x^6}{(1-x^2)(1-x^3)(1-x^4)} + \frac{x+x^2+2x^3+x^4+x^5}{(1-x^2)(1-x^3)(1-x^4)}y + \frac{x+x^2+2x^3+x^4+x^5}{(1-x^2)(1-x^3)(1-x^4)}y^2 + \frac{1+x^6}{(1-x^2)(1-x^3)(1-x^4)}y^3$$

invariant polynomials

invariant derivations

invariant 2-forms

invariant 3-forms

Read off finitely-generated free module structure:

• denominators \rightsquigarrow free module over $R = \mathbb{C}[f_2, f_3, f_4]$

where f_2 , f_3 , f_4 are algebraically independent invariant polynomials of degrees 2, 3, 4

Module structure for identity component of $HH(S(V)\#Alt_4)$

Let $G = Alt_4$ act irreducibly on $V \cong \mathbb{C}^3$.

Poincaré series for identity component of HH(S(V)#G):

$$\frac{1+x^6}{(1-x^2)(1-x^3)(1-x^4)} + \frac{x+x^2+2x^3+x^4+x^5}{(1-x^2)(1-x^3)(1-x^4)}y + \frac{x+x^2+2x^3+x^4+x^5}{(1-x^2)(1-x^3)(1-x^4)}y^2 + \frac{1+x^6}{(1-x^2)(1-x^3)(1-x^4)}y^3$$

invariant polynomials

invariant derivations

invariant 2-forms

invariant 3-forms

Read off finitely-generated free module structure:

- denominators \rightsquigarrow free module over $R = \mathbb{C}[f_2, f_3, f_4]$
 - where f_2 , f_3 , f_4 are algebraically independent invariant polynomials of degrees 2, 3, 4
- numerators → how many generators? polynomial degree?

4 D > 4 D > 4 E > 4 E > E 9 Q P

Module structure for identity component of $HH(S(V)\#Alt_4)$

Let $G = Alt_4$ act irreducibly on $V \cong \mathbb{C}^3$.

Poincaré series for identity component of HH(S(V)#G):

$$\frac{1+x^6}{(1-x^2)(1-x^3)(1-x^4)} + \frac{x+x^2+2x^3+x^4+x^5}{(1-x^2)(1-x^3)(1-x^4)}y + \frac{x+x^2+2x^3+x^4+x^5}{(1-x^2)(1-x^3)(1-x^4)}y^2 + \frac{1+x^6}{(1-x^2)(1-x^3)(1-x^4)}y^3$$

invariant polynomials

invariant derivations

invariant 2-forms

invariant 3-forms

Invariant derivations:

- the invariant derivations are the free R-span of six derivations of polynomial degrees 1, 2, 3, 3, 4, 5
- it is now a finite linear algebra problem to find all invariant derivations

Thanks!