Graded Hecke Algebras and Reflection Length versus Codimension

A combinatorial problem motivated by deformation theory

Briana Foster-Greenwood
University of North Texas

October 23, 2011

Skew group algebras

- finite group G acts linearly on $V \cong \mathbb{C}^{n}$
- action of G on V extends to action on the symmetric algebra $S(V)$
- the skew group algebra $S(V) \# G$ is the semidirect product algebra $S(V) \rtimes \mathbb{C} G$

Deformations of skew group algebras

Deforming the commutator relation

Let $\kappa: V \times V \rightarrow \mathbb{C} G$ be skew-symmetric, bilinear.
When κ is also compatible with the group action, we can define a deformation $(S(V) \# G)_{\kappa}$ of $S(V) \# G$:

$S(V) \# G$

Generators: v in V, \mathbf{g} in G Relations:

- $v w-w v=0$
- group elements multiply as in group
- $\mathbf{g} v=\vec{g}(v) \mathbf{g}$

$(S(V) \# G)_{\kappa}$

Generators: v in V, \mathbf{g} in G Relations:

- $v w-w v=\kappa(v, w)$
- group elements multiply as in group
- $\mathbf{g} v=\vec{g}(v) \mathbf{g}$

Deformations of this form are examples of graded Hecke algebras.

Deformations of skew group algebras

Example: G acts on V via the left regular rep
Let G act on $V \cong \mathbb{C}^{|G|}$ via the left regular representation.

- theory of Hochschild cohomology for skew group algebras predicts

| vectorspace of κ 's |
| :---: | :---: |
| such that $(S(V) \# G)_{\kappa}$ |
| is a deformation of |
| $S(V) \# G$ |$\quad=\quad$| vectorspace of |
| :---: |
| skew-symmetric, |
| G-invariant, bilinear |
| forms $\kappa: V \times V \rightarrow \mathbb{C}$ |

- character theory computes

$$
\operatorname{dim}_{\mathbb{C}}\left\{G H A^{\prime} s\right\}=\frac{|G|-\#\left\{g \in G: g^{2}=1\right\}}{2}
$$

Cohomology detects potential associative deformations

A an algebra, M an A-bimodule Hochschild cohomology: $\mathrm{HH}(A, M)=\operatorname{Ext}_{A \otimes A^{\circ \mathrm{p}}}(A, M)$

Generating cohomology from atoms in a poset

Theorem (Shepler-Witherspoon, 2009)
If G acts faithfully on V, then the Hochschild cohomology
$\mathrm{HH}^{\bullet}(S(V), S(V) \# G)$
is generated under cup product by $\mathrm{HH}^{\bullet}(S(V))$ and volume forms corresponding to the atoms in the codimension poset for G.

Codimension poset

Let G be a group acting on $V \cong \mathbb{C}^{n}$.
The codimension of an element is the codimension of its fixed point space:

$$
\operatorname{codim}(g)=\operatorname{dim} V-\operatorname{dim}\{v \in V: g v=v\}
$$

Define the codimension order on G by:

$$
a \leq_{\perp} c \quad \Leftrightarrow \quad \operatorname{codim}(a)+\operatorname{codim}\left(a^{-1} c\right)=\operatorname{codim}(c)
$$

Example $\left(G=\mathbb{T}^{5}\right)$
Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2} \neq 1$ be roots of unity.

$$
a \leq_{\perp} c \text { and } b \leq_{\perp} c
$$

$$
\begin{aligned}
& a=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, 1,1\right) \\
& b=\operatorname{diag}\left(1,1,1, \beta_{1}, \beta_{2}\right) \\
& c=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}\right)
\end{aligned}
$$

c is not an atom because it has a nontrivial factorization with codimensions adding

Reflection groups

Let $V \cong \mathbb{C}^{n}$.
An element of $G L(V)$ is a reflection if it fixes a hyperplane pointwise, i.e., is conjugate to

$$
\left(\begin{array}{cccc}
\zeta & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right)
$$

for some root of unity $\zeta \neq 1$.
A finite group $G \subset G L(V)$ is a reflection group if it is generated by reflections

Every reflection (in G) is an atom in the codimension poset.

Reflection length poset

Let G be a reflection group acting on $V \cong \mathbb{C}^{n}$.
The (absolute) reflection length of an element g is the minimum number of reflections needed to express g as a product of reflections in G :

$$
\ell(g)=\min \left\{k: g=s_{1} \cdots s_{k} \text { for some reflections } s_{i} \text { in } G\right\}
$$

Define the reflection length order on G by:

$$
a \leq_{\ell} c \quad \Leftrightarrow \quad \ell(a)+\ell\left(a^{-1} c\right)=\ell(c)
$$

The only atoms in the reflection length poset are the reflections.

Reflection length and codimension posets

Dihedral group of order 8 acts on $V \cong \mathbb{C}^{2}$

	1	R^{2}	R, R^{-1}	$F, R^{2} F$	$R F, R^{3} F$
$\ell(g)$	0	2	2	1	1
$\operatorname{codim}(g)$	0	2	2	1	1

Reflection length poset

Codimension poset

Reflection length and codimension posets

Complex reflection group G_{4} acts on $V \cong \mathbb{C}^{2}$

	$1 a$	$2 a$	$4 a$	$3 a$	$3 b$	$6 a$	$6 b$
$\ell(g)$	0	3	2	1	1	2	2
$\operatorname{codim}(g)$	0	2	2	1	1	2	2

Reflection length poset

Questions

- For which complex reflection groups do the reflection length and codimension functions/posets coincide?
- What are the atoms in the codimension poset?

TFAE:

(1) $\ell(g)=\operatorname{codim}(g)$ for every g in G.
(2) $\ell(g)=\operatorname{codim}(g)$ for every codimension atom g in G.
(3) Every codimension atom is a reflection.
(9) For every $g \neq 1$, there exists a reflection s in G such that $\operatorname{codim}(g s)<\operatorname{codim}(g)$.

History

Coxeter groups

- Carter (1970's) shows absolute reflection length matches codimension in Weyl groups
- proof works just as well for any Coxeter group

Infinite family $G(r, p, n)$

- Shi (2007) gives formula for reflection length in terms of a maximum over certain partitions
- partition criteria for reflection length to equal codimension
- reflection length coincides with codimension in

$$
G(r, 1, n) \cong(\mathbb{Z} / r \mathbb{Z})^{n} \rtimes \operatorname{Sym}_{n}
$$

Exceptional complex reflection groups $G_{4}-G_{37}$???

Infinite family $G(r, p, n)$

Atoms in the codimension poset

Proposition

The codimension atoms in $G(r, p, n) \subset G(r, 1, n)$ are

- the reflections
- p-connected diagonal elements (except those having non-1 eigenvalues ζ^{c}, ζ^{-c})

Every diagonal matrix in $G(12,3, n)$ is a product of " 3 -connected" diagonal matrices, e.g.:

$$
\operatorname{diag}\left(\zeta^{4}, \zeta^{1}, \zeta^{1}, \zeta^{2}, \zeta^{7}\right)=\operatorname{diag}\left(\zeta^{4}, \zeta^{1}, \zeta^{1}, 1,1\right) \cdot \operatorname{diag}\left(1,1,1, \zeta^{2}, \zeta^{7}\right)
$$

Left-hand matrix:

- element of $G(12,3,5)$ because $4+1+1+2+7$ is divisible by 3
- not 3 -connected because proper subsums $4+1+1$ and $2+7$ are also divisible by 3

Infinite family $G(r, p, n)$

Generating cohomology from atoms in the codimension poset
Let v_{1}, \ldots, v_{n} be basis for V and $v_{1}^{*}, \ldots, v_{n}^{*}$ dual basis of V^{*}.

Corollary

The cohomology $\mathrm{HH}^{\bullet}(S(V), S(V) \# G(r, p, n))$ is generated by $\mathrm{HH}^{\bullet}(S(V))$ and the following volume forms tagged by group elements:

- $\left(v_{i}^{*}-\lambda v_{j}^{*}\right) \otimes \mathbf{s}$, where s reflects about hyperplane $v_{i}^{*}-\lambda v_{j}^{*}=0$
- $\left(\bigwedge_{v_{i} \in\left(V^{g}\right)^{\perp}} v_{i}^{*}\right) \otimes \mathbf{g}$, where g is p-connected

Example conversion of a codimension atom into a cohomology generator:

$$
g=\operatorname{diag}\left(1,1,1, \zeta^{2}, \zeta^{7}\right) \quad \rightsquigarrow \quad\left(v_{4}^{*} \wedge v_{5}^{*}\right) \otimes \mathbf{g}
$$

Infinite family $G(r, p, n)$

length \neq codim unless $G=G(r, 1, n)$ or G is Coxeter

Corollary

Let G be a group in the family $G(r, p, n)$. The reflections are the only codimension atoms in G iff G is a Coxeter group or $p=1$.
$G(r, p, n)$ with $1<p<r$ and $n \geq 2$ $\operatorname{diag}\left(\zeta^{1}, \zeta^{p-1}, 1, \ldots, 1\right)$ is a codimension atom
$G(r, r, n)$ with $r \geq 3$ and $n \geq 3$

$$
\operatorname{diag}\left(\zeta^{1}, \zeta^{1}, \zeta^{-2}, 1, \ldots, 1\right) \text { is a codimension atom }
$$

Exceptional reflection groups $G_{4}-G_{22}$

length \neq codim in the rank two exceptional reflection groups

Proposition

Let G be a rank two exceptional complex reflection group.

- The reflection length and codimension functions do not coincide.
- The codimension atoms are the reflections together with all elements g such that $\ell(g)>\operatorname{codim}(g)$.
G_{i} with $i \neq 8,12$: compare orders of reflections with orders of central elements and find central z in G_{i} with $\ell(z)>\operatorname{codim}(z)$
G_{8} and G_{12} : find explicit elements g such that $\operatorname{codim}(g s) \geq \operatorname{codim}(g)$ for every reflection s in G

Exceptional reflection groups $G_{23}-G_{37}$

Computing reflection length, atoms, and poset relations

Use CHEVIE package in GAP

Use class algebra constants (which can be computed from the irreducible characters of G) to avoid multiplying individual group elements

For example,

$$
A \leq_{\perp} C \quad \Leftrightarrow \quad \sum_{\substack{B \\ \operatorname{codim}(A)+\operatorname{codim}(B)=\operatorname{codim}(C)}} \operatorname{ClassAlg} \operatorname{Const}(A, B, C) \neq 0
$$

Exceptional reflection groups $G_{23}-G_{37}$

length \neq codim in the non-Coxeter exceptional reflection groups

group	\# conj classes	\# length $=$ codim	\# nonref atoms	$\operatorname{dim} V$	max ref length
23	10	0	0	3	3
24	12	2	2	3	4
25	24	3	1	3	4
26	48	9	5	3	4
27	34	12	12	3	5
28	25	0	0	4	4
29	37	10	4	4	6
30	34	0	0	4	4
31	59	27	5	4	6
32	102	27	6	4	6
33	40	12	6	5	7
34	169	78	14	6	10
35	25	0	0	6	6
36	60	0	0	7	7
37	112	0	0	8	8

When do reflection length and codimension coincide?

Theorem
Let G be an irreducible complex reflection group. The reflection length and codimension functions coincide if and only if G is a Coxeter group or $G=G(r, 1, n)$.

Thank you!

