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Skew group algebras

finite group G acts linearly on V ∼= Cn

action of G on V extends to action on the symmetric algebra S(V )

the skew group algebra S(V )#G is the semidirect product algebra
S(V ) oCG
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Deformations of skew group algebras
Deforming the commutator relation

Let κ : V × V → CG be skew-symmetric, bilinear.

When κ is also compatible with the group action, we can define a
deformation (S(V )#G )κ of S(V )#G :

S(V )#G

Generators: v in V , g in G
Relations:

vw − wv = 0

group elements multiply
as in group

gv = ~g(v)g

(S(V )#G )κ

Generators: v in V , g in G
Relations:

vw − wv = κ(v ,w)

group elements multiply
as in group

gv = ~g(v)g

Deformations of this form are examples of graded Hecke algebras.
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Deformations of skew group algebras
Example: G acts on V via the left regular rep

Let G act on V ∼= C|G |
via the left regular representation.

theory of Hochschild cohomology for skew group algebras predicts

vectorspace of κ’s
such that (S(V )#G )κ

is a deformation of
S(V )#G

=

vectorspace of
skew-symmetric,

G -invariant, bilinear
forms κ : V × V → C

character theory computes

dimC{GHA’s} =
|G | −#{g ∈ G : g 2 = 1}

2
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Cohomology detects potential associative deformations
A an algebra, M an A-bimodule
Hochschild cohomology: HH(A,M) = ExtA⊗Aop(A,M)

parameter space

of graded

Hecke algebras

HH2(S(V )#G )

HH2(S(V ),S(V )#G )
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Generating cohomology from atoms in a poset

Theorem (Shepler-Witherspoon, 2009)

If G acts faithfully on V , then the Hochschild cohomology

HH•(S(V ), S(V )#G )

is generated under cup product by HH•(S(V )) and volume forms
corresponding to the atoms in the codimension poset for G .
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Codimension poset

Let G be a group acting on V ∼= Cn.

The codimension of an element is the codimension of its fixed point space:

codim(g) = dim V − dim{v ∈ V : gv = v}

Define the codimension order on G by:

a ≤⊥ c ⇔ codim(a) + codim(a−1c) = codim(c)

Example (G = T5)

Let α1, α2, α3, β1, β2 6= 1 be roots of unity.

a = diag(α1, α2, α3, 1, 1)

b = diag( 1, 1, 1, β1, β2)

c = diag(α1, α2, α3, β1, β2)

a ≤⊥ c and b ≤⊥ c

c is not an atom because it has
a nontrivial factorization with
codimensions adding
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Reflection groups

Let V ∼= Cn.

An element of GL(V ) is a reflection if it fixes a hyperplane pointwise, i.e.,
is conjugate to 

ζ
1

. . .

1


for some root of unity ζ 6= 1.

A finite group G ⊂ GL(V ) is a reflection group if it is generated by
reflections

Every reflection (in G ) is an atom in the codimension poset.
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Reflection length poset

Let G be a reflection group acting on V ∼= Cn.

The (absolute) reflection length of an element g is the minimum number
of reflections needed to express g as a product of reflections in G :

`(g) = min{k : g = s1 · · · sk for some reflections si in G}

Define the reflection length order on G by:

a ≤
`

c ⇔ `(a) + `(a−1c) = `(c)

The only atoms in the reflection length poset are the reflections.
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Reflection length and codimension posets
Dihedral group of order 8 acts on V ∼= C2

1 R2 R, R−1 F , R2F RF , R3F

`(g) 0 2 2 1 1

codim(g) 0 2 2 1 1

1

F , R2F RF , R3F

R2 R, R−1

Reflection length poset

1

F , R2F RF , R3F

R2 R, R−1

Codimension poset
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Reflection length and codimension posets
Complex reflection group G4 acts on V ∼= C2

1a 2a 4a 3a 3b 6a 6b

`(g) 0 3 2 1 1 2 2

codim(g) 0 2 2 1 1 2 2

1a

3a

6b

2a

3b

6a4a

Reflection length poset

1a

3a 3b

6b 4a 6a 2a

Codimension poset
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Questions

For which complex reflection groups do the reflection length and
codimension functions/posets coincide?

What are the atoms in the codimension poset?

TFAE:

1 `(g) = codim(g) for every g in G .

2 `(g) = codim(g) for every codimension atom g in G .

3 Every codimension atom is a reflection.

4 For every g 6= 1, there exists a reflection s in G such that
codim(gs) < codim(g).
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History

Coxeter groups

Carter (1970’s) shows absolute reflection length matches codimension
in Weyl groups

proof works just as well for any Coxeter group

Infinite family G (r , p, n)

Shi (2007) gives formula for reflection length in terms of a maximum
over certain partitions

partition criteria for reflection length to equal codimension

reflection length coincides with codimension in
G (r , 1, n) ∼= (Z/rZ)n o Symn

Exceptional complex reflection groups G4 − G37 ???
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Infinite family G (r , p, n)
Atoms in the codimension poset

Proposition

The codimension atoms in G (r , p, n) ⊂ G (r , 1, n) are

the reflections

p-connected diagonal elements (except those having non-1
eigenvalues ζc , ζ−c)

Every diagonal matrix in G (12, 3, n) is a product of “3-connected”
diagonal matrices, e.g.:

diag(ζ4, ζ1, ζ1, ζ2, ζ7) = diag(ζ4, ζ1, ζ1, 1, 1) · diag(1, 1, 1, ζ2, ζ7)

Left-hand matrix:

element of G(12, 3, 5) because 4 + 1 + 1 + 2 + 7 is divisible by 3

not 3-connected because proper subsums 4 + 1 + 1 and 2 + 7 are also divisible by 3
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Infinite family G (r , p, n)
Generating cohomology from atoms in the codimension poset

Let v1, . . . , vn be basis for V and v∗1 , . . . , v
∗
n dual basis of V ∗.

Corollary

The cohomology HH•(S(V ), S(V )#G (r , p, n)) is generated by
HH•(S(V )) and the following volume forms tagged by group elements:

(v∗i − λv∗j )⊗ s, where s reflects about hyperplane v∗i − λv∗j = 0

(
∧

vi∈(V g )⊥ v∗i )⊗ g, where g is p-connected

Example conversion of a codimension atom into a cohomology generator:

g = diag(1, 1, 1, ζ2, ζ7)  (v∗4 ∧ v∗5 )⊗ g
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Infinite family G (r , p, n)
length6=codim unless G = G(r , 1, n) or G is Coxeter

Corollary

Let G be a group in the family G (r , p, n). The reflections are the only
codimension atoms in G iff G is a Coxeter group or p = 1.

G (r , p, n) with 1 < p < r and n ≥ 2

diag(ζ1, ζp−1, 1, . . . , 1) is a codimension atom

G (r , r , n) with r ≥ 3 and n ≥ 3

diag(ζ1, ζ1, ζ−2, 1, . . . , 1) is a codimension atom
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Exceptional reflection groups G4 − G22
length6=codim in the rank two exceptional reflection groups

Proposition

Let G be a rank two exceptional complex reflection group.

The reflection length and codimension functions do not coincide.

The codimension atoms are the reflections together with all elements
g such that `(g) > codim(g).

Gi with i 6= 8, 12: compare orders of reflections with orders of central
elements and find central z in Gi with `(z) > codim(z)

G8 and G12: find explicit elements g such that codim(gs) ≥ codim(g) for
every reflection s in G
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Exceptional reflection groups G23 − G37
Computing reflection length, atoms, and poset relations

Use CHEVIE package in GAP

Use class algebra constants (which can be computed from the irreducible
characters of G ) to avoid multiplying individual group elements

For example,

A ≤⊥ C ⇔
∑
B

codim(A)+codim(B)=codim(C)

ClassAlgConst(A,B,C ) 6= 0
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Exceptional reflection groups G23 − G37
length6=codim in the non-Coxeter exceptional reflection groups

group # conj classes # length6=codim # nonref atoms dim V max ref length

23 10 0 0 3 3

24 12 2 2 3 4

25 24 3 1 3 4

26 48 9 5 3 4

27 34 12 12 3 5

28 25 0 0 4 4

29 37 10 4 4 6

30 34 0 0 4 4

31 59 27 5 4 6

32 102 27 6 4 6

33 40 12 6 5 7

34 169 78 14 6 10

35 25 0 0 6 6

36 60 0 0 7 7

37 112 0 0 8 8
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When do reflection length and codimension coincide?

Theorem

Let G be an irreducible complex reflection group. The reflection length
and codimension functions coincide if and only if G is a Coxeter group or
G = G (r , 1, n).
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Thank you!
draw posets

Peter Jipsen’s “Interactive Poset and Lattice Drawing Java Applet”
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http://www.math.unt.edu/~baf0018/posets/edges32.html
http://www1.chapman.edu/~jipsen/gap/posets.html
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