Compound Interest

In this handout, we will use exponential and logarithmic functions to answer questions about interest earned on investments (or charged when money is borrowed).

Simple Interest if a principal P is borrowed for a period of t years at a per annum interest rate r, expressed as a decimal, the interest I charged is

$$
I=\operatorname{Pr} t
$$

Compound Interest: interest is earned (or charged) on a regular schedule (e.g. once a year, every month, etc.); at the end of each payment period, interest is earned on principal and on previously earned interest

Example. Gertrude invests $\$ 300$ in a savings plan that earns 11% per annum compounded quarterly. How much will be in Gertrude's account after one year?

	principal + interest
initial investment	
end of 1st quarter	
end of 2nd quarter	
end of 3rd quarter	
end of 4th quarter	

Compound Interest

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

$A=$ amount in account after t years
$P=$ amount invested (or borrowed)
$r=$ per annum interest rate (expressed as a decimal)
$n=$ number of times interest is compounded per year
$t=$ time (in years)

Problem 1. Suppose $\$ 300$ is invested in an account that pays 11% per annum.
(a) If interest is compounded quarterly, how much money will be in the account after 2 years? (This amount is called future value.)
(b) What happens to the amount in the account after 2 years as you compound more and more times per year?

payment period	\# times compounded per yr.	\approx amount after 2 yrs.
annually		
semiannually		
quarterly		
monthly		
daily		

Continuously Compounded Interest The amount A after t years due to a principal P invested at an annual interest rate r compounded continuously is

$$
A=P e^{r t}
$$

Problem 2. A savings plan offers a rate of 8% compounded quarterly. How much should be invested now in order to have $\$ 1000$ after 5 years? (This amount is called present value.)

Problem 3. Suppose $\$ 500$ are invested at 9% per annum. If interest is compounded continuously, how long will it take for $\$ 500$ to double to $\$ 1000$?

Problem 4. If interest is compounded annually, what interest rate should you seek if you want to triple your investment in 10 years?

Problem 5. Consider the following two investments:
Option 1 invest $\$ 1000$ at a rate of 5%, compounded quarterly
Option 2 invest $\$ 1000$ at rate R, compounded annually
What rate R should you seek in order to have the same amount in each account after 1 year? (This rate is called the effective interest rate or the annual percentage yield.)

