AUTOMORPHISMS OF QUANTUM POLYNOMIAL RINGS
AND DRINFELD HECKE ALGEBRAS

A.V. SHEPLER AND C. UHL

ABSTRACT. We consider quantum (skew) polynomial rings and observe that their graded
automorphisms coincide with those of quantum exterior algebras. This allows us to define
a quantum determinant giving a homomorphism of groups acting on quantum polynomial
rings. We use quantum subdeterminants to classify the resulting Drinfeld Hecke algebras for
the symmetric group, other infinite families of Coxeter and complex reflection groups, and
mystic reflection groups (which satisfy a version of the Shephard-Todd-Chevalley Theorem).
This direct combinatorial approach replaces the technology of Hochschild cohomology used
by Naidu and Witherspoon over fields of characteristic zero and allows us to extend some
of their results to fields of arbitrary characteristic and also locate new deformations of skew
group algebras.

1. INTRODUCTION

One challenge to investigating noncommutative rings remains some mystery surrounding
their automorphism groups. We consider here quantum polynomial rings, also sometimes
known as quantum symmetric algebras or skew polynomial rings. For a finite-dimensional
vector space V = F" over a field I, the noncommutative algebra Sg (V') is generated by a basis
v1,...,v, of V with multiplication vjv; = g;jv;v; for some quantum scalars @ = {¢;;} C F
with ¢; = 1, g;; = qﬁl. One may view Sg(V') as the coordinate ring of the n-dimensional
quantum affine space. We take Sg(V') as a graded algebra with degv; = 1 for all i.

In the nonquantum setting, every graded automorphism of the commutative polynomial
ring S(V) = Flvy,...,v,] defines a general linear transformation of V' and vice versa. This
fails in the noncommutative setting: Every graded automorphism of Sg (V') defines an element
of GL(V), but every not every element of GL(V) extends to a graded automorphism. The
graded automorphisms of quantum polynomial rings have been classified in low dimension
(see [3] and [19]). Kirkman, Kuzmanovich, and Zhang [18] investigated finite groups of these
automorphisms satisfying a version of the Shephard-Todd-Chevalley Theorem. More recently,
Bao, He, and Zhang [5] showed a version of the Auslander Theorem for these groups. Related
investigations include [32], [10], [9], [8], [2], [4].

For a finite group G of graded automorphisms of a quantum polynomial ring Sg(V),
deformations of the natural semidirect product algebra Sg(V) x G (skew group algebra)
include quantum Drinfeld Hecke algebras. These analogs of graded affine Hecke algebras
and symplectic reflection algebras can be studied using Hochschild cohomology, but previous
results have depended on an extra hypothesis that the given group G act not only on Sg (V)
but also on the associated quantum exterior algebra Ao (V) (see [24], [27], [25], [31]). In
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addition, many computations in Hochschild cohomology have relied on the characteristic
char(FF) of the underlying field not dividing |G|.

Thus one asks how the group Autg (Sg(V)) of graded automorphisms of the quantum
polynomial ring compares with that of the associated quantum exterior algebra,

/\Q(V) = ]F_Span{vil /\Q e /\Q Vi + 1 S ila e aim S n}a

with quantum exterior product v; Ag v; = —gi; vi Ag v;. The classification of groups act-
ing on quantum polynomial rings in low dimension (see [19, Theorem 11.1]) implies that
Autg (Sq(V)) = Autg (A\g(V)) for dimp V' < 3. Computer calculations using [15] and [23]
verify the same when dimp V = 4. We show a more general fact: For any set of quantum
scalars ) and any finite-dimensional F-vector space V,

(1.1) Autgr (Ag(V)) = Autg (Sq(V)).

We make no assumptions on the characteristic of F except that char(F) # 2. This result
implies that previous tools in characteristic 0 of [25] and [31] using Koszul resolutions to ex-
plore some Hochschild cohomology of skew group algebras apply to all finite groups of graded
automorphisms acting on Sg(V); extra hypotheses that groups act on both the symmetric
and exterior quantum algebras are not needed.

Observation also allows us to to define a quantum determinant that behaves in some
ways like the usual determinant for linear groups. For graded transformations acting on the
quantum exterior algebra by graded automorphisms, we verify that this quantum determinant
is simply the scalar by which the quantum volume form changes. As a direct corollary, we see
that this notion of quantum determinant defines a homomorphism of matrix groups acting on
quantum polynomial rings. (Note that this formulation of quantum determinant is defined
for any matrix with entries in [F; it is not the notion usually employed for quantum matrices
ald Manin [22].)

As an application of these ideas, we explore deformations of Sg(V) x G for G a finite
group of graded automorphisms that are modeled on Lusztig’s graded affine Hecke algebra
and symplectic reflection algebras. We classify quantum Drinfeld Hecke algebras (or “quan-
tum graded Hecke algebras”) for the infinite family of monomial reflection groups (including
infinite families of Coxeter groups and complex reflection groups) and mystic reflection groups
using techniques of [33]. We recover some results of Naidu and Witherspoon [25] over C for
dimg V' > 4 who used Hochschild cohomology. The advantage of our approach is 4-fold. First,
we bypass analysis of various cochain complexes in Hochschild cohomology. Second, we show
results hold even in the modular setting when char(F) divides |G|. (Note that those previous
calculations in Hochschild cohomology relied on char(F) = 0; the group algebra FG may not
be semi-simple in the modular setting.) Third, we classify algebras in the delicate setting
when dimp V' = 3 (certain parameters are forced to vanish in higher dimension). Fourth, we
find new families of algebras when dimp V' = 4 for the complex reflection groups G(r,r,4).

Notation. We fix a vector space V' = F" over a field I of characteristic not 2 throughout.
All algebras are associative F-algebras. We identify the identity 1y of the field with the group
identity 1g in any group ring FG. We use left superscripts to indicate the action of a group
G on a set S, writing s — 9s for g in GG, s in S, to distinguish from the multiplication in
algebras containing FG. We also fix a set of quantum parameters @ := {g;; }1<i j<n With
¢ii = 1 and qj; = qigl throughout.
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Outline. In Section 2, we highlight some conditions for a finite linear group G to act on a
quantum polynomial ring Sg (V') and for G to act on the associated quantum exterior algebra
/\Q(V). In Section 3, we show that a linear transformation acts as a graded automorphism of
Sq(V) if and only if it acts as a graded automorphism of A, (V). We introduce the quantum
sign and quantum determinant of a matrix in Section 4 and show how to use inversions to
simplify. We also show that this notion of quantum determinant is a homomorphism of groups
of graded automorphisms of quantum polynomial rings. We consider quantum Drinfeld Hecke
algebras in Section 5. In Sections 6 and 7, we classify these deformations for symmetric groups
and the infinite family of complex reflection groups G(r,p,n) (the Shephard-Todd family of
monomial groups) which include the Weyl groups of type B, /C, and D,,. We show how
to use cycle type to give quick combinatorial proofs for classification results of Naidu and
Witherspoon [25] and extend results to fields of characteristic not 2. We take up the mystic
reflection groups of Kirkman, Kuzmanovich, and Zhang [I§] and Bazlov and Berenstein [7]
in Section 8. We end in Section 9 with a quick discussion of direct sums of groups.

2. AUTOMORPHISMS OF QUANTUM POLYNOMIAL RINGS AND DETERMINANTS

We recall conditions describing the graded automorphisms of a quantum (or skew) poly-
nomial ring. We fix throughout an F-basis v1,...,v, of V =2 F"™ and assume every matrix in
GL,(F) acting on V' is written with respect to this basis. We also have fixed throughout a
quantum system of parameters (or a set of quantum scalars)

Q = {qij}h1<ij<n CF,

i.e., a set of nonzero scalars with ¢; = 1 and ¢;; = qi;1 for all 4, j.

Quantum polynomial rings. The quantum polynomial algebra (or skew polynomial ring)
Sq(V) is the noncommutative F-algebra generated by vy, ..., v, with relations vjv; = g;;viv;
forall 1 <4,57 <n:

So(V) =F(vi,...,vn)/(vju; — qijuivy : 1 <, <n).

Thus Sq(V) = Tr(V)/(v; ® v; — ¢ijvi @ v; : 1 < 4,5 < n) for Tr(V) the tensor algebra of
V over F. (We use the index convention of [I§] and [19]). Note that the algebra Sg(V)
has the PBW property with respect to this presentation: Sg(V') has F-vector space basis
{0y s my € Lo}

Groups acting as graded automorphisms. We view Sg(V') as a graded algebra with
degv =1 for all v € V. The set of graded automorphisms of Sg (V) is

Autgr(SQ(V)) ={h e GL(V): hvj hy; = %j ha h’uj for 1 <i,5<n}.

Diagonal matrix groups on V' always extend to an action by automorphisms on Sg(V'), but
many other group actions do not extend. When ¢;; = —1 for all i # j any subgroup of
monomial matrices in GLy,(F) acts as graded automorphisms on Sg(V'). Recall that a matrix
is monomial if each row and each column has exactly one nonzero entry. Groups of monomial
matrices are sometimes called permutation groups; they often take the form H x &, for
some diagonal group H and the symmetric group &,, acting by permutation of basis vectors
v1,...,0, of V. In fact, we identify &,, with its permutation representation as n X n matrices:
7 in &, acts via v; = Un(y)-
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The group Autg(Sg(V)) has been determined for n = 1,2, 3 (see [3] and [19]) and in some
other cases (see [1], [2], and [4]). For example, for n = 2,

GLy(F) for g1 =1,
(2.1) Autg, (SQ(IFQ)) = < Diagonal Matrices = (F*)2 for q1o # +1,
Monomial Matrices C GLy(F) for ¢g12 = —1.
The next lemma can be checked directly. Recall that @ = {g¢;;} is fixed throughout.

Lemma 2.2. The automorphism group Autg.(Sq(V')) can unveil some quantum scalars:

o Ifsome g € Auty(Sq(V)) has nonzero entries in the same row in columns i, j, then g;; = 1.
o If Auty(Sq(V)) contains &y, then either q;; = —1 for all i # j or else q;; =1 for all i, j.
o If Auty(Sg(V)) contains &, and a nonmonomial matriz, then g;; =1 for all i,j.

We give an example of a monomial and a non-monomial group acting.

Example 2.3. The group G = (h = (g é 8>> C GL3(V) for V=C3 and w = e% eC (see
w
Ezample acts as graded automorphisms, for Q = {q;} with q13 = w = q23, 12 = —1, on

So(V) = C(v1,v2,v3 : 1201 = —v1V2, U3V1 = WUIVU3, V3V = W VV3) .
— 1_,,]3 772 0 3
Example 2.4. The group G = < ; 7 0 > C GL3(V) for V.= C® and n =
0 0 1

e € C acts as graded automorphisms on Sq(V') for Q = {qi;} with q12 =1, q13 = —1 = ¢o3.
See Example [10.5

Quantum minor determinant. We define the quantum minor determinant of a matrix
h = {h¥}1<ki<n in GL,(F) with h(vg) = >, h¥v; (i.e., subscript denotes row) by

detiju,q(h) = hih] — qijhihy, .
We drop the subscript @, writing det;;i; for det;ji g, when no confusion should arise.
Straightforward computation verifies the next lemma; the one after is from [19].
Lemma 2.5. For any matriz h € GL,(F),
det;jri(h) — qu ety (h) = detygji(R') — gij detyij(RY) .
Lemma 2.6. A matriz h € GL,(F) acts on Sq(V') if and only if
detijri(h) = —qu detiji(h)  forall he G and 1 <14,5,k,1<n.

Quantum exterior algebra. The quantum exterior algebra determined by @ is

/\(V) = F-span{v;, Ag - AQ Vi, : 1 <'i1,...,0im < n}
Q
with multiplication determined by v; Ag vi = —¢i; vi A v; for all ¢, 5. Formally,
AV) = Te(V)/ (v @ vi+ g vi @ v : 1 <, j < n),
Q

and we consider /\Q(V) as a graded algebra with degwv; = 1 for each i. Note that v; Agv; =0
as char(F) # 2. The set of graded automorphisms of A, (V) is

Autgr(/\Q(V)) ={h € GL(V) : "v; Ag " = —qij "vi A "v; for 1 <d,5 <n}.
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A quantum 2-form is an dement of /\22 V= (/\2Q—1 V)* for Q7! = {qi_jl}, i.e., a function
0 :V ®V — F which is anti-quantum-linear:

(2.7) 0(v; ® v;) = —qj; 0(v; ®vj) forall i,j.

Remark 2.8. One might ask if opposite quantum scalars are helpful in comparing automor-
phisms of quantum polynomial versus exterior rings. Generally they are not as often

Autg, (SQ/(V)) ¢ Autgr(/\Q(V)) or Autgr(/\Q(V)) Z Autg, (SQ/(V))

for Q" = {q;;} with ¢i; = —g;; for i # j and gj; = 1. For example, take n = 2: If g2 = —1,
every subgroup of GL(V') acts on Sg/(V'), but only monomial groups act on A\, (V') as graded
automorphisms; if ¢12 = 1, then any group of linear transformations acts on both Sg(V') and
No(V) as graded automorphisms, but only monomial groups act on Sg/ (V).

3. ACTIONS ON THE QUANTUM POLYNOMIAL RING VERSUS EXTERIOR ALGEBRA

Connections between quantum Drinfeld Hecke algebras and Hochschild cohomology have
thus far required a hypothesis that the finite subgroup G of GL(V') act on both the quantum
polynomial ring So(V) and the quantum exterior algebra A\, (V) as graded automorphisms.
(This assumption is sometimes implicit.) We develop some conditions for a group to act on
both Sq(V) and A\,(V) as graded automorphisms in this section. By the classification [19,
Theorem 11.1] and these conditions, we observe that any element of GL3(F) acting as a
graded automorphism on Sg(V') also acts as a graded automorphism on A, (V), and vice
versa. We show in this section that this observation holds in arbitrary dimension.

We rephrase and coalesce some conditions from [19] (as a subscript ' was omitted in
Corollaries 3.3 and 9.1 and Corollary 9.2(i) contained a typo).

Lemma 3.1. A matriz in GL,(F) acts as an automorphism on Sg(V') if and only if its
transpose acts as an automorphism on [\o(V).

Proof. By Lemma (with indices exchanged), we need only show that A in GL(V') acts on
No(V) exactly when

(3.2) detyjio(h') = —qij detgjo(h') forall 1<id,5,k1<n.
For fixed ¢ # j, we expand hvj AQ hu; + Qij o AQ hvj as
> hlhivi Aqui+ i Y hihjve Aqur = > (ki + qizhih]) v Ag ur.
k,l k,l k)l
Since Zk>l(h‘,ih§ + qithh{) VEANQ UL = D e — QK (h{h}; + qijh§hi) v AQ vy, this is just

Z (detkl]—LQ(ht) + qijdetklijg(ht)) U AQ VI + Z(hih}c + Qij hihi) Vi ANQ Vg -
k<l k
As the second sum lies in the ideal of relations defining A, (V), the element % acts on Ay (V)

if and only if the first sum vanishes, giving Eq. (3.2)) for & < [. The result follows, as Eq. (3.2))
holds for k£ =1 as well. O
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The next lemma gives a necessary and sufficient condition for a transformation in GL,, (F)
to act as a graded automorphism on both the quantum polynomial ring Sg (V') and the exterior
algebra /\Q(V): For any pair of nonzero entries in the matrix, the quantum scalar tracking
the rows must coincide with the quantum scalar tracking the columns (see part (c)). Note
that we require this stronger version of [25, Lemma 4.3] for Theorem and the next section.

Lemma 3.3. The following are equivalent for any h € GL,(F):
(a) h acts as a graded automorphisms on both Sq(V') and on N\g(V);
(b) forall1 <4,5,k,1<n, detijkl(h) = detlkji(ht) ;
(c) for all1 <4,j,k,l <n, either qi;j = qu or hih}, =0 .
Proof. We use Lemmas and Condition (a) implies that for all 4, j, k, [
detijr.o(h) = —qu detijipo(h)  and  detyjr.q(h') = —qu detiji(hY).
We rewrite the second equation after exchanging ¢ and | and exchanging j and k:
(5 (WE = aw(h)i(RD)F = —aii (B)(RNS — aw (WD (RY)F) -
Condition (a) thus implies that for all 4, j, k,
hihi = aishil, + quhihl, — awaihih] = 0 = hihi — qhih, + qihih], — ijquh] by
and Condition (c) follows from adding the expression on the left to that on the right (as
char(F) # 2). Notice that Conditions (c) and (b) are equivalent since the vanishing of
(1 — queqi;)hih] is equivalent (again, as char(F) # 2) to that of
h};h{ + (—qijh;'hi + qijhfhi) — QIinjhi;h{ = detijkl’Q(h) + qijdetlkij(ht)
= detyjnr,q(h) + qij(—gji)detigi(h') = detijry,q(h) — detyji(h').
Finally, Condition (c) implies that h acts on Sg(V') as it compels the vanishing of
detijri(R) + qudetiji(h) = hih] — qihibl, + qrhih], — qrgijhihi
= hihi (1 — qiiqu) + (aw — ij) hih,
and also that h acts on Ag(V) as it compels the vanishing of
detyja (h") + qudetyn (h) = (B ()] — aij (W) (W], + auw (W) (R}, — amaig (h)i,(AY)]
= hfhé - Qijhéh? + théh? - CIleijhfhé-
= (1 — quaij) Wbl + (que — aij) hihb .
O

Remark 3.4. For any group G of monomial matrices, G C Autg(Sg(V)) implies that
G C Autg(Ag(V)) by Lemma Indeed, if h = {h;} in GL,(F) is monomial with

hfhfC # 0, then ¢;; = qi, since
ij h?hi VK = Gij h(vivj) = h(vjvi) = hfhi, VRV = Qi h%hi VU -

We generalize this fact to arbitrary groups in Corollary

Lemmas and with k£ = ¢ imply the next observation (as char(FF) # 2).
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Lemma 3.5. If h € Autg(A\g(V)) is nonmonomial, then q;; = 1 for any pair of rows i, j
of h with nonzero entries in the same column.

We have been unable to find an easy argument for showing the next theorem. The proof
relies on a series of careful reductions.

Theorem 3.6. Any element of GL(V') that acts on Ng(V) as a graded automorphism also
acts on Sq(V') as a graded automorphism:

Autg (Ag(V)) C Autg (Sq(V)).

Proof. Say h in GL,(F) is a graded automorphism of A (V). For any pair of nonzero entries
in the matrix h, we use Lemma [3.3] and verify that the quantum scalar tracking the rows
coincides with quantum scalar tracking the columns: We fix a pair of columns ¢, k and pair of

rows i, j of h such that h¢ h;’-‘ # 0 and show that ¢;; = g, by chasing nonmonomial submatrices

(2
in h and their corresponding quantum scalars.

First notice that if k¥ = ¢, then h contains a column with nonzero entries in rows i and j
implying that ¢;; = 1 = qrr = qex by Lemma for i # j. (If i = j, then ¢;; = 1 = qu.)
Thus we may assume k # £.

Now let M be the submatrix of h with columns ¢ and k and rows i and j (not necessarily
distinct). We argue that we may assume the entries of M are all nonzero and that ¢;; = 1.
If i = j, then hf and h¥ = hg? are both nonzero (as hfh? #0) and ¢;j = ¢;; = 1. If i # j and
an entry of M is zero, then by Lemmas [2.6] and

hihh = hih% — qi;hi bl = detijon(h') = —que detjre(h')
= —qre (WS — qizhiR%) = qreqi; hih}

implying that g;; = qu. So for i # j, we may assume the entries of M are all nonzero, and
Lemma implies that g;; = 1 in this case as well.

The submatrix M may not be invertible, but we may replace M by an invertible 2 x 2
submatrix M’ of h by replacing the row j by some row j’ of h since h is invertible. (Note
that if j = ¢, then j' # i.) Then ¢;jy = 1 by Lemma as the two entries in row 5’ of M’ can
not both vanish. As g;;; = 1, Lemmas and (with 5/ instead of j) then implies that

det M = detijigp(h") = (—qre) detijre(h') = (—qre) (— det M') = qi det M,

and gie = 1 = gj; since det M’ # 0, concluding the proof.

Theorem [3.6] together with Lemma [3.1] implies

Corollary 3.7. An element of GL(V') acts on Sq(V') as a graded automorphism if and only
if it acts on N\ (V) as a graded automorphism:

Autgr(/\Q(V)) = Auty, (SQ(V)).

Corollary [3.7] and Lemmas [3.1] and [3.5] imply

Corollary 3.8. Suppose a nonmomial matriz in GL,(F) acts on No(V) or Sq(V) as a
graded automorphism. Then q;; = 1 for any pair of columns i, j with nonzero entries in the
same row and for any pair of rows i, j with nonzero entries in the same column.
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Remark 3.9. Theorem 4.2 of [31] assumes that the finite group G acts on both Sg(V') and
on A\g(V) as graded automorphisms (this assumption is implicit in Section 4). Corollary
implies that Theorem 4.2 of [31] holds for all groups acting on Sg (V).

Recall that the Hochschild cohomology of an algebra A is its cohomology as a bimodule
over itself, HH*(A) = HH o pop (A, A). Corollary and 25, Theorem 4.4] imply

Corollary 3.10. Suppose char(F) = 0 and that G C GL,(F) is a finite group acting by
automorphisms on Sq(V'). Then each constant Hochschild 2-cocycle on Sq(V') x G gives rise
to a quantum Drinfeld Hecke algebra.

4. A QUANTUM DETERMINANT

We define a quantum determinant in this section and show it defines a homomorphism
of groups acting by graded automorphisms on quantum polynomial rings. This notion of
quantum determinant differs from that for quantum matrices (see [16], [11], [22]).

Quantum sign and determinant. We use the action of the symmetric group &, on the
basis vy, ...,v, of V by permutation of indices to define the quantum sign, even when &, ¢
Autg (Ag(V) under this action. Recall the inversion set of a permutation, Inv(o) = {(4, j) :
i <jbuto(i)>o(j)}

Definition 4.1. Define the quantum sign or Q-sign of a permutation o in &,, as
sgng(o) = sgn(0)  [[  dogrow = senle) ] @y -
(4,5)€ Inv(o) (i,5)€Inv(c—1)
Define the quantum determinant for any h € GL,(F) as the scalar
Ueen

For example, sgng ((1 2 3)(4 5)) = —q12q13qa5. For n =3 and h = {hé} in GL3(F), the
quantum determinant detg(h) is

hih3hi + qi3qua h3h3hS + quaqos hihihs — qos hih3hy — qia h3hihi — qiagesqis hh3hS .

Recall that sgn(o) = (—1)™(@)I and that ¢ can be factored into the product over all (i, j)
in Inv(o) of transpositions (i j).

Quantum determinant as a homomorphism. One may check directly that the quantum
determinant detg gives the scalar by which an automorphism of /\Q(V) acts on the quantum
volume form:

Lemma 4.2. For any permutation o in S,,
Vo) AQ " NQ Vo(n) = 880Q(0) VI AQ -+~ AQun and  sgng(o) = detg(o).
Furthermore, for all h in Autg:(Ag V),
h(vi Ag -+ NQ vn) = detg(h) vi AQ -+ AQ Un -
Corollary 4.3. The quantum determinant detq is a group homomorphism on Autg.(Sq(V)):
detq(gh) = detq(g) detq(h) for all g,h in Autg(Sq(V)).
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Proof. By Corollary and Lemma
detg(gh)(vi Ag -+~ A un) = (v Ag - Agun) = g(h(vl AQ - AQn))
= 9(detq(h)(vi Aq -+ A vn)) = detq(h) “(vi Ag -+ Aq Un)
= detQ(h) detQ(g) VIAQ - NQUn- O

Note that the quantum determinant detg is not a group homomorphism on other groups.
For example, when G = &3 and ¢13 # ¢23, G ¢ Autg(Sg(V)), and

deto((12)(2 3)) = q12q13 # q12 23 = detg((1 2)) detg((2 3)) .

Remark 4.4. Graded automorphisms of Sg(V') have nonzero quantum determinants: If
h € Autg(Sg(V)), then Corollary implies that

1 =detg(ly) = detg(hh™!) = detg(h) detg(h™?).

The converse is false of course. Indeed, the matrix h = (_11 %) doesn’t act on Sg(V) as a
graded automorphism when g2 # 1 although detg(h) # 0.

Remark 4.5. One asks how Autg,(Sg(V')) overlaps with the quantum-special linear group,
SLy(F) = {g € GL,(F) : detg(g) = 1}.
For n = 2 with ¢12 = ¢,

SLo(IF) forg= 1,
SLy (F) N Autg (Sg(V)) = < {Diag(a,b) : ab =1} U {AntiDiag(a,b) : ab= 1} for ¢ = —1,
{Diag(a,b) : ab =1} for g # +1.

Remark 4.6. When the classical Shephard-Todd complex reflection group G(r,r,n) acts as
graded automorphisms on a nontrivial Sg(V'), then necessarily every ¢;; = —1 for i # j by
Lemma and all group elements have quantum determinant 1 (one may use Corollary :

G(r,m,n) C SLy, o(F).
Note that any ¢ in the mystic reflection group M (n, 1, 3) (see has detg(g) = 1.

A simplification of the quantum determinant. We give a simplification of the quantum
determinant for matrices that act as graded automorphisms on a quantum polynomial ring.
This simplification implies a version of the familiar down-up rule for determinants of 3 x 3
matrices.

For an odd cycle 7 in the symmetric group &,, of order |r|, we define a set of quantum
parameters that records certain elements of the cycle paired together with their “halfway
partners”:

Qr = {qap : (a,b) € Inv(7) and (a b) appears in the disjoint cycle decomposition of W‘”W}.

E.g., ifr = (1 1192574 8), then |7T| = 8, 7T4 = (1 5)(11 7)(9 4)(2 8), and QW = {q15,Q49,QQ8}
as (7,11) ¢ Inv(rw). (Note that || is always even since 7 is an odd cycle.)

In the next proposition, we take a product over the odd cycles w of a permutation o, i.e.,
all the odd cycles 7 appearing in a decomposition of ¢ into the product of disjoint cycles.
For example, if 0 = (1119257 4 8)(3 6)(10 12 13), then in the statement, we may choose

Co = 415436 Or Co = 49436 OT Co = (28436-
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Proposition 4.7. The quantum determinant simplifies as

detg(h) = Z sgn(o) co h(lT(l) o hgy forall b€ Autg (So(V)),
ceGy,
where
Co = H g €F
odd cycles w of o

for any choice of element qr in Q.

Proof. Fix a permutation ¢ # 1 in &,,. Lemma [3.3(c) implies that
1 n 1 n ; .
(4.8) qij ha(l) e hU(n) = Qo (i) o)) hU(l) e ha(n) for i # j.

We use this key observation to cancel factors of ¢;; appearing in the quantum determinant.
Indeed, in the coefficient of the o-summand of detg(h) (see Definition [4.1]),

seng(o) = sen(o) [ @wuen
(4,5)€ Inv(o)

a factor g;; cancels with ¢, (;),() = q;(li)g(j) provided both (7, ) and (o(j),0(7)) lie in Inv (o).
In order to pair and cancel factors appropriately, we consider the orbits O of ¢ acting diag-
onally on the set of ordered pairs P = {(i,7) : i # j} and the swap bijection 7 : P — P,
(4,7) = (J,7), noting that Inv(o) is the disjoint union over orbits O of the sets O N Inv(o).

Fix an orbit O C P with O NInv(o) # @. Say (i,7) lies in O NInv(o) and consider any
(a,b) in 7(O) N Inv(c). Then (b,a) lies in O and hence (b,a) = (¢*(i),o*(j)) for some k.
Thus

1 n -1 31 n _ -1 1 n -1 31 n
Gab o (1) M) = G Mor) " Pom) = Gokyor(j) Moq) " Moty = Gj Moy ™ o)
by Eq. (4.8)), and hence
(4.9) Gijdab Moy Py = Poy - Py

Hence we investigate how the elements of O N Inv(o) may be paired with the elements of
7(0O) NInv(o) in order to simplify the formula for detg(h). Note that the set 7(O) is again
an orbit, and hence either O = 7(0) or ON7(0) = @.

First suppose O N 7(0O) = @. It is not difficult to see that the sets O N Inv(c) and
7(O) N Inv(o) are in bijection, so each element of O N Inv(c) may be paired with a unique
element of 7(O)NInv(c) in the factorization of sgng (o). This implies that O and 7(0O) taken
together contribute no quantum scalars to the o-summand sgnQ(a)h}T(l) o by of detg(h)

after simplifying by Eq. (4.9)). Indeed, one may define a bijection

ONInv(c) = 7(0) NInv(o),
for example, by (i,7) — (¢ (j),c™(i)) where 0 < m < |o| is the minimal integer such that
(0™(j),0™(7)) lies in Inv (o).

Now suppose O = 7(0O). Then there is a unique cycle 7 in a decomposition of ¢ into the
product of disjoint cycles that does not fix any entry of any element in O. We claim that 7
has even length ¢ and that

O = {(i,7) : i,j are not fixed by 7 and j = 7%/2(i)} .

Consider some (i,7) in O = 7(0). Then i and j both appear in the cycle 7, i.e., are not fixed
by 7, and (i, 5) = (¢*(j), 0% (4)) for some k > 0, say minimal. Then 7 must have even length
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2k (sincem = (i a1 -+ ag—1 J Qky1 -+ agk—1) for some a,,). Conversely, if (i, 7) lies in the
given set, then (7, 7) lies in O and O has the description claimed.

We argue that the set O NInv(s) = O NInv(r) has odd size. By Eq. (4.9), this implies
(as O = 7(0)) that all but one of the elements of O NInv(c) may be paired so as to avoid
contributing any quantum scalars to sgng(c) in the formula for detg(h). Furthermore, by
Eq. , it does not matter which lone element of this set contributes a quantum scalar to
sgng (o) in the formula, and we obtain the advertised description of the quantum determinant.

To see that O N Inv(w) has odd size, first note that | Inv(w)| is odd because 7 is an odd
permutation. The set Inv(r) is the disjoint union of the sets O’ NInv(7) over all the orbits O’
of the group () acting on the set P. Replacing o by 7 throughout the above arguments, we
see that if O’ is an orbit with O’ N7(0’) = &, then there is a bijection between (O’ NInv (7))
and (7(0") NInv(7)) and hence the two orbits O’ and 7(O’) together contribute an even
number of elements to Inv(w). In addition, the arguments above for 7 in place of o show
there is exactly one orbit O' under the action of = with O" = 7(O’) (since = itself is a single
cycle of even length) and O’ = O. Hence the parity of |Inv(7)| is that of |O N Inv(w)| and
thus |O N Inv(7)| must also be odd.

([l

Proposition [4.7] implies a simplification of the down-up diagonal-antidiagonal pattern for
computing determinants of 3 x 3 matrices. Recall that a matrix lies in Autg,(Sg(V)) if and

only if it lies in Autg (/\o(V)) (Corollary .
Corollary 4.10. Forn =3, if h = {h;} € GL3(IF) lies in Autg (Sq(V)), then

detg(h) = hih3h3 + hyh3h? + hihhi — qoz hihihi — qia h3hih3 — qu3 h3h3h3.

FIGURE 1. Quantum determinant of a graded automorphism in dimension 3

1 1 1 —q13 —Qg23 —q12

©® ©
OB ORONONO)

5. QUANTUM DRINFELD HECKE ALGEBRAS

We now turn to quantum Drinfeld Hecke algebras and fix a finite group G C GL,(F)
acting on V' = F". Recall that if G acts on an F-algebra A by automorphisms (for example,
the quantum symmetric algebra A = Sg(V') or the tensor algebra A = Ty(V')), the natural
semidirect product algebra A x G is the F-vector space A ®r FG with multiplication

(a®g)(b®h)=ab® gh for a,b € A and g,h € G.

This algebra is alternatively often called the skew group algebra or smash product algebra
(written A#G). We identify A x G with the F-algebra generated by A and FG with relations
ga= Y9a g for all a € A and g € G by suppressing tensor signs, a ® g = ag.
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Parameter functions. We view Tr(V) x G as a graded algebra after assigning group ele-
ments in G degree 0 and vectors in V' degree 1. We consider a quotient by relations that lower
the degree of g-commutators v;v; — g;;v;v; recorded by a parameter function x : VeV — FG.
We abbreviate £(v, w) = k(v ® w) for ease with notation throughout.

Quantum Drinfeld orbifold algebras. Given the quantum system of parameters ) and
a linear parameter function x : V ® V — FG, we define the F-algebra

Haow = (T(V) x G)/(vjvi — qijoiv; — K(vi,v;) : 1 < i,5 <n).
We say Hg . is a quantum Drinfeld Hecke algebra if it satisfies the PBW property, i.e., if
{0y vtng cmy € Lo, g € G}

is a basis for Hg . as an F-vector space. This is equivalent to Hg . defining a graded defor-
mation of Sg(V') x G. For related work, see Jing and Zhang [17], Shakalli [27], Levandovskyy
and Shepler [19], Shroff and Witherspoon [31], and Naidu and Witherspoon [25].

Remark 5.1. The PBW algebras Hg , include the braided Cherednik algebras of Bazlov and
Berenstein [7]. In the special case that g;; = 1 for all 4, j, they also include Lusztig’s graded
Hecke algebras [20, [21], the symplectic reflection algebras explored by Etingof and Ginzburg
[14], the Drinfeld Hecke algebras of [I3], and the noncommutative deformations of Kleinian
singularities studied by Crawley-Boevey and Holland [12].

Support of parameter. For any parameter k : V ® V — FG, we fix linear functions
kg:V®V — T for g in G decomposing x as

(5.2) k(v v5) = Z kg(vi,vj)g for 1 <45 <n.
geG

We say k is supported on a subset of group elements S C G if K, =0 for all g ¢ S.

Group action on parameters. A group G acts on any parameter function x : V@V — FG
in the standard way, where G acts on FG by conjugation:

(k) (u,v) = g(/@(gilu, gilv)) for g in G.
PBW conditions. We recall necessary and sufficient conditions for Hg ;. to satisfy the PBW
property. The following strengthens a theorem of Levandovskyy and Shepler [19]. A version
appears in [30] and [31] with the extra (implicit) hypothesis that G acts on both S (V') and on
/\Q(V); we give a quick proof showing how Corollary is used. Recall that k is a quantum

2-form when k(vj,v;) = —qj; £(v;,v;) for all i, j (see Eq. (2.7)).

Theorem 5.3. Let G be a finite subgroup of GL,(F). The algebra Hq . satisfies the PBW
property if and only if

(1) G acts by graded automorphisms on Sg(V),

(2) k: V@V — FG is a quantum 2-form,
(3) the quantum Jacobi identity holds for all 1 <i < j <k <n and g in G,

0= Z “g(vo(i)vva(j)) (%(j)a(k) gva(k) — Qo(k)o(i) Ua(k)) )
o€Alts

(4) K is G-invariant.
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Proof. By [19, Theorem 7.6], we need only check that Condition (4) is equivalent to
(5.4) Kp-1gn (Vi v5) = Z detyjri(h) kg(vi,vy) for all g,h € G and 1 <i < j <n,
1<k<i<n

assuming Conditions (1), (2), (3) already hold. As k is bilinear, straightforward calculation
(as in the proof of [19, Lemma 3.2]) using Eq. (2.7)) confirms that & is invariant exactly when

Kp-1gn( Vi v5) = kg hos, h’vj) = Zdetlkji(ht) kg(vg,vy) for all g,h € G and i # j.
k<l

But this is just Eq. (5.4) since detlkji(ht) = detjjr(h) by Lemma and Corollary O

Parameter space. A parameter x is admissible if it defines a quantum Drinfeld Hecke
algebra Jq ., i.e., defines a PBW algebra (see [I3]). Note that any linear combination of
admissible parameters is again admissible (see Theorem . We call the F-vector space

P =P ={k € Homp(V ®V, FG) : k is admissible}

of all admissible parameters the parameter space of quantum Drinfeld Hecke algebras. We
denote its dimension by dimy P = dimp(Pg) for a specific finite group G (with fixed Q).

By Theorem (see Eq. ), we can write any parameter k € Homp(V ® V,FG) as the
sum over the conjugacy classes C' of G of parameter functions k¢, each supported only on C:

K= Z ke with  ko(v,w) = an(v,w) g forv,weV.

conj. classes C geC

By Theorem k is admissible exactly when each k¢ is admissible. Thus to find the
dimension of Pg, we need only find the dimension of admissible parameters x supported on
a fixed conjugacy class C and then add over all conjugacy classes C' of G:

(5.5) dimpP= Y  dimp{s € Homp(V ® V,FG) : k5, =0 for g ¢ C, r admissible}.

conj. classes C'

Basis matters. Bilinearity of the parameter s plays no role here; we only ever evaluate k
on the given basis, as another choice of basis for V may define a non-isomorphic algebra.
Consider a linear action of the Klein 4-group on C3 with two parameters worth of nontrivial
quantum Drinfeld Hecke algebras using one basis of C? but none using another: Set

e () () o= () ()

Here, G and G’ give equivalent representations but dimp(Pg) = 2 when g3 = —1 and
q12q13 = £1, whereas dimp(Pg/) = 0 for all choices of Q.

Examples. We end this section with a few examples.

Example 5.6. Consider the symmetric group G = &5 acting on V = F? by permuting basis
elements x,y. Then G acts on Sg(V) = Fglz,y]|/(xy + yx) for 12 = —1. For any a,b in F,
the F-algebra Hg . generated by symbols g,z,y (for g the transposition) with relations

92: 1, gz =yg, gy =xg, vy = —yx +a+bg
exhibits the PBW property and is a quantum Drinfeld Hecke algebra. Notice that the pa-
rameter function k: V ® V' — FG is defined by k(z,y) = a + bg.
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Example 5.7. Recall the monomial group G and quantum scalars ) from Example
Every quantum Drinfeld Hecke algebra Hg , is generated by v1,v2,v3 and h with relations

RS =1, hvy = voh, hve = v1h, hvs =wuvsh,
_ 4 _ _
VU1 = —v1V2 + mih + moh™, w3v] =wwovivy, and V3Vy = WVV3,

for some parameters mi, mg € C. Hence dimc¢(Pg) = 2.

oio
Example 5.8. Consider the monomial group G C GL(V) generated by g = <0 (2) ;) for
400
V = C3. When ¢;; = —1 for i # j, dimp(Pg) = 3: Each quantum Drinfeld Hecke algebra
Hq,x is generated by v1,v2,v3 and CG with relations gv; = 9v;g for all i and these relations

given by parameters mq,mo, ms € C:

V3V = —U2U3 + M1 + Mag + mggz,
Vov] = —v1v + 4my + dmag + 4msg?,
v3v] = —v103 + 2my + 2mag + 2m392.

6. SOME COMBINATORIAL LEMMAS

Before any classification results, we first collect some preliminary observations giving com-
binatorial ways to investigate quantum Drinfeld Hecke algebras. We will use these results to
classify algebras for the symmetric group acting by permutation matrices, the infinite family
of complex reflection groups G(r,p,n), and the mystic reflection groups in later sections.
Every monomial matrix g can be written as the product do of a diagonal matrix d and a
permutation matrix ¢ in the symmetric group &,,. If o defines a k-cycle in &,,, we say that
g has k-cycle type 0. When o is the product of two disjoint transpositions, we say g is the
product of two disjoint 2-cycle type elements. The next lemma explains why we are primarily
interested in 2-cycle and 3-cycle types. We use some ideas from [33].

Lemma 6.1. Sayn > 3 and G C GL,(F) is a monomial matriz group. If Hg . is a quantum
Drinfeld Hecke algebra, then for any g in G, kg # 0 implies

e g is diagonal, or

e g has 2-cycle or 3-cycle type, or

e g is the product of two disjoint 2-cycle type elements.

Proof. Say g is not diagonal and write ¢ = do as above with d diagonal and o # 1 a
permutation. For i # j, we may judiciously choose k ¢ {i,j} with o(k) not in {i,j,k}
in Theorem [5.3(3) to force ry(v;,vj) = 0 except when o is a 2-cycle, 3-cycle, or product of
two disjoint 2-cycles. O

Notice that when ¢;; = —1 for all i # 7, det;jx(g) = detijin(g) = detjini(g) = detjun(g) for
any matrix g. In fact, one may verify the next two lemmas directly.

Lemma 6.2. Let G C GL,(F) be a monomial group and g;; = —1 for alli # j. Then for all
g,h in G, if detijii(g - h) # 0, there exists a unique pair 1 < a < b < n with

detyjri(gh) = detyjap(h) - detapri(g)-
And for any pair a < b, the product det;jqp(h) - detapri(g) either is zero or is detijp(gh).
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Lemma 6.3. Let G C GL,(F) be a monomial matriz group and g;; = —1 for all i # j. To
check Eq. (5.4)), it suffices to consider g in a set of conjugacy class representatives.

Proof. Assume Eq. (5.4) holds for a fixed g. Say ¢’ = 2~ gz for some z in G and fix h in G
and 7 # j. As G is monomial, there is a unique pair a < b with det;ju,(2h) # 0 and
Kp-1gh(Vis V) = K(any-1g(zn) (Vi v5) = detijap(2h) Kg(va, vp

)
There is also a unique pair ¢ < d so that 0 # det;jep(2h) = detijeq(h
Lemma . Then a < b is the unique pair for ¢ < d with det.gqp(2)
the last display gives

detyjcq(h) deteaan(2) Kg(va,vp) = detijea(h) ko142 (ve, va) = detijea(h) kg (ve, va)-
Also ¢ < d is the unique pair for i # j with det;jcq(h) # 0, so Eq. (5.4 holds with ¢’ in place
of g, i.e., kp-19p(vi,v5) = >y detijpi(h) Ky (v, vp). O

) detegan(2) (by
# 0, and hence

We will use the next technical lemma for the infinite family of Shephard-Todd groups
G(r,p,n) in Section [§ and the mystic reflection groups in Section@ We denote the centralizer
of each g in G by Cg(g).

Lemma 6.4. Let G C GL,(F), n > 3, be a finite monomial group with q;; = —1 for
i # j containing the 3-cycle g = (1 2 3). Suppose that the centralizer C(g) is a subgroup of
(g,9 - (—=I)) upon restriction of each group to V' = Fvy +Fvy+Fuvs. Then there is a nontrivial
quantum Drinfeld Hecke algebra Hg , with k: V@V — FG supported on the conjugacy class
of g. In fact, for any quantum Drinfeld Hecke algebra and any i # j, kq(vi,vj) = Kq(v1,v2)
for i, j distinct in {1,2,3} and k4(vi,vj) = 0 otherwise.

Proof. For 0 # m € F, define a quantum 2-form  supported on the conjugacy class of g by

setting kg(vi,vj) =0 for i or j & {1,2,3}, Kg(v1,v2) = Kg(v2,v3) = Kg(v3,v1) = m, and

Kp-1gn (i, V5) Zdet”kl ) kg(vg,v) for 1<i<j<n, heG.
k<l
We argue that kj,-14, is well-defined. Say h=lgh = z7'gz and i < j. On one hand, there is
a unique pair a < b (since G is monomial) with det;jq,(h) # 0, and

Kp-1g5 (Vi V5) Zdetmkl Kg(Vk,v1) = detijap(h) Kg(va,vp).

k<l
On the other hand, there is a unique pair ¢ < d with det;j.q(2) # 0, and
Ko—14,(Vi, Vj) Zdetmkl ) kg(vk,v) = detijea(2) Kg(ve, va).
k<l
We show
(6.5) detijop(h) Kg(va,vp) = detijea(2) Kg(ve, va).
Since G is monomial, Lemma [6.2] implies that
(6.6) detapea(zh ") = detapij(h™") detijea(2) = (detijap(h)) ™" detijea(z) # 0

and {a,b} C {1,2,3} exactly when {c,d} C {1,2,3} since zh™! € Cg(g). If {a,b} ¢ {1,2,3},
then kg(vg,vp) = Kg(ve,vq) = 0 by construction of k. So we assume a,b,c,d € {1,2,3} and
Kg(Va, Up) = Kg(Ve,vq). But zh~ Yy € (£g)yr, hence 1 = detypea(zh™!) and detjjop(h) =
det;jeq(2) by Eq. implying Eq. (6.5). One can then verify that s is admissible using
Theorem [5.3]
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Now suppose that Hg , is a quantum Drinfeld Hecke algebra. For i # j with ¢ or j not in
{1, 2,3}, we may find an index k so that Theorem [5.3(3) forces r4(v;,v;) = 0. For i # j with
i,7 € {1,2,3}, Theorem (4) implies that x(; 9 3)(vi,v;) = Kg(v1,v2). O

The next lemma is used for the Coxeter groups &,, = G(1,1,n), W(B,,) = G(2,1,n), and
W(D,,) = G(2,2,n) in Sections [7| and

Lemma 6.7. Suppose G C GL,(F), n > 3, is a finite monomial group with q;; = —1 fori # j.
Say G contains the transposition (1 2) with deti212(c) = 1 for all ¢ in Ce((1 2)). Then for
any parameter m in I, there is a quantum Drinfeld Hecke algebra Hg .. with x: V@V — FG
supported on transpositions with k(i 9)(v1,v2) = m and K 9y(v1,v3) = 0.

Proof. Define a quantum 2-form k supported on the conjugacy class of (1 2) by setting
Kp-1(1 2)n(Vi, v5) = detyia(h) k(1 9)(v1,ve) for i < j. We argue that this does not depend
on choice of h. Indeed, if h=1(1 2)h = 271(1 2)z for h,z in G, then zh~! € Cg((1 2)) and
detlglg(zhfl) = 1. Since this is nonzero, Lemma gives a unique pair ¢ < j with

1= detlzlz(zh_l) = detlgi]‘(h_l) detijlg(z) = (detijlg(h))_l detijlg(z)

and det;ji2(h) = det;ji2(2) so & is well-defined. One may then check the conditions of
Theorem directly. Note that Theorem [5.3(4) holds by Eq. (5.4) using Lemma since
det;j12(h) is nonzero for only one fixed pair ¢ < j and so det;ji;(h) is nonzero with k£ < [ only
fork=1,1=2:

Kp-1(1 2)n(Vi, vj) = detijia(h) k(1 9)(v1,v2) = Zdetz‘jkl(h) k(1 2y(vk, o). O
k<l

Remark 6.8. For the Coxeter groups &,, = G(1,1,n), W(B,,) = G(2,1,n), and W(D,,) =
G(2,2,n) for n > 2, the proof of Lemma gives an admissible parameter s for any m € F
defined by

m  for g = (i j)
kg(vi,vj) = ¢ —m  for g = t;t;(i j)
0 otherwise,

where t; is the identity matrix except —1 in the i-th slot. Note here that all conjugates of
(1 2) take the form (i j) or t;t;(i j) for some i # j.

In the next two lemmas, we again consider the the symmetric group &,, acting by permuting
basis elements of V, i.e., we identify &,, with the group of permutation matrices in GL,,(F).

Lemma 6.9. Say G = &,, forn > 3 and q;; = —1 for i # j. Then for any parameter m
in F, there is a quantum Drinfeld Hecke algebra Hg, for K : V@ V. — FG supported on
transpositions with k(; 2y(v1,v2) = 0 and k¢ 2y(v1,v3) = m.

Proof. Notice that det;jx(g) € {0,1} for all g € G. Say m # 0 and define a quantum 2-form
k supported on the conjugacy class of (1 2) by

m  for i or j in {a, b} but not both,

K(a b)(Vi, V) = {0

otherwise .



AUTOMORPHISMS OF QUANTUM POLYNOMIAL RINGS 17

We argue that « satisfies Theorem [5.3(4) by verifying Eq. (5.4) using Lemma

Kh-1(1 2)h (vi,v5) Zdetwkl ) k@ oy(vg,v)  forallhe G,1<i<j <n.

k<l
For fixed i < j and h in G, set a = h=!(1) and b = h=1(2) so h™1(1 2)h = ( b). There is a
unique pair ¢ < j" with 0 # det;ji;(h) = detyri;(h™1), so (h(i) h(j)) = (i j'), and we need
only verify that

K(a b)(%vj) = detyjirjr (h) K(1 2) (vir, v51) = K(1 2) (vir, vj7) -
Each side is either m or zero. The scalar x(, y)(vi,v;) is nonzero exactly when the set
{i,7}N{a,b} has size 1, i.e., exactly when {¢’, 7'} N {1,2} = {h(i), h(j)}N{h(a), h(b)} has size
1. But this is exactly the condition that x(; 2)(vir,v;r) is nonzero and Theorem (4) holds.
The other conditions of Theorem may be checked directly. Note that for the quantum
Jacobi identity, we verify that
("o = ve)rn (Vi v5) + ("o — v rn(vi o) + (Moi = v (v, 06) = 0

by taking h = (a b) and considering various overlaps of {3, j, k} with {a,b}. O

Lemma 6.10. Say G = &,, forn > 3 and q;; = —1 fori # j. There is a nontrivial quantum
Drinfeld Hecke algebra Hg, for k : V@V — FG supported on products of two disjoint
transpositions.

Proof. Suppose 0 # m € F and define a quantum 2-form « supported on the conjugacy class
of (1 2)(3 4) by setting, for disjoint 2-cycles (a b) and (¢ d) and i < 7,

mfor (a b) # (i j) # (¢ d) and i, j € {a, b, ¢, d},
K(a b)(cd)(vz',vj)z{o (a b) # (i j) # (c d) { }

otherwise.
We argue that x satisfies Theorem [5.3] m (4) by verifying Eq. (5.4]) using Lemma
Kn=1(1 2)(3 UZ,’UJ Zdetljkl K1 2)(3 4)(vk,vl) forall1<i<j<n, hedq.
k<l
Fix i < j and h in G and set (a b)(c d) = h=(1 2)(3 4)h. There is a unique pair 7/ < j’ with
0 # det;jirj:(h) = detyji; (A1), so (h(i) h( 1)) = (¢’ j') and we need only check that
K(a b)(c d)(Vi, vj) = detijig (h) K1 2)3 a)(vir vr) = K 2)(3 a)(virs vy7) -

We verify as in the proof of Lemma[6.9] noting that (a b) # (i j) # (c d) with 4, € {a,b,c,d}
exactly when (1 2) # (¢ j') # (3 4) with ¢/, j' € {1,2,3,4} (just apply h to each index). [

7. SYMMETRIC GROUP ACTING BY PERMUTATION OF BASIS VECTORS

We consider quantum Drinfeld Hecke algebras for the action of the symmetric group &,
by permutations in this section. We assume at least one quantum parameter ¢;; is not 1, else
we are in the non-quantum setting and may use the classification of algebras from [29]. This
forces ¢;; = —1 for all ¢ # j by Lemma @ Thus we assume throughout this section that

Q={g;=-1q:=1:1<i#j<n}
The dimension of the parameter space of quantum Drinfeld Hecke algebras depends on
whether n > 3, so we gives the cases n = 3 and n = 4 explicitly before generalizing to
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arbitrary n. Here, as before, &,, acts on V = " by permutation of basis vectors vy, ..., vy,
i.e., “v;i = vy(;). We recover results of Naidu and Witherspoon [25] who worked over the
complex numbers C and used Hochschild cohomology; our combinatorial approach (following
ideas of [33]) allows us to extend results to arbitrary fields F with char(F) # 2.

3-dimensional space. A careful analysis using Theorem gives a 4-parameter family
when n = 3: The quantum Drinfeld Hecke algebras are the F-algebras generated by vy, va, v3
and F&3 with relations ovy = vg;yo for all k and all 0 € &3 and, for some fixed scalars
my,...,my in F,

vovy = —v1v2 + my + ma(l 2) + mg((1 3) + (2 3)) + ma((1 2 3) + (1 3 2)),
V302 = —vou3 +m1 +m2(2 3) +m3((21) + (3 1)) +ma((23 1)+ (21 3)),
viv3 = —v3v1 + my + ma(3 1) + m3((32) + (1 2)) + ma((312)+ (321)).

4-dimensional space. Theorem below gives a 5-parameter family when n = 4: The
quantum Drinfeld Hecke algebras are precisely the F-algebras generated by vy, vo, v3, v4 and

F&, with relations ov, = v, ()0 for all k and all o € &4 and, for some fixed scalars my, ..., ms
in IF,
vovy = —v1v2 +my +ma(l 2) +m3((13)+ (1 4)+(23) + (2 4))
+ma((123)+(213)+(124)+(214) +ms((13)(24) + (14)(23)),
v3v1 = —v1v3 +my +ma(1l 3) +m3((12)+ (14)+(23)+(34))
+ma((132)+(312)+(134)+(314))+ms((12)(34)+(14)(23)),
Va1 = —v10g +my 4+ ma(14) +mz((12) 4+ (13)+(24) + (3 4))
+my((142)+(412)+(143)+(413)+ms((12)(34)+(13)(24)),
V3v2 = —vv3 + My + m2(2 3) + mz((12) 4+ (1 3)+(24) + (3 4))
+ma((231)+(321)+(234)+(324)) +ms5((12)(34)+(13)(24)),
VU2 = —vovg +my +ma(2 4) + ms((12) + (1 4) + (2 3) + (3 4))
+my((241)+(421)+(243)+(423)) +ms5((12)(34)+ (14)(23)),
V43 = —v304 + M1+ m2(3 4) + mg((14) + (2 3) + (24) + (1 3))
+mg((341)+(431)+(342)+(432))+ms((13)(24)+(14)(23)).

Arbitrary dimension. The quantum Drinfeld Hecke algebras constitute a 5-parameter fam-
ily for the symmetric group &,, with n > 4:

Theorem 7.1. Let G = &, act on V = F"™ by permutation of basis vectors for n > 4. The
quantum Drinfeld Hecke algebras are precisely the F-algebras generated by vy, ..., v, and F&,
with relations ovy, = vyyyo for all k and

Vp(2)Us(1) = — Vo(1)Vs(2) + M1 +m2 (o(1) 0(2)) +ms Z ((0(1) i)+ (o(2) z))
i#0(1),0(2)
tmi Y ((0) 0@ i)+ (62) o) 1)) + ms Y. (1) i) (0(2) 4)
i#o(1),0(2) i.j¢{o(1),0(2)}; i#j
for all o € G, for some fixed scalars my,...,ms in F.
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Note that the right side indeed only depends only on ¢(1) and ¢(2) (as an unordered pair).

Proof. Suppose k is admissible. Theorem (4) implies that x is invariant, i.e., for any o
in Gn, K(Vo(1): Vo(2)) = Dogeq Kg(v1,v2) 0go™", and £ is determined by r(vi,v2). As cycle
type determines the conjugacy classes in G,,, Lemma implies that if k; # 0, then g is
conjugate to I (the identity), (1 2), (1 2 3), or (1 3)(2 4).

By Theorem [5.3(3) and (4), 0 = x, 1)(v1,v2) = K1 2)i j)(v1,v2) = K )k 1)(v1, v2) When
k1 ¢ {1,2} and (z j) # (1 2). In addition (by Eq. ), K1 0y2 k) (V1,v2) = K@ 3)(2 4)(v1,v2)
for all [ # k with [,k ¢ {1,2}. In fact, one may show (using Lemma and Eq. (5.5)) that
k is determined by

my = rr(v1,v2), ma = K1 2)(v1,v2),

m3 = K 3)(v1,v2), M4 =K 2 3)(v1,v2), and  ms = K 32 4)(v1,v2) .
Conversely, using Eq. ((5.5)), the identity I in G contributes one parameter worth of quantum
Drinfeld Hecke algebras, the conjugacy class of (1 2) contributes two parameters worth by
Lemmas and and the conjugacy classes of (1 2 3) and (1 2)(3 4) each contribute

another parameter of freedom by Lemmas and The proofs of these lemmas give the
algebras in the statement of the theorem explicitly. O

8. INFINITE FAMILIES OF REFLECTION GROUPS G(r,p,n)

We consider the infinite family G(r, p,n) of reflection groups (see Shephard and Todd [2§]
when F = C), which includes
the symmetric group acting as permutations, &,, = G(1,1,n),
the Weyl groups W(B,,) = G(2,1,n) acting on R" or C",
the Weyl groups W(D,,) = G(2,2,n) acting on R™ or C", and
the symmetry group G(r,1,n) of the regular r-cube polytope in C".

We describe the quantum Drinfeld Hecke algebras, recovering results of Naidu and Wither-
spoon [25] in the case F = C and n > 4. The combinatorial approach chosen here over a
cohomological approach has certain advantages: This combinatorial avenue

allows us to extend results to fields F with char(F) # 2,

helps us classify algebras in the delicate case when n = 3,

reveals an extra parameter of algebras for G(r,r,4) when r is odd, and

extends to other groups, like mystic reflection groups (examined in the next section).

We fix r, p,n € Z with p dividing r, and assume F contains a primitive r-th root-of-unity w
in this section. The finite group G(r,p,n) C GL(IF) consists of the n X n monomial matrices
whose nonzero entries are r-th roots-of-unity in IF and whose product of nonzero entries is 1
when raised to the power r/p. The group G(r,p,n) has order n!r"/p and is the semidirect
product D(r,p,n) x &,, for D(r,p,n) the subgroup of diagonal matrices in G(r,p,n). Note
that G(r,p,n) contains the symmetric group &,, = G(1,1,n) as a subgroup.

By Lemma the group G = G(r,p,n) acts on the quantum polynomial ring Sg(V') by
automorphisms if and only if either ¢;; = 1 for all 4, j or else ¢;; = —1 for all ¢ # j. In the
trivial case, when all g;; = 1, [26] gives a classification of quantum Drinfeld Hecke algebras.
Thus we assume throughout this section that the set of quantum parameters is

Q={q¢;j=-1qs=1:1<i#j<n}
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Define a diagonal matrix A; which is wl except with w!™" as i-th entry:
(8.1) A; = diag(w, ..., w,w' ™ w, ..., w).

Lemma 8.2. Say G = G(r,r,4) forr > 1 withr odd. There is a nontrivial quantum Drinfeld
Hecke algebra Hg ,, for k: V @V — FG supported on the conjugacy class of (1 2)(3 4).

Proof. Let g = (1 2)(3 4) and 0 # m € F. Define a quantum 2-form x supported on the
conjugacy class of g by setting k4(vi,vj) = 0 for {i,5} = {1,2} or {3,4}, k4(vi,vj) = m
otherwise, and extending via

(8.3) Kp-1gn (Vi V) = Zdetijkl(h) kg(vg,vy) for 1<i,j<4, heG.
k<l

We argue that r,-14, is well-defined. Say h~'gh = z~'gz. As in the proof of Lemma we
show that rj-14,(vi,vj) = k,-14,(vs,vj) using the fact that

(8.4) Kp-1gp(vi,v;) = detijap(h) Kg(va,vs) Whereas — k,-14,(vi,vj) = detijea(2) Kg(ve, va)
for some pairs a < b and ¢ < d with det;jqp(h) # 0 # det;jeq(2) and
(8.5) detabcd(zh_l) = detabi]’(h_l) detijcd(z) = (detijab(h))_l detijcd(z) 7& 0.

If a matrix lies in the centralizer C(g), then the entries in its first two columns coincide
and also the entries in its last two columns coincide and the matrix is the product of a
diagonal matrix with (1), (1 2), (3 4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 4 2 3), or
(1 32 4). In addition, the entry in the first column is inverse to that in the last column
because r = p is odd, and thus there are exactly r elements in C(g) corresponding to each
permutation listed. Then as zh~! lies in Cg(g) with detypeq(zh™1) # 0, we conclude after
careful examination of the centralizer that either {(1 2), (3 4)} contains both (a b) and (c d)
and hence kg(vq,vp) = Kg(ve,vg) = 0 or else {(1 2),(3 4)} contains neither (a b) nor (¢ d)
and hence kg(Vq, vp) = kg(vVe, va) # 0 with detgpea(2h 1) = 1. Egs. and then imply
that rp,—145(vi,vj) = K14, (vi, v;).

One may then use Theorem to verify that k is admissible with some straightforward
computations. For Theorem , note that any conjugate h~'gh of g is the product of a
diagonal matrix with (1 2)(3 4) or (1 3)(2 4) or (1 4)(2 3). For example, if h~1gh enacts
V1 = Avg, va — Ao, vg nuy, and vy > 77*1U3 for A\,n in F, we may take h to be the
diagonal matrix (A'/2, A\=1/2 5'/2 1n=1/2) and check Theorem [5.3(3) directly using Eq. .
Here, we use the fact that the squaring map on the multiplicative group of r-th roots-of-unity
is onto since r is odd. g

Naidu and Witherspoon [25, Theorem 6.9] proved the following when F = C and n > 4 by
computing Hochschild cohomology. The homological techniques used do not extend directly
to arbitrary fields. We give a direct combinatorial proof that holds for all fields F with
char(F) # 2, including the case when char(FF) divides |G|, and all n > 3.
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Proposition 8.6. Let G = G(r,p,n) for n > 3. Then the dimension of the parameter space
of quantum Drinfeld Hecke algebras is

( z'frzl,n>4 ,G=G(1,1,n) =6,>
ifr=1n=23, ,G=G(1,1,3 ) 63,
ifr=2, ie., G:W( n) =G(2,1,n) or G =W(D,) =G(2,2,n),

ifr>2, 3%r, and G = G(r,r/2,3) with r even,
ifr>2,34r, and G = G(r,r,3),
if r>2, rodd, and G = G(r,r,4),

otherwise.

dim[[r (Pg) =

O~ = =N ROt

Proof. In the case r = p = 1, G = G(1,1,n) is the symmetric group &,, and we appeal to
Section [l So we assume r > 1.

We use Theorem with Eq. . Assume that x is admissible and that ¢ in G(r,p,n)
has one of the cycle types given in Lemma

First consider the case when r = 2 so that G is the Weyl group G(2,2,n) or G(2,1,n).
Theorem [5.3(3) and (4) imply that £y = 0 unless g lies in the conjugacy classes of (1 2) or
(12 3) (one must check the quantum minor determinants of elements in the centralizer of g).
In fact, k(1 2)(vi,v;) = 0 unless (i,7) = (1,2). (For example, h = (=1 @ —1 @ I) commutes
with (1 2) forcing s (; 2)(v1,v3) = 0). The conjugacy class of (1 2) contributes one parameter
of freedom to the family of quantum Drinfeld Hecke algebras by Lemma[6.7]and the conjugacy
class of (1 2 3) contributes another parameter by Lemma hence dimp(Pg) = 2. Hence
we assume 1 > 2.

The group G(r,p,n) contains the set of diagonal matrices {Aj,...,A,} from Eq. ;
Eq. forces k; = 0 for any g a diagonal matrix and for any g with 2-cycle type since
certain A; lie in the centralizer of g. For example, if g has cycle-type (1 2), then Ay lies in
the centralizer of g for k ¢ {1,2} with x4 (vi,vj) = detj;(Ag) £g(vi, vj) by Theorem [5.3(4);
this forces rg4(vi,vj) = 0 for i,j # k (since detyjij(Ag) = w? # 1). If n > 5 this forces
kg(vi,v;) = 0 for all 4,5 as k can vary over 3 < k < n. When n = 3,4, one can verify that
detyji;(As) # 1 for all @ # j forcing r¢(v;,vj) = 0. Hence we may assume g has 3-cycle type
or is the product of two disjoint 2-cycle type elements.

Now assume n = 3. If 3 | r, then the center of G contains the scalar matrix h = w'/31I,
which forces k = 0 by Theorem [5.3 . (see Eq. (5 ) since det;j;;(h) = w3 # 1 for all i # j
and dimp(Pg) = 0. If /p > 2, then the scalar matrix h = wPI lies in the center and likewise
forces = 0 since det;j;;(h) = w? # 1 for all i # j as r{ 2p and dimp(Pg) = 0.

For n = 3, that leaves the cases r/p < 2 and 3 { r. Theorem [5.3|3) forces kg = 0 for g
of 3-cycle type unless the product of nonzero entries in g is 1. Such elements all lie in the
conjugacy class of (1 2 3) which generates its own centralizer in GG, and hence dimp(Pg) = 1
in this case by Lemma

Now assume n > 4. Suppose g has 3-cycle type (a b ¢). Then g commutes with any Ay
for d € {1,...,n}/{a,b,c} and kg = 0 by Theorem [5.3(4) (see Eq. (5.4)) since detqpas(Ag) =
detpepe(Ag) = detgeac(Ag) = w? # 1 (as r > 2). This forces kg(va,vs) = Kg(vp,ve) =
kg(Ve, vq) = 0. Theorem [5.3)(3) forces rgy(vs,vj) = 0 for i or j not in {a,b,c} (just choose
ke {a,b,c}).

Thus we may assume n > 4 and g is the product of two disjoint 2-cycle type elements,
say ¢ is the product of a diagonal matrix and (1 2)(3 4). If r is even, then G contains the
diagonal matrix h = diag(—1,—1,1,...,1) which commutes with g and arguments similar
to above show that x;, = 0. If r is odd but n > 4, then G contains the diagonal matrix
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h = diag(w,w,w,w,w™%,1,...,1) which commutes with g and we may show r, = 0. This
leaves the case that n = 4 and r is odd: again, Theorem [5.3|3) forces £, = 0 unless g is
conjugate to (1 2)(3 4) and by Lemma 8.2} dimg(Pg) = 1. O

Example 8.7. Let G = G(2,1,3) over F = R, the Weyl group W(B3). Every quantum
Drinfeld Hecke algebra Hg , is generated by v1,v2,v3 and RG with relations gvy = 9v,g for
all k and g € G and
VU] = —v U2 + m(sy — t1ta81)
+ m’(slsg — tot38189 — t1t2S182 + t1t38182 + S281 — t1t38281 + totzsas) — t1t28251),
v3Ve = —vov3 + m(Sa — tatzss)
+m/ (8180 — tat38182 + titasise — t1t35180 + S251 + t1135281 — lalzsasy — t1£28251),
v3v1 = —v1v3 + m(s18281 — L1t3515281)
+m’ (8182 + tatgs152 — titas182 — t1t38182 + 8281 — t1t35281 — tot3sasy + t1tas2sy)
for some m,m’ € R. Thus dimg(Pg) = 2. Here, s; is the transposition (i i + 1) and ¢; is the
identity matrix except with —1 in the ¢-th entry.

Example 8.8. The group G(2,2,3) over F = R is the Weyl group W(Ds3). One compares
the conjugacy classes in G(2,2,3) to those in G(2,1,3) to see that every quantum Drinfeld
Hecke algebra for G(2,1,3) is a quantum Drinfeld Hecke algebra for G(2,2, 3) and vice versa.
So the dimension of the parameter space is also 2 for G(2,2, 3).

Here are two examples over a field of characteristic 5, the first in the nonmodular setting
and the second in the modular setting.

Example 8.9. In the group G = G(4,2,3) over F = Fq5, the product of nonzero entries in
each matrix is =1 (here, 2 is a primitive 4-th root-of-unity). The dimension of the parameter
space Pg of quantum Drinfeld Hecke algebras is 1. Indeed, every PBW algebra is supported
on the 32-element conjugacy class of (1 2 3): we just fix k(1 9 3)(v1,v2) € Fas, use Eq.
to determine k4 for g conjugate to (1 2 3), and set x4 = 0 for all other g in G.

Example 8.10. In the group G = G(2,2,5) over F = Fy5, the product of nonzero entries
in each matrix is 1. Here, dimp(Pg) = 2. Indeed, every PBW algebra is supported on the
conjugacy class of (1 2 3) or the conjugacy class of (1 2): we fix r(; 3 3)(v1,v2) € Fo5 and
k(1 2)(v1,v2) € Fas, use Eq. to determine k4 for g conjugate to (1 2 3) or (1 2), and set
kg = 0 for all other g in G.

9. MySsTiC REFLECTION GROUPS

Another natural family to consider is the infinite family of mystic reflection groups de-
scribed by Kirkman, Kuzmanovich, and Zhang [18] and also Bazlov and Berenstein [6]. Fol-
lowing their constructions, we assume throughout this section that F = C, «a, 8 € Z~g with
a| B and 2| 3, and

Q={qj=-1l,qu=1:1<i#j<n}.
Definition 9.1 ([18]). For 1 <i,j <n, i # j, A # 1, define 6; 5, 73 ) in Autg(Sq(V)) by

. I #i,5
l v :
i x(v)) = {Q)J\lvl l f Z and Tiia(v) = i\vj =i
B ATy =3
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The 0; \ are called standard reflections and the 7; ; \ standard mystic reflections. Then the
mystic reflection group M (n, «, B) is the following subgroup of Autg(Sg(V)):

M(n,a,ﬁ):<{ei,A|Aa=1,1g¢gn}u{n,j,A|A5:1,1gi¢jgn}>.

This provides infinite families of groups with nontrivial quantum Drinfeld Hecke algebras:

Theorem 9.2. The dimension of the parameter space Pg of quantum Drinfeld Hecke algebras
for G = M(n,a, ) forn >3 is

if G=M(n,2,2),

if G=M(n,1,2),

if m=3witha <2, 31, and G # M(3,2,2),
otherwise.

dimF(Pg) =

O = =N

Proof. For G = M(n,2,2) = G(2,1,n), we appeal to Proposition For the other cases, we
use Theorem with Eq. . Assume that x is admissible and that g in M (n, «, 5) has
one of the cycle types given in Lemma [6.1

First suppose that G = M(n,1,2) C G(2,1,n) N SL,(C). Theorem [5.3(3) and (4) imply
that kg = 0 unless g lies in the conjugacy class of (1 2 3). (We check the quantum minor
determinants of elements in the centralizer of ¢g in addition to judiciously choosing indices
in Theorem [5.3{(3): For example, for ¢ = 7 ;1 with i # j and k,l ¢ {i,j}, the elements
g and h = g commute with g with det;j;;(g) # 1 # detigr(h); this forces rq(vi,vj) =
tig(vi,vg) = 0, whereas Theorem [5.3(3) forces rgy(vg,v;) = 0.) One may check that the
hypotheses of Lemma hold (see [33]) and thus the conjugacy class of (1 2 3) contributes
one parameter of freedom to Pg.

Thus we assume 8 > 2. We also assume « is 1 or 2, else the center of G contains ¢l for
¢ # £1, forcing k = 0 and dimp(Pg) = 0.

Eq. forces kg = 0 when g is a diagonal matrix or has 2-cycle type since certain

4mi
diagonal matrices A; (see Eq. 1) lie in the centralizer of g with det;y;i(A;) =e # # 1 for
distinct j, k # i as 2 | § > 2. For example, the group contains

21w T2,1,—-1° T372’w2 *T3,2,—1 " ---" Tn,n—l,w”*1 *Tnn—1,—1 = An for w=¢eh .

So we assume g has 3-cycle type or else is the product of two disjoint 2-cycle type elements.

Consider the case n = 3. If 3 | 3, then the center of G contains the scalar matrix
T2l T21,-1°T3242 " T32,-1 = N3 T % +] for A = e2™/B which forces k = 0. So we assume
31 B. In fact, kK, = 0 unless g is conjugate to (1 2 3) and there is one parameter worth of
algebras by Lemma (see [33]). Note that G # M(3,2,2) here as § > 2.

Lastly, we consider the case n > 4. Suppose g has 3-cycle type (a b ¢). Then g commutes
with Ay for d € {1,...,n}/{a,b,c} and w = e*™/# which forces kg(vi,v;) = 0 for 4,5 €
{a,b,c} by Theorem [5.3(4) (see Eq. (5.4)) since detqpar(Aa) = detpere(Ag) = detacac(Ag) =
w? #1 (as B > 2). Theorem (3) forces rg(v;,v;) = 0 for i or j not in {a,b,c} (just choose
k € {a,b,c}). Hence k, = 0 in this case. Suppose instead that g is the product of two disjoint
2-cycle type elements, say g is the product of a diagonal matrix and (1 2)(3 4). Then k, = 0 as
well since Theorem [5.3(3) forces rg(v1,v2) = kg(v3,v4) = kg(vs,v5) = 0 forior j ¢ {1,2,3,4}
and Theorem [5.3|(4) forces ry(vi,v;) = 0 for i,7 € {1,2,3,4} but (1 2) # (i j) # (3 4) since
the centralizer of g in G contains the diagonal matrix diag(—1,—1,1,...,1). O
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Example 9.3. The group M (n,1,2) for n > 3 is generated by mystic reflections 7; ; _1
and contains the 3-cycle (1 2 3). The quantum Drinfeld Hecke algebras constitute a 1-
parameter family with each algebra Hg , supported on the conjugacy class of (1 2 3): Fix
k(1 2 3)(v1,v2) = m € C, use Eq. to determine k4 on the conjugacy class of (1 2 3), and
set kg, = 0 otherwise.

10. DIRECT SUMS

We end by observing that there is no way a priori to predict how the dimension of the
parameter space of quantum Drinfeld Hecke algebras will change when taking direct sums of
acting groups. We demonstrate by simply adding on a 1-dimensional group action.

In the proposition below, we take a fixed basis v1,ve,v3 of V = Vo @ V] =2 F3 for V, = F?
and Vi = F! with v1, v spanning Vo and vs spanning V;. We write g31¢32 € G1 to mean
multiplication by g¢31¢32 lies in G, i.e., G1 contains the 1 x 1 matrix [g31¢32]-

Proposition 10.1. Let Gy, be a group of graded automorphisms acting on Sq, (Vi) for Vi, =
F* and Q) = {qz(jk)} for k =1,2. Suppose G = Go ® G1 acts by graded automorphisms on
So(V) for V=Vo@® Vi and Q = {qi;} with qi2 = qg). Then

(a) if |G1] > 1 and g31932 € G1, then dimp(Pg) = dimp(Pg,),

(b) Zf |G1| =1 and 31432 € Gl, then dimF(Pg) > dimF(PG2),

(c) if |G1| > 1 and g31q32 ¢ G1, then dimp(Pg) =0,

(d) if |G1| =1 and g31q932 ¢ G1, then dimp(Pg) is not bound above or below by dimp(Pg,).

Proof. First note that in parts (a) and (c), the center Z(G) contains a nonidentity matrix
z = (égg) with deti313,0(2) # 1 # detagaz g(z) and thus kp(vi,v3) = 0 = kp(va, v3)
for all h € G by Theorem (4) for any admissible parameter s for G. In fact, for part
(c), Theorem [5.3)(3) forces r(v1,v2) = 0 as well.

Now suppose we are in case (a) or (b). For each g € Ga, define h(g) = g & [g31932] € G.
If ' is an admissible parameter for G2, then we may define an admissible parameter s
for G with k(g (v1,v2) = ky(v1,v2) for g in G2 and K zero otherwise. (One can check
that « satisfies Theorem [5.3(3) and (4)). Thus dimp(Pg) > dimp(Pg,). In case (a), if &
is an admissible parameter for G, we may define an admissible parameter ' for Gy with
Ky (v1,v2) = Kp(g)(v1,v2) and hence dimp(Pg) < dimp(Pg,). Note that in part (b), we may
have a strict inequality (see Example or equality (Example . The claim in part
(d) is verified with Example [10.2]

O

Example 10.2. To justify Proposition [10.1[d), we fix G = {1} C GL(F) with g31¢32 # 1
and give three groups G; C GLy(F) with which to compare dimp(Pg,qq, ) to dimp(Pg,). Set

Ga={(% ). (4D}, Gs={(7"9). GV}, Ga={(79).(6%). (5 %) D}
Then

dimp(Pg,) = 2 > 0 = dimp(Pgyec,) if i3 =—1,¢q03 =1, and ¢12 =1,

dimp(Pg,) =0 < 1 = dimp(Payea, ) if i3 =—1,¢qo3 =1, and g1 = —1, and

dimp(Pg,) = 0 = dimp(Pe,e6,) if g13=-1,203=1, and 12 = 1.

Note that the inequality in Proposition M(b) is often strict, as we see next.
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Example 10.3. Consider G = G2 & G1 C GL3(C) for G; = 1 the trivial group and

— 1—n3 2 1 0 2w

Then dimc(Pg,) = 0 by Theorem (4) as Go is abelian containing g with detg(g) = —1.
However, dimg(Pg) = 1 as the set of quantum Drinfeld Hecke algebras for G comprises the
algebras Hq . ¢ generated by v1,v2,v3 and CG with relations gv; = 9v;g for all g € G and

vgUl = V1V, L3y = —vou3 +myg, w3vr = —viwz+mn’ (1—\/1-1)g,
with parameter m € C. Thus dimc(Pg) > dime(Pg,)-

We end with a classical complex reflection group, namely, the 2-dimensional tetrahedral
group G4 of order 24 as classified by Shephard and Todd [2§]. We consider the direct sum of
G4 with a trivial group to demonstrate the equality in Proposition b).

Example 10.4. Set g2 = —1 = q13, 23 = 1, and w = €2™/3 in C. Consider G = {1} ® G4
(using a reflection representation of G4 perhaps equivalent to your favorite) generated by

VERN 0

A:(é? 8) and B:1<o i \/§¢w2> with g = B2A2B2, gy = B2A, g3 = AB?.
00w V3 0 \/§in —iw

Then for any m in C, the C-algebra Hg , generated by vi,v2,v3 and CG with relations

gu; = 9v;g for all g € G and

v3vs = vov3 +m(g + g ' + wlgo +wigyt +wgs +wgzt), vsvL = —vivs, Vav1 = —V1v2

is a quantum Drinfeld Hecke algebra. By Theorem these are all the quantum Drinfeld
Hecke algebras. Thus dimc(Pg) = 1. Note dimg(Pg,) = 1 as well.
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