
AUTOMORPHISMS OF QUANTUM POLYNOMIAL RINGS

AND DRINFELD HECKE ALGEBRAS
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Abstract. We consider quantum (skew) polynomial rings and observe that their graded
automorphisms coincide with those of quantum exterior algebras. This allows us to define
a quantum determinant giving a homomorphism of groups acting on quantum polynomial
rings. We use quantum subdeterminants to classify the resulting Drinfeld Hecke algebras for
the symmetric group, other infinite families of Coxeter and complex reflection groups, and
mystic reflection groups (which satisfy a version of the Shephard-Todd-Chevalley Theorem).
This direct combinatorial approach replaces the technology of Hochschild cohomology used
by Naidu and Witherspoon over fields of characteristic zero and allows us to extend some
of their results to fields of arbitrary characteristic and also locate new deformations of skew
group algebras.

1. Introduction

One challenge to investigating noncommutative rings remains some mystery surrounding
their automorphism groups. We consider here quantum polynomial rings, also sometimes
known as quantum symmetric algebras or skew polynomial rings. For a finite-dimensional
vector space V ∼= Fn over a field F, the noncommutative algebra SQ(V ) is generated by a basis
v1, . . . , vn of V with multiplication vjvi = qijvivj for some quantum scalars Q = {qij} ⊂ F
with qii = 1, qij = q−1ji . One may view SQ(V ) as the coordinate ring of the n-dimensional

quantum affine space. We take SQ(V ) as a graded algebra with deg vi = 1 for all i.
In the nonquantum setting, every graded automorphism of the commutative polynomial

ring S(V ) ∼= F[v1, . . . , vn] defines a general linear transformation of V and vice versa. This
fails in the noncommutative setting: Every graded automorphism of SQ(V ) defines an element
of GL(V ), but every not every element of GL(V ) extends to a graded automorphism. The
graded automorphisms of quantum polynomial rings have been classified in low dimension
(see [3] and [19]). Kirkman, Kuzmanovich, and Zhang [18] investigated finite groups of these
automorphisms satisfying a version of the Shephard-Todd-Chevalley Theorem. More recently,
Bao, He, and Zhang [5] showed a version of the Auslander Theorem for these groups. Related
investigations include [32], [10], [9], [8], [2], [4].

For a finite group G of graded automorphisms of a quantum polynomial ring SQ(V ),
deformations of the natural semidirect product algebra SQ(V ) o G (skew group algebra)
include quantum Drinfeld Hecke algebras. These analogs of graded affine Hecke algebras
and symplectic reflection algebras can be studied using Hochschild cohomology, but previous
results have depended on an extra hypothesis that the given group G act not only on SQ(V )
but also on the associated quantum exterior algebra

∧
Q(V ) (see [24], [27], [25], [31]). In
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addition, many computations in Hochschild cohomology have relied on the characteristic
char(F) of the underlying field not dividing |G|.

Thus one asks how the group Autgr(SQ(V )) of graded automorphisms of the quantum
polynomial ring compares with that of the associated quantum exterior algebra,∧

Q(V ) = F-span{vi1 ∧Q · · · ∧Q vim : 1 ≤ i1, · · · , im ≤ n},

with quantum exterior product vj ∧Q vi = −qij vi ∧Q vj . The classification of groups act-
ing on quantum polynomial rings in low dimension (see [19, Theorem 11.1]) implies that
Autgr(SQ(V )) = Autgr(

∧
Q(V )) for dimF V ≤ 3. Computer calculations using [15] and [23]

verify the same when dimF V = 4. We show a more general fact: For any set of quantum
scalars Q and any finite-dimensional F-vector space V ,

(1.1) Autgr
(∧

Q(V )
)

= Autgr
(
SQ(V )

)
.

We make no assumptions on the characteristic of F except that char(F) 6= 2. This result
implies that previous tools in characteristic 0 of [25] and [31] using Koszul resolutions to ex-
plore some Hochschild cohomology of skew group algebras apply to all finite groups of graded
automorphisms acting on SQ(V ); extra hypotheses that groups act on both the symmetric
and exterior quantum algebras are not needed.

Observation (1.1) also allows us to to define a quantum determinant that behaves in some
ways like the usual determinant for linear groups. For graded transformations acting on the
quantum exterior algebra by graded automorphisms, we verify that this quantum determinant
is simply the scalar by which the quantum volume form changes. As a direct corollary, we see
that this notion of quantum determinant defines a homomorphism of matrix groups acting on
quantum polynomial rings. (Note that this formulation of quantum determinant is defined
for any matrix with entries in F; it is not the notion usually employed for quantum matrices
alá Manin [22].)

As an application of these ideas, we explore deformations of SQ(V ) o G for G a finite
group of graded automorphisms that are modeled on Lusztig’s graded affine Hecke algebra
and symplectic reflection algebras. We classify quantum Drinfeld Hecke algebras (or “quan-
tum graded Hecke algebras”) for the infinite family of monomial reflection groups (including
infinite families of Coxeter groups and complex reflection groups) and mystic reflection groups
using techniques of [33]. We recover some results of Naidu and Witherspoon [25] over C for
dimF V ≥ 4 who used Hochschild cohomology. The advantage of our approach is 4-fold. First,
we bypass analysis of various cochain complexes in Hochschild cohomology. Second, we show
results hold even in the modular setting when char(F) divides |G|. (Note that those previous
calculations in Hochschild cohomology relied on char(F) = 0; the group algebra FG may not
be semi-simple in the modular setting.) Third, we classify algebras in the delicate setting
when dimF V = 3 (certain parameters are forced to vanish in higher dimension). Fourth, we
find new families of algebras when dimF V = 4 for the complex reflection groups G(r, r, 4).

Notation. We fix a vector space V ∼= Fn over a field F of characteristic not 2 throughout.
All algebras are associative F-algebras. We identify the identity 1F of the field with the group
identity 1G in any group ring FG. We use left superscripts to indicate the action of a group
G on a set S, writing s 7→ gs for g in G, s in S, to distinguish from the multiplication in
algebras containing FG. We also fix a set of quantum parameters Q := {qij}1≤i,j≤n with

qii = 1 and qji = q−1ij throughout.
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Outline. In Section 2, we highlight some conditions for a finite linear group G to act on a
quantum polynomial ring SQ(V ) and for G to act on the associated quantum exterior algebra∧
Q(V ). In Section 3, we show that a linear transformation acts as a graded automorphism of

SQ(V ) if and only if it acts as a graded automorphism of
∧
Q(V ). We introduce the quantum

sign and quantum determinant of a matrix in Section 4 and show how to use inversions to
simplify. We also show that this notion of quantum determinant is a homomorphism of groups
of graded automorphisms of quantum polynomial rings. We consider quantum Drinfeld Hecke
algebras in Section 5. In Sections 6 and 7, we classify these deformations for symmetric groups
and the infinite family of complex reflection groups G(r, p, n) (the Shephard-Todd family of
monomial groups) which include the Weyl groups of type Bn/Cn and Dn. We show how
to use cycle type to give quick combinatorial proofs for classification results of Naidu and
Witherspoon [25] and extend results to fields of characteristic not 2. We take up the mystic
reflection groups of Kirkman, Kuzmanovich, and Zhang [18] and Bazlov and Berenstein [7]
in Section 8. We end in Section 9 with a quick discussion of direct sums of groups.

2. Automorphisms of quantum polynomial rings and determinants

We recall conditions describing the graded automorphisms of a quantum (or skew) poly-
nomial ring. We fix throughout an F-basis v1, . . . , vn of V ∼= Fn and assume every matrix in
GLn(F) acting on V is written with respect to this basis. We also have fixed throughout a
quantum system of parameters (or a set of quantum scalars)

Q := {qij}1≤i,j≤n ⊂ F,

i.e., a set of nonzero scalars with qii = 1 and qji = q−1ij for all i, j.

Quantum polynomial rings. The quantum polynomial algebra (or skew polynomial ring)
SQ(V ) is the noncommutative F-algebra generated by v1, . . . , vn with relations vjvi = qijvivj
for all 1 ≤ i, j ≤ n:

SQ(V ) = F〈v1, . . . , vn〉/(vjvi − qijvivj : 1 ≤ i, j ≤ n).

Thus SQ(V ) ∼= TF(V )/(vj ⊗ vi − qijvi ⊗ vj : 1 ≤ i, j ≤ n) for TF(V ) the tensor algebra of
V over F. (We use the index convention of [18] and [19]). Note that the algebra SQ(V )
has the PBW property with respect to this presentation: SQ(V ) has F-vector space basis
{vm1

1 vm2
2 · · · vmnn : mi ∈ Z≥0}.

Groups acting as graded automorphisms. We view SQ(V ) as a graded algebra with
deg v = 1 for all v ∈ V . The set of graded automorphisms of SQ(V ) is

Autgr
(
SQ(V )

)
= {h ∈ GL(V ) : hvj

hvi = qij
hvi

hvj for 1 ≤ i, j ≤ n }.

Diagonal matrix groups on V always extend to an action by automorphisms on SQ(V ), but
many other group actions do not extend. When qij = −1 for all i 6= j any subgroup of
monomial matrices in GLn(F) acts as graded automorphisms on SQ(V ). Recall that a matrix
is monomial if each row and each column has exactly one nonzero entry. Groups of monomial
matrices are sometimes called permutation groups; they often take the form H o Sn for
some diagonal group H and the symmetric group Sn acting by permutation of basis vectors
v1, . . . , vn of V . In fact, we identify Sn with its permutation representation as n×n matrices:
π in Sn acts via vi 7→ vπ(i).
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The group Autgr(SQ(V )) has been determined for n = 1, 2, 3 (see [3] and [19]) and in some
other cases (see [1], [2], and [4]). For example, for n = 2,

(2.1) Autgr
(
SQ(F2)

)
=


GL2(F) for q12 = 1,

Diagonal Matrices ∼= (F∗)2 for q12 6= ±1,

Monomial Matrices ⊂ GL2(F) for q12 = −1.

The next lemma can be checked directly. Recall that Q = {qij} is fixed throughout.

Lemma 2.2. The automorphism group Autgr(SQ(V )) can unveil some quantum scalars:

• If some g ∈ Autgr(SQ(V )) has nonzero entries in the same row in columns i, j, then qij = 1.
• If Autgr(SQ(V )) contains Sn, then either qij = −1 for all i 6= j or else qij = 1 for all i, j.
• If Autgr(SQ(V )) contains Sn and a nonmonomial matrix, then qij = 1 for all i, j.

We give an example of a monomial and a non-monomial group acting.

Example 2.3. The group G =
〈
h =

(
0 1 0
1 0 0
0 0 ω

)〉
⊂ GL3(V ) for V = C3 and ω = e

2πi
3 ∈ C (see

Example 5.7) acts as graded automorphisms, for Q = {qij} with q13 = ω = q23, q12 = −1, on

SQ(V ) = C〈v1, v2, v3 : v2v1 = −v1v2, v3v1 = ω v1v3, v3v2 = ω v2v3〉 .

Example 2.4. The group G =
〈(−√1−η3 η2 0

η
√

1−η3 0
0 0 1

)〉
⊂ GL3(V ) for V = C3 and η =

e
2πi
5 ∈ C acts as graded automorphisms on SQ(V ) for Q = {qij} with q12 = 1, q13 = −1 = q23.

See Example 10.3.

Quantum minor determinant. We define the quantum minor determinant of a matrix
h = {hki }1≤k,i≤n in GLn(F) with h(vk) =

∑
i h

k
i vi (i.e., subscript denotes row) by

detijkl,Q(h) = hikh
j
l − qijh

i
lh
j
k .

We drop the subscript Q, writing detijkl for detijkl,Q, when no confusion should arise.
Straightforward computation verifies the next lemma; the one after is from [19].

Lemma 2.5. For any matrix h ∈ GLn(F),

detijkl(h)− qlk detijlk(h) = detlkji(h
t)− qij detlkij(h

t) .

Lemma 2.6. A matrix h ∈ GLn(F) acts on SQ(V ) if and only if

detijkl(h) = −qlk detijlk(h) for all h ∈ G and 1 ≤ i, j, k, l ≤ n .

Quantum exterior algebra. The quantum exterior algebra determined by Q is∧
Q

(V ) = F-span{vi1 ∧Q · · · ∧Q vim : 1 ≤ i1, . . . , im ≤ n}

with multiplication determined by vj ∧Q vi = −qij vi ∧Q vj for all i, j. Formally,∧
Q

(V ) ∼= TF(V )/(vj ⊗ vi + qij vi ⊗ vj : 1 ≤ i, j ≤ n) ,

and we consider
∧
Q(V ) as a graded algebra with deg vi = 1 for each i. Note that vi∧Q vi = 0

as char(F) 6= 2. The set of graded automorphisms of
∧
Q(V ) is

Autgr
(∧

Q(V )
)

= {h ∈ GL(V ) : hvj ∧Q hvi = −qij hvi ∧Q hvj for 1 ≤ i, j ≤ n }.
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A quantum 2-form is an element of
∧2
Q V

∗ ∼= (
∧2
Q−1 V )∗ for Q−1 = {q−1ij }, i.e., a function

θ : V ⊗ V → F which is anti-quantum-linear:

(2.7) θ(vj ⊗ vi) = −qji θ(vi ⊗ vj) for all i, j .

Remark 2.8. One might ask if opposite quantum scalars are helpful in comparing automor-
phisms of quantum polynomial versus exterior rings. Generally they are not as often

Autgr
(
SQ′(V )

)
6⊂ Autgr

(∧
Q(V )

)
or Autgr

(∧
Q(V )

)
6⊂ Autgr

(
SQ′(V )

)
for Q′ = {q′ij} with q′ij = −qij for i 6= j and q′ii = 1. For example, take n = 2: If q12 = −1,

every subgroup of GL(V ) acts on SQ′(V ), but only monomial groups act on
∧
Q(V ) as graded

automorphisms; if q12 = 1, then any group of linear transformations acts on both SQ(V ) and∧
Q(V ) as graded automorphisms, but only monomial groups act on SQ′(V ).

3. Actions on the quantum polynomial ring versus exterior algebra

Connections between quantum Drinfeld Hecke algebras and Hochschild cohomology have
thus far required a hypothesis that the finite subgroup G of GL(V ) act on both the quantum
polynomial ring SQ(V ) and the quantum exterior algebra

∧
Q(V ) as graded automorphisms.

(This assumption is sometimes implicit.) We develop some conditions for a group to act on
both SQ(V ) and

∧
Q(V ) as graded automorphisms in this section. By the classification [19,

Theorem 11.1] and these conditions, we observe that any element of GL3(F) acting as a
graded automorphism on SQ(V ) also acts as a graded automorphism on

∧
Q(V ), and vice

versa. We show in this section that this observation holds in arbitrary dimension.
We rephrase and coalesce some conditions from [19] (as a subscript Q′ was omitted in

Corollaries 3.3 and 9.1 and Corollary 9.2(i) contained a typo).

Lemma 3.1. A matrix in GLn(F) acts as an automorphism on SQ(V ) if and only if its
transpose acts as an automorphism on

∧
Q(V ).

Proof. By Lemma 2.6 (with indices exchanged), we need only show that h in GL(V ) acts on∧
Q(V ) exactly when

(3.2) detklji,Q(ht) = −qij detklij,Q(ht) for all 1 ≤ i, j, k, l ≤ n .

For fixed i 6= j, we expand hvj ∧Q hvi + qij
hvi ∧Q hvj as∑

k,l

hjkh
i
l vk ∧Q vl + qij

∑
k,l

hik h
j
l vk ∧Q vl =

∑
k,l

(hjkh
i
l + qijh

i
kh

j
l ) vk ∧Q vl.

Since
∑

k>l(h
j
kh

i
l + qijh

i
kh

j
l ) vk ∧Q vl =

∑
k<l−qkl (hjlh

i
k + qijh

i
lh
j
k) vk ∧Q vl , this is just∑

k<l

(
detklji,Q(ht) + qijdetklij,Q(ht)

)
vk ∧Q vl +

∑
k

(hjkh
i
k + qij h

i
kh

j
k) vk ∧Q vk .

As the second sum lies in the ideal of relations defining
∧
Q(V ), the element h acts on

∧
Q(V )

if and only if the first sum vanishes, giving Eq. (3.2) for k < l. The result follows, as Eq. (3.2)
holds for k = l as well. �
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The next lemma gives a necessary and sufficient condition for a transformation in GLn(F)
to act as a graded automorphism on both the quantum polynomial ring SQ(V ) and the exterior
algebra

∧
Q(V ): For any pair of nonzero entries in the matrix, the quantum scalar tracking

the rows must coincide with the quantum scalar tracking the columns (see part (c)). Note
that we require this stronger version of [25, Lemma 4.3] for Theorem 3.6 and the next section.

Lemma 3.3. The following are equivalent for any h ∈ GLn(F):

(a) h acts as a graded automorphisms on both SQ(V ) and on
∧
Q(V );

(b) for all 1 ≤ i, j, k, l ≤ n, detijkl(h) = detlkji(h
t) ;

(c) for all 1 ≤ i, j, k, l ≤ n, either qij = qlk or hilh
j
k = 0 .

Proof. We use Lemmas 2.5, 2.6, and 3.1. Condition (a) implies that for all i, j, k, l

detijkl,Q(h) = −qlk detijlk,Q(h) and detijkl,Q(ht) = −qlk detijlk(h
t) .

We rewrite the second equation after exchanging i and l and exchanging j and k:

(ht)lj(h
t)ki − qlk(ht)li(ht)kj = −qij

(
(ht)li(h

t)kj − qlk(ht)lj(ht)ki
)
.

Condition (a) thus implies that for all i, j, k, l

hikh
j
l − qijh

i
lh
j
k + qlkh

i
lh
j
k − qlkqijh

i
kh

j
l = 0 = hjlh

i
k − qlkhilh

j
k + qijh

i
lh
j
k − qijqlkh

j
lh
i
k ,

and Condition (c) follows from adding the expression on the left to that on the right (as
char(F) 6= 2). Notice that Conditions (c) and (b) are equivalent since the vanishing of

(1− qlkqij)hikh
j
l is equivalent (again, as char(F) 6= 2) to that of

hikh
j
l + (−qijhilh

j
k + qijh

i
lh
j
k)− qlkqijh

i
kh

j
l = detijkl,Q(h) + qijdetlkij(h

t)

= detijkl,Q(h) + qij(−qji)detlkji(h
t) = detijkl,Q(h)− detlkji(h

t) .

Finally, Condition (c) implies that h acts on SQ(V ) as it compels the vanishing of

detijkl(h) + qlkdetijlk(h) = hikh
j
l − qijh

i
lh
j
k + qlkh

i
lh
j
k − qlkqijh

i
kh

j
l

= hikh
j
l (1− qijqlk) + (qlk − qij)hilh

j
k

and also that h acts on
∧
Q(V ) as it compels the vanishing of

detijkl(h
t) + qlkdetijlk(h

t) = (ht)ik(h
t)jl − qij(h

t)il(h
t)jk + qlk(h

t)il(h
t)jk − qlkqij(h

t)ik(h
t)jl

= hki h
l
j − qijhlihkj + qlkh

l
ih
k
j − qlkqijhki hlj

= (1− qlkqij)hki hlj + (qlk − qij)hlihkj .
�

Remark 3.4. For any group G of monomial matrices, G ⊂ Autgr(SQ(V )) implies that
G ⊂ Autgr(

∧
Q(V )) by Lemma 3.3. Indeed, if h = {hij} in GLn(F) is monomial with

hilh
j
k 6= 0, then qij = qlk since

qij h
i
lh
j
k vlvk = qij

h(vivj) = h(vjvi) = hilh
j
k vkvl = qlk h

i
lh
j
k vlvk .

We generalize this fact to arbitrary groups in Corollary 3.7.

Lemmas 2.6 and 3.1 with k = ` imply the next observation (as char(F) 6= 2).
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Lemma 3.5. If h ∈ Autgr(
∧
Q(V )) is nonmonomial, then qij = 1 for any pair of rows i, j

of h with nonzero entries in the same column.

We have been unable to find an easy argument for showing the next theorem. The proof
relies on a series of careful reductions.

Theorem 3.6. Any element of GL(V ) that acts on
∧
Q(V ) as a graded automorphism also

acts on SQ(V ) as a graded automorphism:

Autgr
(∧

Q(V )
)
⊂ Autgr

(
SQ(V )

)
.

Proof. Say h in GLn(F) is a graded automorphism of
∧
Q(V ). For any pair of nonzero entries

in the matrix h, we use Lemma 3.3 and verify that the quantum scalar tracking the rows
coincides with quantum scalar tracking the columns: We fix a pair of columns `, k and pair of
rows i, j of h such that h`ih

k
j 6= 0 and show that qij = q`k by chasing nonmonomial submatrices

in h and their corresponding quantum scalars.
First notice that if k = `, then h contains a column with nonzero entries in rows i and j

implying that qij = 1 = qkk = q`k by Lemma 3.5 for i 6= j. (If i = j, then qij = 1 = q`k.)
Thus we may assume k 6= `.

Now let M be the submatrix of h with columns ` and k and rows i and j (not necessarily
distinct). We argue that we may assume the entries of M are all nonzero and that qij = 1.

If i = j, then h`i and hki = hkj are both nonzero (as h`ih
k
j 6= 0) and qij = qii = 1. If i 6= j and

an entry of M is zero, then by Lemmas 2.6 and 3.1

h`ih
k
j = h`ih

k
j − qijhki h`j = detij`k(h

t) = −qk` detijk`(h
t)

= −qk` (hki h
`
j − qijh`ihkj ) = qk`qij h

`
ih
k
j

implying that qij = q`k. So for i 6= j, we may assume the entries of M are all nonzero, and
Lemma 3.5 implies that qij = 1 in this case as well.

The submatrix M may not be invertible, but we may replace M by an invertible 2 × 2
submatrix M ′ of h by replacing the row j by some row j′ of h since h is invertible. (Note
that if j = i, then j′ 6= i.) Then qij′ = 1 by Lemma 3.5 as the two entries in row j′ of M ′ can
not both vanish. As qij′ = 1, Lemmas 2.6 and 3.1 (with j′ instead of j) then implies that

detM ′ = detij′`k(h
t) = (−qk`) detij′k`(h

t) = (−qk`) (−detM ′) = qk` detM ′,

and qk` = 1 = qji since detM ′ 6= 0, concluding the proof.
�

Theorem 3.6 together with Lemma 3.1 implies

Corollary 3.7. An element of GL(V ) acts on SQ(V ) as a graded automorphism if and only
if it acts on

∧
Q(V ) as a graded automorphism:

Autgr
(∧

Q(V )
)

= Autgr
(
SQ(V )

)
.

Corollary 3.7 and Lemmas 3.1 and 3.5 imply

Corollary 3.8. Suppose a nonmomial matrix in GLn(F) acts on
∧
Q(V ) or SQ(V ) as a

graded automorphism. Then qij = 1 for any pair of columns i, j with nonzero entries in the
same row and for any pair of rows i, j with nonzero entries in the same column.



8 A.V. SHEPLER AND C. UHL

Remark 3.9. Theorem 4.2 of [31] assumes that the finite group G acts on both SQ(V ) and
on
∧
Q(V ) as graded automorphisms (this assumption is implicit in Section 4). Corollary 3.7

implies that Theorem 4.2 of [31] holds for all groups acting on SQ(V ).

Recall that the Hochschild cohomology of an algebra A is its cohomology as a bimodule
over itself, HH

r
(A) = HH

r
A⊗Aop(A,A). Corollary 3.7 and [25, Theorem 4.4] imply

Corollary 3.10. Suppose char(F) = 0 and that G ⊂ GLn(F) is a finite group acting by
automorphisms on SQ(V ). Then each constant Hochschild 2-cocycle on SQ(V )oG gives rise
to a quantum Drinfeld Hecke algebra.

4. A Quantum Determinant

We define a quantum determinant in this section and show it defines a homomorphism
of groups acting by graded automorphisms on quantum polynomial rings. This notion of
quantum determinant differs from that for quantum matrices (see [16], [11], [22]).

Quantum sign and determinant. We use the action of the symmetric group Sn on the
basis v1, . . . , vn of V by permutation of indices to define the quantum sign, even when Sn 6⊂
Autgr(

∧
Q(V ) under this action. Recall the inversion set of a permutation, Inv(σ) = {(i, j) :

i < j but σ(i) > σ(j)}.

Definition 4.1. Define the quantum sign or Q-sign of a permutation σ in Sn as

sgnQ(σ) = sgn(σ)
∏

(i,j)∈ Inv(σ)

qσ(j)σ(i) = sgn(σ)
∏

(i,j)∈ Inv(σ−1)

qij .

Define the quantum determinant for any h ∈ GLn(F) as the scalar

detQ(h) =
∑
σ∈Sn

sgnQ(σ) h1σ(1)h
2
σ(2) · · · h

n
σ(n) ∈ F .

For example, sgnQ

(
(1 2 3)(4 5)

)
= −q12 q13 q45. For n = 3 and h = {hij} in GL3(F), the

quantum determinant detQ(h) is

h11h
2
2h

3
3 + q13q12 h

1
2h

2
3h

3
1 + q13q23 h

1
3h

2
1h

3
2 − q23 h11h23h32 − q12 h12h21h33 − q12q23q13 h13h22h31 .

Recall that sgn(σ) = (−1)|Inv(σ)| and that σ can be factored into the product over all (i, j)
in Inv(σ) of transpositions (i j).

Quantum determinant as a homomorphism. One may check directly that the quantum
determinant detQ gives the scalar by which an automorphism of

∧
Q(V ) acts on the quantum

volume form:

Lemma 4.2. For any permutation σ in Sn,

vσ(1) ∧Q · · · ∧Q vσ(n) = sgnQ(σ) v1 ∧Q · · · ∧Q vn and sgnQ(σ) = detQ(σ) .

Furthermore, for all h in Autgr(
∧
Q V ),

h(v1 ∧Q · · · ∧Q vn) = detQ(h) v1 ∧Q · · · ∧Q vn .

Corollary 4.3. The quantum determinant detQ is a group homomorphism on Autgr(SQ(V )):

detQ(gh) = detQ(g) detQ(h) for all g, h in Autgr(SQ(V )) .
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Proof. By Corollary 3.7 and Lemma 4.2,

detQ(gh)(v1 ∧Q · · · ∧Q vn) = gh(v1 ∧Q · · · ∧Q vn) = g
(
h(v1 ∧Q · · · ∧Q vn)

)
= g

(
detQ(h)(v1 ∧Q · · · ∧Q vn)

)
= detQ(h) g(v1 ∧Q · · · ∧Q vn)

= detQ(h) detQ(g) v1 ∧Q · · · ∧Q vn . �

Note that the quantum determinant detQ is not a group homomorphism on other groups.
For example, when G = S3 and q13 6= q23, G 6⊂ Autgr(SQ(V )), and

detQ((1 2)(2 3)) = q12 q13 6= q12 q23 = detQ((1 2)) detQ((2 3)) .

Remark 4.4. Graded automorphisms of SQ(V ) have nonzero quantum determinants: If
h ∈ Autgr(SQ(V )), then Corollary 4.3 implies that

1 = detQ(1V ) = detQ(hh−1) = detQ(h) detQ(h−1) .

The converse is false of course. Indeed, the matrix h =
(

1 1
−1 1

)
doesn’t act on SQ(V ) as a

graded automorphism when q12 6= 1 although detQ(h) 6= 0.

Remark 4.5. One asks how Autgr(SQ(V )) overlaps with the quantum-special linear group,

SLn,Q(F) = {g ∈ GLn(F) : detQ(g) = 1}.
For n = 2 with q12 = q,

SLn,Q(F) ∩Autgr(SQ(V )) =


SL2(F) for q = 1,

{Diag(a, b) : ab = 1} ∪ {AntiDiag(a, b) : ab = 1} for q = −1,

{Diag(a, b) : ab = 1} for q 6= ±1 .

Remark 4.6. When the classical Shephard-Todd complex reflection group G(r, r, n) acts as
graded automorphisms on a nontrivial SQ(V ), then necessarily every qij = −1 for i 6= j by
Lemma 2.2 and all group elements have quantum determinant 1 (one may use Corollary 4.3):

G(r, r, n) ⊂ SLn,Q(F) .

Note that any g in the mystic reflection group M(n, 1, β) (see 9.1) has detQ(g) = ±1.

A simplification of the quantum determinant. We give a simplification of the quantum
determinant for matrices that act as graded automorphisms on a quantum polynomial ring.
This simplification implies a version of the familiar down-up rule for determinants of 3 × 3
matrices.

For an odd cycle π in the symmetric group Sn of order |π|, we define a set of quantum
parameters that records certain elements of the cycle paired together with their “halfway
partners”:

Qπ = {qab : (a, b) ∈ Inv(π) and (a b) appears in the disjoint cycle decomposition of π|π|/2}.
E.g., if π = (1 11 9 2 5 7 4 8), then |π| = 8, π4 = (1 5)(11 7)(9 4)(2 8), and Qπ = {q15, q49, q28}
as (7, 11) 6∈ Inv(π). (Note that |π| is always even since π is an odd cycle.)

In the next proposition, we take a product over the odd cycles π of a permutation σ, i.e.,
all the odd cycles π appearing in a decomposition of σ into the product of disjoint cycles.
For example, if σ = (1 11 9 2 5 7 4 8)(3 6)(10 12 13), then in the statement, we may choose
cσ = q15q36 or cσ = q49q36 or cσ = q28q36.
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Proposition 4.7. The quantum determinant simplifies as

detQ(h) =
∑
σ∈Sn

sgn(σ) cσ h
1
σ(1) · · · h

n
σ(n) for all h ∈ Autgr(SQ(V )),

where
cσ =

∏
odd cycles π of σ

qπ ∈ F

for any choice of element qπ in Qπ.

Proof. Fix a permutation σ 6= 1 in Sn. Lemma 3.3(c) implies that

(4.8) qij h
1
σ(1) · · · h

n
σ(n) = qσ(i)σ(j) h

1
σ(1) · · · h

n
σ(n) for i 6= j.

We use this key observation to cancel factors of qij appearing in the quantum determinant.
Indeed, in the coefficient of the σ-summand of detQ(h) (see Definition 4.1),

sgnQ(σ) = sgn(σ)
∏

(i,j)∈ Inv(σ)

qσ(j)σ(i) ,

a factor qij cancels with qσ(j)σ(i) = q−1σ(i)σ(j) provided both (i, j) and (σ(j), σ(i)) lie in Inv(σ).

In order to pair and cancel factors appropriately, we consider the orbits O of σ acting diag-
onally on the set of ordered pairs P = {(i, j) : i 6= j} and the swap bijection τ : P → P ,
(i, j) 7→ (j, i), noting that Inv(σ) is the disjoint union over orbits O of the sets O ∩ Inv(σ).

Fix an orbit O ⊂ P with O ∩ Inv(σ) 6= ∅. Say (i, j) lies in O ∩ Inv(σ) and consider any
(a, b) in τ(O) ∩ Inv(σ). Then (b, a) lies in O and hence (b, a) = (σk(i), σk(j)) for some k.
Thus

qab h
1
σ(1) · · · h

n
σ(n) = q−1ba h1σ(1) · · · h

n
σ(n) = q−1

σk(i)σk(j)
h1σ(1) · · · h

n
σ(n) = q−1ij h1σ(1) · · · h

n
σ(n)

by Eq. (4.8), and hence

(4.9) qijqab h
1
σ(1) · · · h

n
σ(n) = h1σ(1) · · · h

n
σ(n) .

Hence we investigate how the elements of O ∩ Inv(σ) may be paired with the elements of
τ(O) ∩ Inv(σ) in order to simplify the formula for detQ(h). Note that the set τ(O) is again
an orbit, and hence either O = τ(O) or O ∩ τ(O) = ∅.

First suppose O ∩ τ(O) = ∅. It is not difficult to see that the sets O ∩ Inv(σ) and
τ(O) ∩ Inv(σ) are in bijection, so each element of O ∩ Inv(σ) may be paired with a unique
element of τ(O)∩ Inv(σ) in the factorization of sgnQ(σ). This implies that O and τ(O) taken

together contribute no quantum scalars to the σ-summand sgnQ(σ)h1σ(1) · · · h
n
σ(n) of detQ(h)

after simplifying by Eq. (4.9). Indeed, one may define a bijection

O ∩ Inv(σ)→ τ(O) ∩ Inv(σ),

for example, by (i, j) 7→ (σm(j), σm(i)) where 0 < m < |σ| is the minimal integer such that
(σm(j), σm(i)) lies in Inv(σ).

Now suppose O = τ(O). Then there is a unique cycle π in a decomposition of σ into the
product of disjoint cycles that does not fix any entry of any element in O. We claim that π
has even length ` and that

O = {(i, j) : i, j are not fixed by π and j = π`/2(i)} .
Consider some (i, j) in O = τ(O). Then i and j both appear in the cycle π, i.e., are not fixed
by π, and (i, j) = (σk(j), σk(i)) for some k > 0, say minimal. Then π must have even length
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2k (since π = (i a1 · · · ak−1 j ak+1 · · · a2k−1) for some am). Conversely, if (i, j) lies in the
given set, then (i, j) lies in O and O has the description claimed.

We argue that the set O ∩ Inv(σ) = O ∩ Inv(π) has odd size. By Eq. (4.9), this implies
(as O = τ(O)) that all but one of the elements of O ∩ Inv(σ) may be paired so as to avoid
contributing any quantum scalars to sgnQ(σ) in the formula for detQ(h). Furthermore, by
Eq. (4.8), it does not matter which lone element of this set contributes a quantum scalar to
sgnQ(σ) in the formula, and we obtain the advertised description of the quantum determinant.

To see that O ∩ Inv(π) has odd size, first note that | Inv(π)| is odd because π is an odd
permutation. The set Inv(π) is the disjoint union of the sets O′∩ Inv(π) over all the orbits O′

of the group 〈π〉 acting on the set P . Replacing σ by π throughout the above arguments, we
see that if O′ is an orbit with O′ ∩ τ(O′) = ∅, then there is a bijection between (O′ ∩ Inv(π))
and (τ(O′) ∩ Inv(π)) and hence the two orbits O′ and τ(O′) together contribute an even
number of elements to Inv(π). In addition, the arguments above for π in place of σ show
there is exactly one orbit O′ under the action of π with O′ = τ(O′) (since π itself is a single
cycle of even length) and O′ = O. Hence the parity of | Inv(π)| is that of |O ∩ Inv(π)| and
thus |O ∩ Inv(π)| must also be odd.

�

Proposition 4.7 implies a simplification of the down-up diagonal-antidiagonal pattern for
computing determinants of 3× 3 matrices. Recall that a matrix lies in Autgr(SQ(V )) if and
only if it lies in Autgr(

∧
Q(V )) (Corollary 3.7).

Corollary 4.10. For n = 3, if h = {hij} ∈ GL3(F) lies in Autgr(SQ(V )), then

detQ(h) = h11h
2
2h

3
3 + h12h

2
3h

3
1 + h13h

2
1h

3
2 − q23 h11h23h32 − q12 h12h21h33 − q13 h13h22h31 .

Figure 1. Quantum determinant of a graded automorphism in dimension 3

a b c a b

1 1 1 −q13 −q23 −q12

d e f d e

g h i g h

5. quantum Drinfeld Hecke algebras

We now turn to quantum Drinfeld Hecke algebras and fix a finite group G ⊂ GLn(F)
acting on V ∼= Fn. Recall that if G acts on an F-algebra A by automorphisms (for example,
the quantum symmetric algebra A = SQ(V ) or the tensor algebra A = TF(V )), the natural
semidirect product algebra AoG is the F-vector space A⊗F FG with multiplication

(a⊗ g)(b⊗ h) = a gb⊗ gh for a, b ∈ A and g, h ∈ G.

This algebra is alternatively often called the skew group algebra or smash product algebra
(written A#G). We identify AoG with the F-algebra generated by A and FG with relations
g a = ga g for all a ∈ A and g ∈ G by suppressing tensor signs, a⊗ g = ag.
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Parameter functions. We view TF(V ) o G as a graded algebra after assigning group ele-
ments in G degree 0 and vectors in V degree 1. We consider a quotient by relations that lower
the degree of q-commutators vjvi−qijvivj recorded by a parameter function κ : V ⊗V → FG.
We abbreviate κ(v, w) = κ(v ⊗ w) for ease with notation throughout.

Quantum Drinfeld orbifold algebras. Given the quantum system of parameters Q and
a linear parameter function κ : V ⊗ V → FG, we define the F-algebra

HQ,κ := (T (V ) oG)/
(
vjvi − qijvivj − κ(vi, vj) : 1 ≤ i, j ≤ n

)
.

We say HQ,κ is a quantum Drinfeld Hecke algebra if it satisfies the PBW property, i.e., if

{vm1
1 vm2

2 · · · v
mn
n g : mi ∈ Z≥0, g ∈ G}

is a basis for HQ,κ as an F-vector space. This is equivalent to HQ,κ defining a graded defor-
mation of SQ(V )oG. For related work, see Jing and Zhang [17], Shakalli [27], Levandovskyy
and Shepler [19], Shroff and Witherspoon [31], and Naidu and Witherspoon [25].

Remark 5.1. The PBW algebras HQ,κ include the braided Cherednik algebras of Bazlov and
Berenstein [7]. In the special case that qij = 1 for all i, j, they also include Lusztig’s graded
Hecke algebras [20, 21], the symplectic reflection algebras explored by Etingof and Ginzburg
[14], the Drinfeld Hecke algebras of [13], and the noncommutative deformations of Kleinian
singularities studied by Crawley-Boevey and Holland [12].

Support of parameter. For any parameter κ : V ⊗ V → FG, we fix linear functions
κg : V ⊗ V → F for g in G decomposing κ as

(5.2) κ(vi, vj) =
∑
g∈G

κg(vi, vj) g for 1 ≤ i, j ≤ n.

We say κ is supported on a subset of group elements S ⊂ G if κg ≡ 0 for all g /∈ S.

Group action on parameters. A group G acts on any parameter function κ : V ⊗V → FG
in the standard way, where G acts on FG by conjugation:

( gκ)(u, v) = g
(
κ( g

−1
u, g

−1
v)
)

for g in G .

PBW conditions. We recall necessary and sufficient conditions for HQ,κ to satisfy the PBW
property. The following strengthens a theorem of Levandovskyy and Shepler [19]. A version
appears in [30] and [31] with the extra (implicit) hypothesis that G acts on both SQ(V ) and on∧
Q(V ); we give a quick proof showing how Corollary 3.7 is used. Recall that κ is a quantum

2-form when κ(vj , vi) = −qji κ(vi, vj) for all i, j (see Eq. (2.7)).

Theorem 5.3. Let G be a finite subgroup of GLn(F). The algebra HQ,κ satisfies the PBW
property if and only if

(1) G acts by graded automorphisms on SQ(V ),
(2) κ : V ⊗ V → FG is a quantum 2-form,
(3) the quantum Jacobi identity holds for all 1 ≤ i < j < k ≤ n and g in G,

0 =
∑

σ∈Alt3

κg(vσ(i), vσ(j))
(
qσ(j)σ(k)

gvσ(k) − qσ(k)σ(i) vσ(k)
)
,

(4) κ is G-invariant.
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Proof. By [19, Theorem 7.6], we need only check that Condition (4) is equivalent to

(5.4) κh−1gh(vi, vj) =
∑

1≤k<l≤n
detijkl(h) κg(vk, vl) for all g, h ∈ G and 1 ≤ i < j ≤ n,

assuming Conditions (1), (2), (3) already hold. As κ is bilinear, straightforward calculation
(as in the proof of [19, Lemma 3.2]) using Eq. (2.7) confirms that κ is invariant exactly when

κh−1gh( vi, vj) = κg(
hvi,

hvj) =
∑
k<l

detlkji(h
t) κg(vk, vl) for all g, h ∈ G and i 6= j.

But this is just Eq. (5.4) since detlkji(h
t) = detijkl(h) by Lemma 3.3 and Corollary 3.7. �

Parameter space. A parameter κ is admissible if it defines a quantum Drinfeld Hecke
algebra HQ,κ, i.e., defines a PBW algebra (see [13]). Note that any linear combination of
admissible parameters is again admissible (see Theorem 5.3). We call the F-vector space

P = PG = {κ ∈ Hom F(V ⊗ V, FG) : κ is admissible}
of all admissible parameters the parameter space of quantum Drinfeld Hecke algebras. We
denote its dimension by dimF P = dimF(PG) for a specific finite group G (with fixed Q).

By Theorem 5.3 (see Eq. (5.4)), we can write any parameter κ ∈ Hom F(V ⊗V,FG) as the
sum over the conjugacy classes C of G of parameter functions κC , each supported only on C:

κ =
∑

conj. classes C

κC with κC(v, w) =
∑
g∈C

κg(v, w) g for v, w ∈ V.

By Theorem 5.3, κ is admissible exactly when each κC is admissible. Thus to find the
dimension of PG, we need only find the dimension of admissible parameters κ supported on
a fixed conjugacy class C and then add over all conjugacy classes C of G:

(5.5) dimF P =
∑

conj. classes C

dimF{κ ∈ Hom F(V ⊗ V,FG) : κg ≡ 0 for g /∈ C, κ admissible}.

Basis matters. Bilinearity of the parameter κ plays no role here; we only ever evaluate κ
on the given basis, as another choice of basis for V may define a non-isomorphic algebra.
Consider a linear action of the Klein 4-group on C3 with two parameters worth of nontrivial
quantum Drinfeld Hecke algebras using one basis of C3 but none using another: Set

G =
〈(−1

−1
−1

)
,
(−1

1
1

)〉
and G′ =

〈(−1
−1

1

)
,
(−1

1
−1

)〉
.

Here, G and G′ give equivalent representations but dimF(PG) = 2 when q23 = −1 and
q12q13 = ±1, whereas dimF(PG′) = 0 for all choices of Q.

Examples. We end this section with a few examples.

Example 5.6. Consider the symmetric group G = S2 acting on V = F2 by permuting basis
elements x, y. Then G acts on SQ(V ) = FQ[x, y]/(xy + yx) for q12 = −1. For any a, b in F,
the F-algebra HQ,κ generated by symbols g, x, y (for g the transposition) with relations

g2 = 1, gx = yg, gy = xg, xy = −yx+ a+ bg

exhibits the PBW property and is a quantum Drinfeld Hecke algebra. Notice that the pa-
rameter function κ : V ⊗ V → FG is defined by κ(x, y) = a+ bg.
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Example 5.7. Recall the monomial group G and quantum scalars Q from Example 2.3.
Every quantum Drinfeld Hecke algebra HQ,κ is generated by v1, v2, v3 and h with relations

h6 = 1, hv1 = v2h, hv2 = v1h, hv3 = ω v3h,

v2v1 = −v1v2 +m1h+m2h
4, v3v1 = ω v1v3, and v3v2 = ω v2v3,

for some parameters m1,m2 ∈ C. Hence dimC(PG) = 2.

Example 5.8. Consider the monomial group G ⊂ GL(V ) generated by g =

(
0 1

2
0

0 0 1
2

4 0 0

)
for

V = C3. When qij = −1 for i 6= j, dimF(PG) = 3: Each quantum Drinfeld Hecke algebra
HQ,κ is generated by v1, v2, v3 and CG with relations gvi = gvig for all i and these relations
given by parameters m1,m2,m3 ∈ C:

v3v2 = −v2v3 +m1 +m2g +m3g
2,

v2v1 = −v1v2 + 4m1 + 4m2g + 4m3g
2,

v3v1 = −v1v3 + 2m1 + 2m2g + 2m3g
2.

6. Some combinatorial lemmas

Before any classification results, we first collect some preliminary observations giving com-
binatorial ways to investigate quantum Drinfeld Hecke algebras. We will use these results to
classify algebras for the symmetric group acting by permutation matrices, the infinite family
of complex reflection groups G(r, p, n), and the mystic reflection groups in later sections.
Every monomial matrix g can be written as the product dσ of a diagonal matrix d and a
permutation matrix σ in the symmetric group Sn. If σ defines a k-cycle in Sn, we say that
g has k-cycle type σ. When σ is the product of two disjoint transpositions, we say g is the
product of two disjoint 2-cycle type elements. The next lemma explains why we are primarily
interested in 2-cycle and 3-cycle types. We use some ideas from [33].

Lemma 6.1. Say n ≥ 3 and G ⊂ GLn(F) is a monomial matrix group. If HQ,κ is a quantum
Drinfeld Hecke algebra, then for any g in G, κg 6≡ 0 implies

• g is diagonal, or
• g has 2-cycle or 3-cycle type, or
• g is the product of two disjoint 2-cycle type elements.

Proof. Say g is not diagonal and write g = dσ as above with d diagonal and σ 6= 1 a
permutation. For i 6= j, we may judiciously choose k /∈ {i, j} with σ(k) not in {i, j, k}
in Theorem 5.3(3) to force κg(vi, vj) ≡ 0 except when σ is a 2-cycle, 3-cycle, or product of
two disjoint 2-cycles. �

Notice that when qij = −1 for all i 6= j, detijkl(g) = detijlk(g) = detjikl(g) = detjilk(g) for
any matrix g. In fact, one may verify the next two lemmas directly.

Lemma 6.2. Let G ⊂ GLn(F) be a monomial group and qij = −1 for all i 6= j. Then for all
g, h in G, if detijkl(g · h) 6= 0, there exists a unique pair 1 ≤ a < b ≤ n with

detijkl(gh) = detijab(h) · detabkl(g).

And for any pair a < b, the product detijab(h) · detabkl(g) either is zero or is detijkl(gh).
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Lemma 6.3. Let G ⊂ GLn(F) be a monomial matrix group and qij = −1 for all i 6= j. To
check Eq. (5.4), it suffices to consider g in a set of conjugacy class representatives.

Proof. Assume Eq. (5.4) holds for a fixed g. Say g′ = z−1gz for some z in G and fix h in G
and i 6= j. As G is monomial, there is a unique pair a < b with detijab(zh) 6= 0 and

κh−1g′h(vi, vj) = κ(zh)−1g(zh)(vi, vj) = detijab(zh) κg(va, vb) .

There is also a unique pair c < d so that 0 6= detijab(zh) = detijcd(h) detcdab(z) (by
Lemma 6.2). Then a < b is the unique pair for c < d with detcdab(z) 6= 0, and hence
the last display gives

detijcd(h) detcdab(z) κg(va, vb) = detijcd(h) κz−1gz(vc, vd) = detijcd(h) κg′(vc, vd).

Also c < d is the unique pair for i 6= j with detijcd(h) 6= 0, so Eq. (5.4) holds with g′ in place
of g, i.e., κh−1g′h(vi, vj) =

∑
k<l detijkl(h) κg′(vk, vl). �

We will use the next technical lemma for the infinite family of Shephard-Todd groups
G(r, p, n) in Section 8 and the mystic reflection groups in Section 9. We denote the centralizer
of each g in G by CG(g).

Lemma 6.4. Let G ⊂ GLn(F), n ≥ 3, be a finite monomial group with qij = −1 for
i 6= j containing the 3-cycle g = (1 2 3). Suppose that the centralizer CG(g) is a subgroup of
〈g, g · (−I)〉 upon restriction of each group to V ′ = Fv1+Fv2+Fv3. Then there is a nontrivial
quantum Drinfeld Hecke algebra HQ,κ with κ : V ⊗V → FG supported on the conjugacy class
of g. In fact, for any quantum Drinfeld Hecke algebra and any i 6= j, κg(vi, vj) = κg(v1, v2)
for i, j distinct in {1, 2, 3} and κg(vi, vj) = 0 otherwise.

Proof. For 0 6= m ∈ F, define a quantum 2-form κ supported on the conjugacy class of g by
setting κg(vi, vj) = 0 for i or j 6∈ {1, 2, 3}, κg(v1, v2) = κg(v2, v3) = κg(v3, v1) = m, and

κh−1gh(vi, vj) =
∑
k<l

detijkl(h) κg(vk, vl) for 1 ≤ i < j ≤ n, h ∈ G .

We argue that κh−1gh is well-defined. Say h−1gh = z−1gz and i < j. On one hand, there is
a unique pair a < b (since G is monomial) with detijab(h) 6= 0, and

κh−1gh(vi, vj) :=
∑
k<l

detijkl(h) κg(vk, vl) = detijab(h) κg(va, vb).

On the other hand, there is a unique pair c < d with detijcd(z) 6= 0, and

κz−1gz(vi, vj) :=
∑
k<l

detijkl(z) κg(vk, vl) = detijcd(z) κg(vc, vd).

We show

(6.5) detijab(h) κg(va, vb) = detijcd(z) κg(vc, vd).

Since G is monomial, Lemma 6.2 implies that

(6.6) detabcd(zh
−1) = detabij(h

−1) detijcd(z) = (detijab(h))−1 detijcd(z) 6= 0

and {a, b} ⊂ {1, 2, 3} exactly when {c, d} ⊂ {1, 2, 3} since zh−1 ∈ CG(g). If {a, b} 6⊂ {1, 2, 3},
then κg(va, vb) = κg(vc, vd) = 0 by construction of κ. So we assume a, b, c, d ∈ {1, 2, 3} and
κg(va, vb) = κg(vc, vd). But zh−1|V ′ ∈ 〈±g〉V ′ , hence 1 = detabcd(zh

−1) and detijab(h) =
detijcd(z) by Eq. (6.6) implying Eq. (6.5). One can then verify that κ is admissible using
Theorem 5.3.
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Now suppose that HQ,κ is a quantum Drinfeld Hecke algebra. For i 6= j with i or j not in
{1, 2, 3}, we may find an index k so that Theorem 5.3(3) forces κg(vi, vj) = 0. For i 6= j with
i, j ∈ {1, 2, 3}, Theorem 5.3(4) implies that κ(1 2 3)(vi, vj) = κg(v1, v2). �

The next lemma is used for the Coxeter groups Sn = G(1, 1, n), W(Bn) = G(2, 1, n), and
W(Dn) = G(2, 2, n) in Sections 7 and 8.

Lemma 6.7. Suppose G ⊂ GLn(F), n ≥ 3, is a finite monomial group with qij = −1 for i 6= j.
Say G contains the transposition (1 2) with det1212(c) = 1 for all c in CG((1 2)). Then for
any parameter m in F, there is a quantum Drinfeld Hecke algebra HQ,κ with κ : V ⊗V → FG
supported on transpositions with κ(1 2)(v1, v2) = m and κ(1 2)(v1, v3) = 0.

Proof. Define a quantum 2-form κ supported on the conjugacy class of (1 2) by setting
κh−1(1 2)h(vi, vj) = detij12(h) κ(1 2)(v1, v2) for i < j. We argue that this does not depend

on choice of h. Indeed, if h−1(1 2)h = z−1(1 2)z for h, z in G, then zh−1 ∈ CG((1 2)) and
det1212(zh

−1) = 1. Since this is nonzero, Lemma 6.2 gives a unique pair i < j with

1 = det1212(zh
−1) = det12ij(h

−1) detij12(z) = (detij12(h))−1 detij12(z)

and detij12(h) = detij12(z) so κ is well-defined. One may then check the conditions of
Theorem 5.3 directly. Note that Theorem 5.3(4) holds by Eq. (5.4) using Lemma 6.3 since
detij12(h) is nonzero for only one fixed pair i < j and so detijkl(h) is nonzero with k < l only
for k = 1, l = 2:

κh−1(1 2)h(vi, vj) = detij12(h)κ(1 2)(v1, v2) =
∑
k<l

detijkl(h)κ(1 2)(vk, vl) . �

Remark 6.8. For the Coxeter groups Sn = G(1, 1, n), W(Bn) = G(2, 1, n), and W(Dn) =
G(2, 2, n) for n ≥ 2, the proof of Lemma 6.7 gives an admissible parameter κ for any m ∈ F
defined by

κg(vi, vj) =


m for g = (i j)

−m for g = titj(i j)

0 otherwise ,

where ti is the identity matrix except −1 in the i-th slot. Note here that all conjugates of
(1 2) take the form (i j) or titj(i j) for some i 6= j.

In the next two lemmas, we again consider the the symmetric group Sn acting by permuting
basis elements of V , i.e., we identify Sn with the group of permutation matrices in GLn(F).

Lemma 6.9. Say G = Sn for n ≥ 3 and qij = −1 for i 6= j. Then for any parameter m
in F, there is a quantum Drinfeld Hecke algebra HQ,κ for κ : V ⊗ V → FG supported on
transpositions with κ(1 2)(v1, v2) = 0 and κ(1 2)(v1, v3) = m.

Proof. Notice that detijkl(g) ∈ {0, 1} for all g ∈ G. Say m 6= 0 and define a quantum 2-form
κ supported on the conjugacy class of (1 2) by

κ(a b)(vi, vj) =

{
m for i or j in {a, b} but not both,

0 otherwise .
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We argue that κ satisfies Theorem 5.3(4) by verifying Eq. (5.4) using Lemma 6.3:

κh−1(1 2)h(vi, vj) =
∑
k<l

detijkl(h) κ(1 2)(vk, vl) for all h ∈ G , 1 ≤ i < j ≤ n.

For fixed i < j and h in G, set a = h−1(1) and b = h−1(2) so h−1(1 2)h = (a b). There is a
unique pair i′ < j′ with 0 6= detiji′j′(h) = deti′j′ij(h

−1), so (h(i) h(j)) = (i′ j′), and we need
only verify that

κ(a b)(vi, vj) = detiji′j′(h) κ(1 2)(vi′ , vj′) = κ(1 2)(vi′ , vj′) .

Each side is either m or zero. The scalar κ(a b)(vi, vj) is nonzero exactly when the set
{i, j}∩{a, b} has size 1, i.e., exactly when {i′, j′}∩{1, 2} = {h(i), h(j)}∩{h(a), h(b)} has size
1. But this is exactly the condition that κ(1 2)(vi′ , vj′) is nonzero and Theorem 5.3(4) holds.
The other conditions of Theorem 5.3 may be checked directly. Note that for the quantum
Jacobi identity, we verify that

( hvk − vk)κh(vi, vj) + ( hvj − vj)κh(vi, vk) + ( hvi − vi)κh(vj , vk) = 0

by taking h = (a b) and considering various overlaps of {i, j, k} with {a, b}. �

Lemma 6.10. Say G = Sn for n > 3 and qij = −1 for i 6= j. There is a nontrivial quantum
Drinfeld Hecke algebra HQ,κ for κ : V ⊗ V → FG supported on products of two disjoint
transpositions.

Proof. Suppose 0 6= m ∈ F and define a quantum 2-form κ supported on the conjugacy class
of (1 2)(3 4) by setting, for disjoint 2-cycles (a b) and (c d) and i < j,

κ(a b)(c d)(vi, vj) =

{
m for (a b) 6= (i j) 6= (c d) and i, j ∈ {a, b, c, d},
0 otherwise.

We argue that κ satisfies Theorem 5.3(4) by verifying Eq. (5.4) using Lemma 6.3:

κh−1(1 2)(3 4)h(vi, vj) =
∑
k<l

detijkl(h) κ(1 2)(3 4)(vk, vl) for all 1 ≤ i < j ≤ n, h ∈ G .

Fix i < j and h in G and set (a b)(c d) = h−1(1 2)(3 4)h. There is a unique pair i′ < j′ with
0 6= detiji′j′(h) = deti′j′ij(h

−1), so (h(i) h(j)) = (i′ j′) and we need only check that

κ(a b)(c d)(vi, vj) = detiji′j′(h) κ(1 2)(3 4)(vi′ , vj′) = κ(1 2)(3 4)(vi′ , vj′) .

We verify as in the proof of Lemma 6.9, noting that (a b) 6= (i j) 6= (c d) with i, j ∈ {a, b, c, d}
exactly when (1 2) 6= (i′ j′) 6= (3 4) with i′, j′ ∈ {1, 2, 3, 4} (just apply h to each index). �

7. Symmetric group acting by permutation of basis vectors

We consider quantum Drinfeld Hecke algebras for the action of the symmetric group Sn

by permutations in this section. We assume at least one quantum parameter qij is not 1, else
we are in the non-quantum setting and may use the classification of algebras from [29]. This
forces qij = −1 for all i 6= j by Lemma 2.2. Thus we assume throughout this section that

Q = {qij = −1, qii = 1 : 1 ≤ i 6= j ≤ n}.
The dimension of the parameter space of quantum Drinfeld Hecke algebras depends on
whether n > 3, so we gives the cases n = 3 and n = 4 explicitly before generalizing to
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arbitrary n. Here, as before, Sn acts on V ∼= Fn by permutation of basis vectors v1, . . . , vn,
i.e., σvi = vσ(i). We recover results of Naidu and Witherspoon [25] who worked over the
complex numbers C and used Hochschild cohomology; our combinatorial approach (following
ideas of [33]) allows us to extend results to arbitrary fields F with char(F) 6= 2.

3-dimensional space. A careful analysis using Theorem 5.3 gives a 4-parameter family
when n = 3: The quantum Drinfeld Hecke algebras are the F-algebras generated by v1, v2, v3
and FS3 with relations σvk = vσ(k)σ for all k and all σ ∈ S3 and, for some fixed scalars
m1, . . . ,m4 in F,

v2v1 = −v1v2 +m1 +m2(1 2) +m3

(
(1 3) + (2 3)) +m4((1 2 3) + (1 3 2)

)
,

v3v2 = −v2v3 +m1 +m2(2 3) +m3

(
(2 1) + (3 1)) +m4((2 3 1) + (2 1 3)

)
,

v1v3 = −v3v1 +m1 +m2(3 1) +m3

(
(3 2) + (1 2)) +m4((3 1 2) + (3 2 1)

)
.

4-dimensional space. Theorem 7.1 below gives a 5-parameter family when n = 4: The
quantum Drinfeld Hecke algebras are precisely the F-algebras generated by v1, v2, v3, v4 and
FS4 with relations σvk = vσ(k)σ for all k and all σ ∈ S4 and, for some fixed scalars m1, . . . ,m5

in F,

v2v1 = −v1v2 +m1 +m2(1 2) +m3

(
(1 3) + (1 4) + (2 3) + (2 4)

)
+m4

(
(1 2 3) + (2 1 3) + (1 2 4) + (2 1 4)

)
+m5

(
(1 3)(2 4) + (1 4)(2 3)

)
,

v3v1 = −v1v3 +m1 +m2(1 3) +m3

(
(1 2) + (1 4) + (2 3) + (3 4)

)
+m4

(
(1 3 2) + (3 1 2) + (1 3 4) + (3 1 4)

)
+m5

(
(1 2)(3 4) + (1 4)(2 3)

)
,

v4v1 = −v1v4 +m1 +m2(1 4) +m3

(
(1 2) + (1 3) + (2 4) + (3 4)

)
+m4

(
(1 4 2) + (4 1 2) + (1 4 3) + (4 1 3)

)
+m5

(
(1 2)(3 4) + (1 3)(2 4)

)
,

v3v2 = −v2v3 +m1 +m2(2 3) +m3

(
(1 2) + (1 3) + (2 4) + (3 4)

)
+m4

(
(2 3 1) + (3 2 1) + (2 3 4) + (3 2 4)

)
+m5

(
(1 2)(3 4) + (1 3)(2 4)

)
,

v4v2 = −v2v4 +m1 +m2(2 4) +m3

(
(1 2) + (1 4) + (2 3) + (3 4)

)
+m4

(
(2 4 1) + (4 2 1) + (2 4 3) + (4 2 3)

)
+m5

(
(1 2)(3 4) + (1 4)(2 3)

)
,

v4v3 = −v3v4 +m1 +m2(3 4) +m3

(
(1 4) + (2 3) + (2 4) + (1 3)

)
+m4

(
(3 4 1) + (4 3 1) + (3 4 2) + (4 3 2)

)
+m5

(
(1 3)(2 4) + (1 4)(2 3)

)
.

Arbitrary dimension. The quantum Drinfeld Hecke algebras constitute a 5-parameter fam-
ily for the symmetric group Sn with n ≥ 4:

Theorem 7.1. Let G = Sn act on V ∼= Fn by permutation of basis vectors for n ≥ 4. The
quantum Drinfeld Hecke algebras are precisely the F-algebras generated by v1, . . . , vn and FSn

with relations σvk = vσ(k)σ for all k and

vσ(2)vσ(1) =− vσ(1)vσ(2) +m1 +m2

(
σ(1) σ(2)

)
+m3

∑
i 6=σ(1), σ(2)

((
σ(1) i

)
+
(
σ(2) i

))
+m4

∑
i 6=σ(1),σ(2)

((
σ(1) σ(2) i

)
+
(
σ(2) σ(1) i

))
+ m5

∑
i,j /∈{σ(1), σ(2)}; i 6=j

(
σ(1) i

)(
σ(2) j

)
,

for all σ ∈ G, for some fixed scalars m1, . . . ,m5 in F.
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Note that the right side indeed only depends only on σ(1) and σ(2) (as an unordered pair).

Proof. Suppose κ is admissible. Theorem 5.3(4) implies that κ is invariant, i.e., for any σ
in Sn, κ(vσ(1), vσ(2)) =

∑
g∈G κg(v1, v2)σgσ

−1, and κ is determined by κ(v1, v2). As cycle
type determines the conjugacy classes in Sn, Lemma 6.1 implies that if κg 6≡ 0, then g is
conjugate to I (the identity), (1 2), (1 2 3), or (1 3)(2 4).

By Theorem 5.3(3) and (4), 0 = κ(k l)(v1, v2) = κ(1 2)(i j)(v1, v2) = κ(i j)(k l)(v1, v2) when
k, l /∈ {1, 2} and (i j) 6= (1 2). In addition (by Eq. (5.4)), κ(1 l)(2 k)(v1, v2) = κ(1 3)(2 4)(v1, v2)
for all l 6= k with l, k 6∈ {1, 2}. In fact, one may show (using Lemma 6.4 and Eq. (5.5)) that
κ is determined by

m1 = κI(v1, v2), m2 = κ(1 2)(v1, v2),

m3 = κ(1 3)(v1, v2), m4 = κ(1 2 3)(v1, v2), and m5 = κ(1 3)(2 4)(v1, v2) .

Conversely, using Eq. (5.5), the identity I in G contributes one parameter worth of quantum
Drinfeld Hecke algebras, the conjugacy class of (1 2) contributes two parameters worth by
Lemmas 6.7 and 6.9, and the conjugacy classes of (1 2 3) and (1 2)(3 4) each contribute
another parameter of freedom by Lemmas 6.4 and 6.10. The proofs of these lemmas give the
algebras in the statement of the theorem explicitly. �

8. Infinite families of reflection groups G(r, p, n)

We consider the infinite family G(r, p, n) of reflection groups (see Shephard and Todd [28]
when F = C), which includes

• the symmetric group acting as permutations, Sn = G(1, 1, n),
• the Weyl groups W(Bn) = G(2, 1, n) acting on Rn or Cn,
• the Weyl groups W(Dn) = G(2, 2, n) acting on Rn or Cn, and
• the symmetry group G(r, 1, n) of the regular r-cube polytope in Cn.

We describe the quantum Drinfeld Hecke algebras, recovering results of Naidu and Wither-
spoon [25] in the case F = C and n ≥ 4. The combinatorial approach chosen here over a
cohomological approach has certain advantages: This combinatorial avenue

• allows us to extend results to fields F with char(F) 6= 2,
• helps us classify algebras in the delicate case when n = 3,
• reveals an extra parameter of algebras for G(r, r, 4) when r is odd, and
• extends to other groups, like mystic reflection groups (examined in the next section).

We fix r, p, n ∈ Z with p dividing r, and assume F contains a primitive r-th root-of-unity ω
in this section. The finite group G(r, p, n) ⊂ GL(F) consists of the n× n monomial matrices
whose nonzero entries are r-th roots-of-unity in F and whose product of nonzero entries is 1
when raised to the power r/p. The group G(r, p, n) has order n! rn/p and is the semidirect
product D(r, p, n) oSn for D(r, p, n) the subgroup of diagonal matrices in G(r, p, n). Note
that G(r, p, n) contains the symmetric group Sn = G(1, 1, n) as a subgroup.

By Lemma 2.2, the group G = G(r, p, n) acts on the quantum polynomial ring SQ(V ) by
automorphisms if and only if either qij = 1 for all i, j or else qij = −1 for all i 6= j. In the
trivial case, when all qij = 1, [26] gives a classification of quantum Drinfeld Hecke algebras.
Thus we assume throughout this section that the set of quantum parameters is

Q = {qij = −1, qii = 1 : 1 ≤ i 6= j ≤ n}.
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Define a diagonal matrix Λi which is ωI except with ω1−n as i-th entry:

(8.1) Λi = diag(ω, . . . , ω, ω1−n, ω, . . . , ω) .

Lemma 8.2. Say G = G(r, r, 4) for r ≥ 1 with r odd. There is a nontrivial quantum Drinfeld
Hecke algebra HQ,κ for κ : V ⊗ V → FG supported on the conjugacy class of (1 2)(3 4).

Proof. Let g = (1 2)(3 4) and 0 6= m ∈ F. Define a quantum 2-form κ supported on the
conjugacy class of g by setting κg(vi, vj) = 0 for {i, j} = {1, 2} or {3, 4}, κg(vi, vj) = m
otherwise, and extending via

(8.3) κh−1gh(vi, vj) =
∑
k<l

detijkl(h) κg(vk, vl) for 1 ≤ i, j ≤ 4, h ∈ G .

We argue that κh−1gh is well-defined. Say h−1gh = z−1gz. As in the proof of Lemma 6.4, we
show that κh−1gh(vi, vj) = κz−1gz(vi, vj) using the fact that

(8.4) κh−1gh(vi, vj) = detijab(h) κg(va, vb) whereas κz−1gz(vi, vj) = detijcd(z) κg(vc, vd)

for some pairs a < b and c < d with detijab(h) 6= 0 6= detijcd(z) and

(8.5) detabcd(zh
−1) = detabij(h

−1) detijcd(z) = (detijab(h))−1 detijcd(z) 6= 0.

If a matrix lies in the centralizer CG(g), then the entries in its first two columns coincide
and also the entries in its last two columns coincide and the matrix is the product of a
diagonal matrix with (1), (1 2), (3 4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 4 2 3), or
(1 3 2 4). In addition, the entry in the first column is inverse to that in the last column
because r = p is odd, and thus there are exactly r elements in CG(g) corresponding to each
permutation listed. Then as zh−1 lies in CG(g) with detabcd(zh

−1) 6= 0, we conclude after
careful examination of the centralizer that either {(1 2), (3 4)} contains both (a b) and (c d)
and hence κg(va, vb) = κg(vc, vd) = 0 or else {(1 2), (3 4)} contains neither (a b) nor (c d)
and hence κg(va, vb) = κg(vc, vd) 6= 0 with detabcd(zh

−1) = 1. Eqs. (8.4) and (8.5) then imply
that κh−1gh(vi, vj) = κz−1gz(vi, vj).

One may then use Theorem 5.3 to verify that κ is admissible with some straightforward
computations. For Theorem 5.3(3), note that any conjugate h−1gh of g is the product of a
diagonal matrix with (1 2)(3 4) or (1 3)(2 4) or (1 4)(2 3). For example, if h−1gh enacts
v1 7→ λv2, v2 7→ λ−1v1, v3 7→ ηv4, and v4 7→ η−1v3 for λ, η in F, we may take h to be the
diagonal matrix (λ1/2, λ−1/2, η1/2, η−1/2) and check Theorem 5.3(3) directly using Eq. (8.3).
Here, we use the fact that the squaring map on the multiplicative group of r-th roots-of-unity
is onto since r is odd. �

Naidu and Witherspoon [25, Theorem 6.9] proved the following when F = C and n ≥ 4 by
computing Hochschild cohomology. The homological techniques used do not extend directly
to arbitrary fields. We give a direct combinatorial proof that holds for all fields F with
char(F) 6= 2, including the case when char(F) divides |G|, and all n ≥ 3.
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Proposition 8.6. Let G = G(r, p, n) for n ≥ 3. Then the dimension of the parameter space
of quantum Drinfeld Hecke algebras is

dimF(PG) =



5 if r = 1, n ≥ 4, i.e., G = G(1, 1, n) = Sn≥4,

4 if r = 1, n = 3, i.e., G = G(1, 1, 3) = S3,

2 if r = 2, i.e., G = W(Bn) = G(2, 1, n) or G = W(Dn) = G(2, 2, n),
1 if r > 2, 3 - r, and G = G(r, r/2, 3) with r even,
1 if r > 2, 3 - r, and G = G(r, r, 3),

1 if r > 2, r odd, and G = G(r, r, 4),
0 otherwise.

Proof. In the case r = p = 1, G = G(1, 1, n) is the symmetric group Sn and we appeal to
Section 7. So we assume r > 1.

We use Theorem 5.3 with Eq. (5.5). Assume that κ is admissible and that g in G(r, p, n)
has one of the cycle types given in Lemma 6.1.

First consider the case when r = 2 so that G is the Weyl group G(2, 2, n) or G(2, 1, n).
Theorem 5.3(3) and (4) imply that κg ≡ 0 unless g lies in the conjugacy classes of (1 2) or
(1 2 3) (one must check the quantum minor determinants of elements in the centralizer of g).
In fact, κ(1 2)(vi, vj) = 0 unless (i, j) = (1, 2). (For example, h = (−1 ⊕ −1 ⊕ I) commutes
with (1 2) forcing κ(1 2)(v1, v3) = 0). The conjugacy class of (1 2) contributes one parameter
of freedom to the family of quantum Drinfeld Hecke algebras by Lemma 6.7 and the conjugacy
class of (1 2 3) contributes another parameter by Lemma 6.4, hence dimF(PG) = 2. Hence
we assume r > 2.

The group G(r, p, n) contains the set of diagonal matrices {Λ1, . . . ,Λn} from Eq. (8.1);
Eq. (5.4) forces κg ≡ 0 for any g a diagonal matrix and for any g with 2-cycle type since
certain Λi lie in the centralizer of g. For example, if g has cycle-type (1 2), then Λk lies in
the centralizer of g for k /∈ {1, 2} with κg(vi, vj) = detijij(Λk)κg(vi, vj) by Theorem 5.3(4);
this forces κg(vi, vj) = 0 for i, j 6= k (since detijij(Λk) = ω2 6= 1). If n ≥ 5 this forces
κg(vi, vj) = 0 for all i, j as k can vary over 3 ≤ k ≤ n. When n = 3, 4, one can verify that
detijij(Λ3) 6= 1 for all i 6= j forcing κg(vi, vj) = 0. Hence we may assume g has 3-cycle type
or is the product of two disjoint 2-cycle type elements.

Now assume n = 3. If 3 | r, then the center of G contains the scalar matrix h = ωr/3I,

which forces κ ≡ 0 by Theorem 5.3(4) (see Eq. (5.4)) since detijij(h) = ωr2/3 6= 1 for all i 6= j
and dimF(PG) = 0. If r/p > 2, then the scalar matrix h = ωpI lies in the center and likewise
forces κ ≡ 0 since detijij(h) = ω2p 6= 1 for all i 6= j as r - 2p and dimF(PG) = 0.

For n = 3, that leaves the cases r/p ≤ 2 and 3 - r. Theorem 5.3(3) forces κg ≡ 0 for g
of 3-cycle type unless the product of nonzero entries in g is 1. Such elements all lie in the
conjugacy class of (1 2 3) which generates its own centralizer in G, and hence dimF(PG) = 1
in this case by Lemma 6.4.

Now assume n ≥ 4. Suppose g has 3-cycle type (a b c). Then g commutes with any Λd
for d ∈ {1, . . . , n}/{a, b, c} and κg ≡ 0 by Theorem 5.3(4) (see Eq. (5.4)) since detabab(Λd) =
detbcbc(Λd) = detacac(Λd) = ω2 6= 1 (as r > 2). This forces κg(va, vb) = κg(vb, vc) =
κg(vc, va) = 0. Theorem 5.3(3) forces κg(vi, vj) = 0 for i or j not in {a, b, c} (just choose
k ∈ {a, b, c}).

Thus we may assume n ≥ 4 and g is the product of two disjoint 2-cycle type elements,
say g is the product of a diagonal matrix and (1 2)(3 4). If r is even, then G contains the
diagonal matrix h = diag(−1,−1, 1, . . . , 1) which commutes with g and arguments similar
to above show that κg ≡ 0. If r is odd but n > 4, then G contains the diagonal matrix
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h = diag(ω, ω, ω, ω, ω−4, 1, . . . , 1) which commutes with g and we may show κg ≡ 0. This
leaves the case that n = 4 and r is odd: again, Theorem 5.3(3) forces κg ≡ 0 unless g is
conjugate to (1 2)(3 4) and by Lemma 8.2, dimF(PG) = 1. �

Example 8.7. Let G = G(2, 1, 3) over F = R, the Weyl group W(B3). Every quantum
Drinfeld Hecke algebra HQ,κ is generated by v1, v2, v3 and RG with relations gvk = gvkg for
all k and g ∈ G and

v2v1 = −v1v2 +m(s1 − t1t2s1)

+m′(s1s2 − t2t3s1s2 − t1t2s1s2 + t1t3s1s2 + s2s1 − t1t3s2s1 + t2t3s2s1 − t1t2s2s1),

v3v2 = −v2v3 +m(s2 − t2t3s2)

+m′(s1s2 − t2t3s1s2 + t1t2s1s2 − t1t3s1s2 + s2s1 + t1t3s2s1 − t2t3s2s1 − t1t2s2s1),

v3v1 = −v1v3 +m(s1s2s1 − t1t3s1s2s1)

+m′(s1s2 + t2t3s1s2 − t1t2s1s2 − t1t3s1s2 + s2s1 − t1t3s2s1 − t2t3s2s1 + t1t2s2s1)

for some m,m′ ∈ R. Thus dimR(PG) = 2. Here, si is the transposition (i i+ 1) and ti is the
identity matrix except with −1 in the i-th entry.

Example 8.8. The group G(2, 2, 3) over F = R is the Weyl group W(D3). One compares
the conjugacy classes in G(2, 2, 3) to those in G(2, 1, 3) to see that every quantum Drinfeld
Hecke algebra for G(2, 1, 3) is a quantum Drinfeld Hecke algebra for G(2, 2, 3) and vice versa.
So the dimension of the parameter space is also 2 for G(2, 2, 3).

Here are two examples over a field of characteristic 5, the first in the nonmodular setting
and the second in the modular setting.

Example 8.9. In the group G = G(4, 2, 3) over F = F25, the product of nonzero entries in
each matrix is ±1 (here, 2 is a primitive 4-th root-of-unity). The dimension of the parameter
space PG of quantum Drinfeld Hecke algebras is 1. Indeed, every PBW algebra is supported
on the 32-element conjugacy class of (1 2 3): we just fix κ(1 2 3)(v1, v2) ∈ F25, use Eq. (5.4)
to determine κg for g conjugate to (1 2 3), and set κg ≡ 0 for all other g in G.

Example 8.10. In the group G = G(2, 2, 5) over F = F25, the product of nonzero entries
in each matrix is 1. Here, dimF(PG) = 2. Indeed, every PBW algebra is supported on the
conjugacy class of (1 2 3) or the conjugacy class of (1 2): we fix κ(1 2 3)(v1, v2) ∈ F25 and
κ(1 2)(v1, v2) ∈ F25, use Eq. (5.4) to determine κg for g conjugate to (1 2 3) or (1 2), and set
κg ≡ 0 for all other g in G.

9. Mystic Reflection Groups

Another natural family to consider is the infinite family of mystic reflection groups de-
scribed by Kirkman, Kuzmanovich, and Zhang [18] and also Bazlov and Berenstein [6]. Fol-
lowing their constructions, we assume throughout this section that F = C, α, β ∈ Z>0 with
α | β and 2 | β, and

Q = {qij = −1, qii = 1 : 1 ≤ i 6= j ≤ n} .

Definition 9.1 ([18]). For 1 ≤ i, j ≤ n, i 6= j, λ 6= 1, define θi,λ, τi,j,λ in Autgr(SQ(V )) by

θi,λ(vl) =

{
vl l 6= i

λvl l = i
and τi,j,λ(vl) =

 vl l 6= i, j
λvj l = i

−λ−1vi l = j
.
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The θi,λ are called standard reflections and the τi,j,λ standard mystic reflections. Then the
mystic reflection group M(n, α, β) is the following subgroup of Autgr(SQ(V )):

M(n, α, β) =
〈
{θi,λ | λα = 1, 1 ≤ i ≤ n} ∪ {τi,j,λ | λβ = 1, 1 ≤ i 6= j ≤ n}

〉
.

This provides infinite families of groups with nontrivial quantum Drinfeld Hecke algebras:

Theorem 9.2. The dimension of the parameter space PG of quantum Drinfeld Hecke algebras
for G = M(n, α, β) for n ≥ 3 is

dimF(PG) =


2 if G = M(n, 2, 2),

1 if G = M(n, 1, 2),
1 if n = 3 with α ≤ 2, 3 - β, and G 6= M(3, 2, 2),

0 otherwise .

Proof. For G = M(n, 2, 2) = G(2, 1, n), we appeal to Proposition 8.6. For the other cases, we
use Theorem 5.3 with Eq. (5.5). Assume that κ is admissible and that g in M(n, α, β) has
one of the cycle types given in Lemma 6.1.

First suppose that G = M(n, 1, 2) ⊂ G(2, 1, n) ∩ SLn(C). Theorem 5.3(3) and (4) imply
that κg ≡ 0 unless g lies in the conjugacy class of (1 2 3). (We check the quantum minor
determinants of elements in the centralizer of g in addition to judiciously choosing indices
in Theorem 5.3(3): For example, for g = τi,j,−1 with i 6= j and k, l /∈ {i, j}, the elements
g and h = g2 commute with g with detijij(g) 6= 1 6= detikik(h); this forces κg(vi, vj) =
κg(vi, vk) = 0, whereas Theorem 5.3(3) forces κg(vk, vl) = 0.) One may check that the
hypotheses of Lemma 6.4 hold (see [33]) and thus the conjugacy class of (1 2 3) contributes
one parameter of freedom to PG.

Thus we assume β > 2. We also assume α is 1 or 2, else the center of G contains cI for
c 6= ±1, forcing κ ≡ 0 and dimF(PG) = 0.

Eq. (5.4) forces κg ≡ 0 when g is a diagonal matrix or has 2-cycle type since certain

diagonal matrices Λi (see Eq. (8.1)) lie in the centralizer of g with detjkjk(Λi) = e
4πi
β 6= 1 for

distinct j, k 6= i as 2 | β > 2. For example, the group contains

τ2,1,ω · τ2,1,−1 · τ3,2,ω2 · τ3,2,−1 · . . . · τn,n−1,ωn−1 · τn,n−1,−1 = Λn for ω = e
2πi
β .

So we assume g has 3-cycle type or else is the product of two disjoint 2-cycle type elements.
Consider the case n = 3. If 3 | β, then the center of G contains the scalar matrix

τ2,1,γ · τ2,1,−1 · τ3,2,γ2 · τ3,2,−1 = λβ/3I 6= ±I for λ = e2πi/β which forces κ ≡ 0. So we assume
3 - β. In fact, κg ≡ 0 unless g is conjugate to (1 2 3) and there is one parameter worth of
algebras by Lemma 6.4 (see [33]). Note that G 6= M(3, 2, 2) here as β > 2.

Lastly, we consider the case n ≥ 4. Suppose g has 3-cycle type (a b c). Then g commutes

with Λd for d ∈ {1, . . . , n}/{a, b, c} and ω = e2πi/β, which forces κg(vi, vj) = 0 for i, j ∈
{a, b, c} by Theorem 5.3(4) (see Eq. (5.4)) since detabab(Λd) = detbcbc(Λd) = detacac(Λd) =
ω2 6= 1 (as β > 2). Theorem 5.3(3) forces κg(vi, vj) = 0 for i or j not in {a, b, c} (just choose
k ∈ {a, b, c}). Hence κg ≡ 0 in this case. Suppose instead that g is the product of two disjoint
2-cycle type elements, say g is the product of a diagonal matrix and (1 2)(3 4). Then κg ≡ 0 as
well since Theorem 5.3(3) forces κg(v1, v2) = κg(v3, v4) = κg(vi, vj) = 0 for i or j /∈ {1, 2, 3, 4}
and Theorem 5.3(4) forces κg(vi, vj) = 0 for i, j ∈ {1, 2, 3, 4} but (1 2) 6= (i j) 6= (3 4) since
the centralizer of g in G contains the diagonal matrix diag(−1,−1, 1, . . . , 1). �
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Example 9.3. The group M(n, 1, 2) for n ≥ 3 is generated by mystic reflections τi,j,−1
and contains the 3-cycle (1 2 3). The quantum Drinfeld Hecke algebras constitute a 1-
parameter family with each algebra HQ,κ supported on the conjugacy class of (1 2 3): Fix
κ(1 2 3)(v1, v2) = m ∈ C, use Eq. (5.4) to determine κg on the conjugacy class of (1 2 3), and
set κg ≡ 0 otherwise.

10. Direct Sums

We end by observing that there is no way a priori to predict how the dimension of the
parameter space of quantum Drinfeld Hecke algebras will change when taking direct sums of
acting groups. We demonstrate by simply adding on a 1-dimensional group action.

In the proposition below, we take a fixed basis v1, v2, v3 of V = V2 ⊕ V1 ∼= F3 for V2 = F2

and V1 = F1 with v1, v2 spanning V2 and v3 spanning V1. We write q31q32 ∈ G1 to mean
multiplication by q31q32 lies in G1, i.e., G1 contains the 1× 1 matrix [q31q32].

Proposition 10.1. Let Gk be a group of graded automorphisms acting on SQk(Vk) for Vk =

Fk and Qk = {q(k)ij } for k = 1, 2. Suppose G = G2 ⊕ G1 acts by graded automorphisms on

SQ(V ) for V = V2 ⊕ V1 and Q = {qij} with q12 = q
(2)
12 . Then

(a) if |G1| > 1 and q31q32 ∈ G1, then dimF(PG) = dimF(PG2),

(b) if |G1| = 1 and q31q32 ∈ G1, then dimF(PG) ≥ dimF(PG2),

(c) if |G1| > 1 and q31q32 /∈ G1, then dimF(PG) = 0,

(d) if |G1| = 1 and q31q32 /∈ G1, then dimF(PG) is not bound above or below by dimF(PG2).

Proof. First note that in parts (a) and (c), the center Z(G) contains a nonidentity matrix

z =
(

1 0 0
0 1 0
0 0 ∗

)
with det1313,Q(z) 6= 1 6= det2323,Q(z) and thus κh(v1, v3) ≡ 0 ≡ κh(v2, v3)

for all h ∈ G by Theorem 5.3(4) for any admissible parameter κ for G. In fact, for part
(c), Theorem 5.3(3) forces κ(v1, v2) = 0 as well.

Now suppose we are in case (a) or (b). For each g ∈ G2, define h(g) = g ⊕ [q31q32] ∈ G.
If κ′ is an admissible parameter for G2, then we may define an admissible parameter κ
for G with κh(g)(v1, v2) = κ′g(v1, v2) for g in G2 and κ zero otherwise. (One can check
that κ satisfies Theorem 5.3(3) and (4)). Thus dimF(PG) ≥ dimF(PG2). In case (a), if κ
is an admissible parameter for G, we may define an admissible parameter κ′ for G2 with
κ′g(v1, v2) = κh(g)(v1, v2) and hence dimF(PG) ≤ dimF(PG2). Note that in part (b), we may
have a strict inequality (see Example 10.3) or equality (Example 10.4). The claim in part
(d) is verified with Example 10.2.

�

Example 10.2. To justify Proposition 10.1(d), we fix G1 = {1} ⊂ GL1(F) with q31q32 6= 1
and give three groups Gi ⊂ GL2(F) with which to compare dimF(PGi⊕G1) to dimF(PGi). Set

G2 =
{(−1 0

0 −1
)
, ( 1 0

0 1 )
}
, G3 =

{(−1 0
0 1

)
, ( 1 0

0 1 )
}
, G4 =

{(−1 0
0 1

)
,
(
1 0
0 −1

)
,
(−1 0

0 −1
)
, ( 1 0

0 1 )
}
.

Then

dimF(PG2) = 2 > 0 = dimF(PG2⊕G1) if q13 = −1, q23 = 1, and q12 = 1,

dimF(PG3) = 0 < 1 = dimF(PG3⊕G1) if q13 = −1, q23 = 1, and q12 = −1 , and

dimF(PG4) = 0 = dimF(PG4⊕G1) if q13 = −1, q23 = 1, and q12 = 1 .

Note that the inequality in Proposition 10.1(b) is often strict, as we see next.
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Example 10.3. Consider G = G2 ⊕G1 ⊂ GL3(C) for G1 = 1 the trivial group and

G2 =

{(
−
√

1−η3 η2

η
√

1−η3

)
,

(
1 0

0 1

)}
, for η = e

2πi
5 , q12 = 1, q23 = −1 = q13.

Then dimC(PG2) = 0 by Theorem 5.3 (4) as G2 is abelian containing g with detQ(g) = −1.
However, dimC(PG) = 1 as the set of quantum Drinfeld Hecke algebras for G comprises the
algebras HQ,κ,G generated by v1, v2, v3 and CG with relations gvi = gvig for all g ∈ G and

v2v1 = v1v2, v3v2 = −v2v3 +mg, v3v1 = −v1v3 +mη3 (1−
√

1− η3) g ,

with parameter m ∈ C. Thus dimC(PG) > dimC(PG2).

We end with a classical complex reflection group, namely, the 2-dimensional tetrahedral
group G4 of order 24 as classified by Shephard and Todd [28]. We consider the direct sum of
G4 with a trivial group to demonstrate the equality in Proposition 10.1(b).

Example 10.4. Set q12 = −1 = q13, q23 = 1, and ω = e2πi/3 in C. Consider G = {1} ⊕ G4

(using a reflection representation of G4 perhaps equivalent to your favorite) generated by

A =
(

1 0 0
0 1 0
0 0 ω

)
and B = 1√

3

(√
3 0 0
0 i

√
2iω2

0
√
2iω2 −iω

)
with g = B2A2B2, g2 = B2A, g3 = AB2 .

Then for any m in C, the C-algebra HQ,κ generated by v1, v2, v3 and CG with relations
gvi = gvig for all g ∈ G and

v3v2 = v2v3 +m(g + g−1 + ω2g2 + ω2g−12 + ωg3 + ωg−13 ), v3v1 = −v1v3, v2v1 = −v1v2
is a quantum Drinfeld Hecke algebra. By Theorem 5.3, these are all the quantum Drinfeld
Hecke algebras. Thus dimC(PG) = 1. Note dimC(PG4) = 1 as well.
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