
RESOLUTIONS FOR TWISTED TENSOR PRODUCTS

A.V. SHEPLER AND S. WITHERSPOON

Abstract. We build resolutions for general twisted tensor products of algebras. These bi-
module and module resolutions unify many constructions in the literature and are suitable
for computing Hochschild (co)homology and more generally Ext and Tor for (bi)modules.
We analyze in detail the case of Ore extensions, consequently obtaining Chevalley-Eilenberg
resolutions for universal enveloping algebras of Lie algebras (defining the cohomology of Lie
groups and Lie algebras). Other examples include semidirect products, crossed products,
Weyl algebras, Sridharan enveloping algebras, and Koszul pairs.

1. Introduction

Motivated by questions in noncommutative geometry, Čap, Schichl, and Vanžura [5]
introduced a very general twisted tensor product of algebras to replace the (commutative)
tensor product. Their examples included noncommutative 2-tori and crossed products of
C∗-algebras with groups. Many other algebras of interest arise as twisted tensor product
algebras: crossed products with Hopf algebras, algebras with triangular decomposition (e.g.,
universal enveloping algebras of Lie algebras and quantum groups), braided tensor products
defined by R-matrices, and other biproduct constructions. In fact, twisted tensor product
algebras are rather copious: If an algebra is isomorphic to A⊗B as a vector space for two
of its subalgebras A and B under the canonical inclusion maps, then it must be isomorphic
to a twisted tensor product A⊗τB for some twisting map τ : B ⊗A→ A⊗B (see [5]).

Modules over a twisted tensor product algebra arise from tensoring together modules
for the individual algebras: If M and N are modules over algebras A and B, respectively,
compatible with a twisting map τ , then M⊗N adopts the structure of a module over A⊗τB.
We describe in this note a general method to twist together resolutions of A-modules and
B-modules in order to construct resolutions for the corresponding modules over the twisted
tensor product A ⊗τ B. A similar method works for bimodules. In particular, we twist
together resolutions of algebras over a field to obtain a resolution for a twisted tensor
product algebra as a bimodule over itself.

We are motivated by a desire to understand deformations of twisted tensor products and
to describe the homology theory in terms of the homology of the original factor algebras.
For example, under some finiteness assumptions, the Hochschild cohomology of a tensor
product of algebras is the tensor product of their Hochschild cohomology rings. A similar
statement is true of the cohomology of augmented algebras. Both results hold because the
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tensor product of projective resolutions for the factor algebras is a projective resolution for
the tensor product of the algebras.

In some particular settings, similar homological constructions have appeared for modified
versions of the tensor product of algebras. We mention just a few examples. Gopalakrish-
nan and Sridharan [7] constructed resolutions for modules of Ore extensions. Bergh and
Oppermann [1] twisted resolutions when the twisting arises from a bicharacter on grading
groups. Jara Martinez, López Peña, and Ştefan [12] worked with Koszul pairs. Guccione and
Guccione [8, 9] built resolutions for twisted tensor products, in particular crossed products
with Hopf algebras, out of bar and Koszul resolutions of the factor algebras. We adapted
this last construction in [16] to handle more general resolutions for the case of skew group
algebras in order to understand deformations. Walton and the second author generalized
these resolutions to smash products with Hopf algebras in [18].

In this paper, we unify many of these previous constructions and provide methods use-
ful in new settings for finding resolutions of modules over twisted tensor product algebras:
We show very generally that projective resolutions for bimodules of two factor algebras
can be twisted together to construct a projective resolution for the resulting bimodule for
the twisted tensor product given some compatibility conditions. This twisting of resolu-
tions provides an efficient means for computing and handling Hochschild (co)homology in
particular. A similar construction applies to projective (left) module resolutions used, for
example, to compute (co)homology of augmented algebras.

We verify that many known resolutions may be viewed as twisted resolutions in this way,
including some of those mentioned above. We give details in the case of Ore extensions. In
particular, the bimodule Koszul resolution of a universal enveloping algebra U(g) is a twisted
resolution when g is a finite dimensional supersolvable Lie algebra. More general Lie algebras
can be handled via triangular decomposition. Our method also leads to standard resolutions
for Weyl algebras and some Sridharan enveloping algebras. For an Ore extension, we adapt
results of Gopalakrishnan and Sridharan [7] to construct twisted product resolutions of
modules. We thus regard the Chevalley-Eilenberg complex of U(g) as a twisted product
resolution. This defines Lie algebra and Lie group cohomology in terms of an iterative
twisting of resolutions.

In Section 2, we give definitions and some preliminary results. Bimodule twisted tensor
product complexes are constructed in Section 3 and we show they give projective resolutions
in Theorem 3.10. Section 4 gives applications to some types of Ore extensions. We construct
twisted tensor product complexes for resolving modules in Section 5, and we show these
complexes are projective resolutions in Theorem 5.12. Applications to Ore extensions appear
in Section 6.

We fix a field k of arbitrary characteristic throughout. All tensor products are over k
unless otherwise indicated, i.e., ⊗ = ⊗k, and all algebras are k-algebras. Modules are left
modules unless otherwise described.

2. Twisted tensor product algebras and compatible resolutions

In this section, we recall twisted tensor product algebras from [5] and define a compat-
ibility condition necessary for twisting resolutions together. Examples include skew group
algebras and crossed products with Hopf algebras [13], twisted tensor products given by
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bicharacters of grading groups [1], braided products arising from R-matrices [11], two-
cocycle twists of Hopf algebras [15], and more.

Let A and B be associative algebras over k with multiplication maps mA : A ⊗ A → A
and mB : B ⊗B → B and multiplicative identities 1A and 1B, respectively. We write 1 for
the identity map on any set.

Twisted tensor products. A twisting map

τ : B ⊗A→ A⊗B
is a bijective k-linear map for which τ(1B ⊗ a) = a ⊗ 1B and τ(b ⊗ 1A) = 1A ⊗ b for all
a ∈ A and b ∈ B, and

(2.1) τ ◦ (mB ⊗mA) = (mA ⊗mB) ◦ (1⊗ τ ⊗ 1) ◦ (τ ⊗ τ) ◦ (1⊗ τ ⊗ 1)

as maps B ⊗ B ⊗ A ⊗ A → A ⊗ B. The twisted tensor product algebra A ⊗τ B is the
vector space A⊗B together with multiplication mτ given by such a twisting map τ . By [5,
Proposition/Definition 2.3], the algebra A⊗τB is associative.

Note that the left-right distinction in a twisted tensor product algebra is artificial since
A ⊗τ B ∼= B ⊗τ−1 A. Indeed, one might identify A⊗τ B with the algebra generated by A
and B (so that A and B are subalgebras) with relations given by Equation (2.1).

If A and B are N-graded algebras, we take the standard N-grading on A⊗B and B ⊗A
and say a twisting map τ is strongly graded if it takes Bj⊗Ai to Ai⊗Bj for all i, j following
Conner and Goetz [4]. (Note that [12] leave off the adjective strongly.) In this case, the
twisted tensor product algebra A⊗τB is N-graded.

Example 2.2. The Weyl algebra W = k〈x, y〉/(xy − yx − 1) is isomorphic to the twisted
tensor product A⊗τ B of A = k[x] and B = k[y] with twisting map τ : B ⊗ A → A ⊗ B
defined by τ(y ⊗ x) = x⊗ y − 1⊗ 1. Likewise, the Weyl algebra Wn on 2n indeterminates,

Wn = k〈x1, . . . , xn, y1, . . . , yn〉/(xixj − xjxi, yiyj − yjyi, xiyj − yjxi − δi,j : 1 ≤ i, j ≤ n) ,

is isomorphic to a twisted tensor product. These are examples of (iterated) Ore extensions,
which we consider in detail in Section 4.

Example 2.3. A skew group algebra S oG for a finite group G acting on an algebra S by
automorphisms is isomorphic to the twisted tensor product kG ⊗τ S of the group algebra
kG and of S. The twisting map τ is defined by τ(s⊗ g) = g⊗ g−1(s) for s ∈ S and g ∈ G.
We consider the special case that S is a Koszul algebra at the end of Section 3.

Bimodules over twisted tensor products. We fix a twisting map τ : B ⊗ A→ A⊗ B
for k-algebras A and B.

Definition 2.4. An A-bimodule M is compatible with τ if there is a bijective k-linear map
τB,M : B ⊗M →M ⊗B commuting with the bimodule structure of M and multiplication
in B, i.e., as maps on B ⊗B ⊗M and on B ⊗A⊗M ⊗A, respectively,

τB,M (mB ⊗ 1) = (1⊗mB)(τB,M ⊗ 1)(1⊗ τB,M ) and(2.5)

τB,M (1⊗ ρA,M ) = (ρA,M ⊗ 1)(1⊗ 1⊗ τ)(1⊗ τB,M ⊗ 1)(τ ⊗ 1⊗ 1) ,(2.6)
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where ρA,M : A ⊗M ⊗ A → M is the bimodule structure map. If A is graded and M is a
graded A-bimodule, we say that M is compatible with a strongly graded twisting map τ if
there is a map τB,M as above that takes Bi ⊗Mj to Mj ⊗Bi for all i, j.

Remark 2.7. Note that the above definition applies to B-bimodules as well as A-bimodules
by reversing the role of A and B. Indeed, we apply the definition to the algebra B, the
twisted tensor product B ⊗τ−1 A, and the twisting map τ−1 to obtain conditions for a
B-bimodule N to be compatible with τ−1. We may rewrite these conditions using the
convenient notation τN,A = (τ−1

A,N )−1. We obtain an equivalent right version of the above

definition: A given B-bimodule N is compatible with τ−1 when there is some bijective
k-linear map τN,A : N ⊗A→ A⊗N satisfying

τN,A(1⊗mA) = (mA ⊗ 1)(1⊗ τN,A)(τN,A ⊗ 1) and(2.8)

τN,A(ρB,N ⊗ 1) = (1⊗ ρB,N )(τ ⊗ 1⊗ 1)(1⊗ τN,A ⊗ 1)(1⊗ 1⊗ τ) ,(2.9)

as maps on N ⊗A⊗A and on B ⊗N ⊗B ⊗A, respectively, where ρB,N : B ⊗N ⊗B → N
is the bimodule structure map.

In light of the last remark, we will say a bimodule is compatible with τ when it is either
an A-bimodule compatible with τ or a B-bimodule compatible with τ−1, since one often
identifies A⊗τ B and the isomorphic algebra B ⊗τ−1 A in practice.

Remark 2.10. An A-bimodule M is compatible with the twisting map τ exactly when
there is a bijective k-linear map τB,M : B ⊗M → M ⊗ B making the following diagram
commute:

(2.11) B ⊗M ⊗B
τB,M⊗1

**
B ⊗B ⊗M

1⊗τB,M

44

mB⊗1
&&

M ⊗B ⊗B

1⊗mBxx
B ⊗M

τB,M

// M ⊗B

B ⊗A⊗M ⊗A

τ⊗1⊗1
&&

1⊗ρA,M

88

A⊗M ⊗A⊗B

ρA,M⊗1

ff

A⊗B ⊗M ⊗A
1⊗ τB,M⊗1

// A⊗M ⊗B ⊗A
1⊗1⊗τ

88

.

A similar diagram expresses compatibility of a B-bimodule N with τ .

Example 2.12. Let M = A, an A-bimodule via multiplication. Then A is compatible
with τ via τB,A = τ . Similarly N = B is compatible with τ .
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Bimodule structure. When M and N are compatible with τ , the tensor product M ⊗N
is naturally an A⊗τB-bimodule via the following composition of maps:

A⊗τB⊗M⊗N⊗A⊗τB
1⊗ τB,M⊗ τN,A⊗1

// A⊗M⊗B⊗A⊗N⊗B

1⊗1⊗ τ ⊗1⊗1 // A⊗M⊗A⊗B⊗N⊗B
ρA,M⊗ ρB,N // M ⊗N .

(2.13)

Bimodule resolutions. For any k-algebra A, let Ae = A⊗Aop be its enveloping algebra,
with Aop the opposite algebra to A. We view an A-bimodule M as a left Ae-module. In
Lemma 3.1 below, we will construct a projective resolution of an (A⊗τB)e-module M ⊗N
from individual resolutions of M and N using some compatibility conditions. Let P q(M) be
an Ae-projective resolution of M and let P q(N) be a Be-projective resolution of N :

· · · → P2(M)→ P1(M)→ P0(M)→M → 0,(2.14)

· · · → P2(N) → P1(N) → P0(N) → N → 0.(2.15)

Bar and reduced bar resolutions. For example, M could be A itself and P q(A) could

be the bar resolution Bar q(A) given by Barn(A) = A⊗(n+2) with differential

a0 ⊗ a1 ⊗ · · · ⊗ an+1 7→
n∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

for all n ≥ 0 and a0, a1, . . . , an+1 ∈ A. We also use the reduced bar resolution Bar q(A) with
Barn(A) = A⊗ Ā⊗n ⊗A for Ā = A/k1A and differential given by the same formula.

Compatibility conditions. We now define what it means for resolutions to be compatible
with the twisting map τ . We tensor arbitrary resolutions (2.15) and (2.14) with A and B
on the right and left to obtain complexes

P q(N)⊗A, A⊗ P q(N), P q(M)⊗B, and B ⊗ P q(M) .

Viewing these simply as exact sequences of vector spaces, we note that any k-linear maps
τN,A : N ⊗A→ A⊗N and τB,M : B ⊗M →M ⊗B can be lifted to k-linear chain maps

(2.16) τP q(N),A : P q(N)⊗A→ A⊗ P q(N) and τB,P q(M) : B ⊗ P q(M)→ P q(M)⊗B .

For simplicity in the sequel, we will write τi,A = τPi(N),A and τB,i = τB,Pi(M), for each i,

when no confusion will arise. We will use such maps to glue the two resolutions together
provided they satisfy the following compatibility conditions. These conditions just state that
the chain maps commute with multiplication and with bimodule structure maps. There are
many settings in which compatible chain maps do exist, as we will see.
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Definition 2.17. Let M be an A-bimodule that is compatible with τ . A projective A-
bimodule resolution P q(M) is compatible with the twisting map τ if each Pi(M) is compatible
with τ via a map

τB,i : B ⊗ Pi(M) −→ Pi(M)⊗B
with τB, q a chain map lifting τB,M . If A is graded, M is a graded A-bimodule, and P q(M) is

a graded projective A-bimodule resolution, we say that P q(M) is compatible with a strongly
graded twisting map τ if there are maps τB,i as above taking Bj⊗(Pi(M))l to (Pi(M))l⊗Bj
for all j, l.

Remark 2.18. The above definition applies toB-bimodule resolutions as well asA-bimodule
resolutions by reversing the role of A and B in the definition, again as A⊗τ B = B⊗τ−1 A.
For a B-bimodule N that is compatible with τ , the definition implies that a projective
B-bimodule resolution P q(N) of N is compatible with the twisting map τ when each Pi(N)
is compatible with τ via a map τi,A : Pi(N)⊗A→ A⊗Pi(N), with τ q,A a chain map lifting
τN,A. Thus we say a resolution is compatible with τ if it is either an A-bimodule resolution
or a B-bimodule resolution compatible with τ .

We give some small examples later: Example 2.21 (Weyl algebra) and Example 3.13
(skew group algebra). First a remark on embedding resolutions and some general results.

Remark 2.19. Note that compatibility is preserved under embedding of resolutions so long
as the extensions of the twisting map τ preserve the embedding. Specifically, assume

φ q : Q q(A) ↪→ P q(A)

is an embedding of resolutions of the algebra A, and P q(A) is compatible with a twisting
map τ : B ⊗A→ A⊗B via chain maps

τB,i : B ⊗ Pi(A)→ Pi(A)⊗B.
If the maps τB,i preserve the embedding in the obvious sense that each τB,i restricts to

a surjective map B ⊗ Im(φ) � Im(φ) ⊗ B, then Q q(A) is compatible with τ via these
restrictions.

Compatibility of bar and Koszul resolutions. If A and B are both Koszul algebras
and τ is a strongly graded twisting map, then the algebra A⊗τ B is known to be Koszul
(see [14, Example 4.7.3], [12, Corollary 4.1.9], or [19, Proposition 1.8]). Conner and Goetz [4]
examine the situation when τ is not strongly graded. We show next that both bar and Koszul
resolutions are compatible with twisting maps. We always assume our Koszul algebras are
connected graded algebras, so that they are quotients of tensor algebras on generating
vector spaces in degree 1. Note that the roles of A and B may be exchanged in the next
proposition.

Proposition 2.20. Let τ be a twisting map for some k-algebras A and B.

(i) The bar resolution Bar q(A) is compatible with τ .
(ii) The reduced bar resolution Bar q(A) is compatible with τ .
(iii) If A is a Koszul algebra, B is a graded algebra, and τ is strongly graded, then the

Koszul resolution Kos q(A) is compatible with τ .
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Proof. (i) The bar resolution of A may be twisted by repeated application of the map τ ,

e.g., define τB,i : B ⊗ A⊗(i+2) → A⊗(i+2) ⊗ B by applying τ to the first two tensor factors
on the left, then applying τ to next two tensor factors, and so on:

τB,i = (1⊗ · · · ⊗ 1⊗ τ)(1⊗ · · · ⊗ 1⊗ τ ⊗ 1) · · · (1⊗ τ ⊗ 1⊗ · · · ⊗ 1)(τ ⊗ 1⊗ · · · ⊗ 1).

Then Bar q(A) is compatible with τ via τB,i, as may be verified directly by repeated use of

equation (2.1).

(ii) Write the terms in the bar complex Bar q(A) as Pi = A⊗(i+2) for each i, and define
the terms in the reduced bar complex Bar q(A) by P̄i = A⊗ Ā⊗i ⊗ A. For each i, let Ti be
the kernel of the quotient map Bari(A) → Bari(A). Then T q is a subcomplex of Bar q(A)
and Bar q(A) ∼= Bar q(A)/T q. By definition of twisting map τ , the multiplicative identity 1A
commutes with elements of B under τ , implying that τB,i of part (i) takes B⊗Ti onto Ti⊗B
for each i. Let τ̄B,i : B ⊗ Bari(A) → Bari(A)⊗ B be the corresponding map on quotients.

Then Bar q(A) is compatible with τ via the maps τ̄B,i.
(iii) The proof of [19, Proposition 1.8] shows that the embedding Kos q(A) ↪→ Bar q(A)

of bimodule resolutions is preserved by the iterated twisting in part (i) above (see Re-
mark 2.19). Thus Kos q(A) satisfies compatibility. �

We give an example next showing how Proposition 2.20 can be used for Koszul resolutions
even when the twisting map τ is not strongly graded.

Example 2.21. As in Example 2.2, let W be the Weyl algebra on x, y with A = k[x] and
B = k[y]. Let Kos q(A) be the Koszul resolution of A as an A-bimodule,

0→ A⊗ V ⊗A d1−→ A⊗A m−→ A→ 0 ,

where V = Spank{x} ⊂ A, d1(1 ⊗ x ⊗ 1) = x ⊗ 1 − 1 ⊗ x, and m is multiplication. Let
τ̄ : B ⊗ V → V ⊗B be the swap map b⊗ v 7→ v ⊗ b for all b in B and v in V , and define

τ̄B, q : B ⊗Kos q(A)→ Kos q(A)⊗B
by iterations of τ and τ̄ :

τ̄B,0 : B ⊗A⊗A
τ⊗1

−−−−−−→ A⊗B ⊗A
1⊗τ

−−−−−−→ A⊗A⊗B , and

τ̄B,1 : B ⊗A⊗ V ⊗A
τ⊗1⊗1
−−−−−−→ A⊗B ⊗ V ⊗A

1⊗τ̄⊗1
−−−−−−→ A⊗ V ⊗B ⊗A

1⊗1⊗τ
−−−−−−→ A⊗ V ⊗A⊗B .

Define τ̄ q,A : Kos q(B)⊗A→ A⊗Kos q(B) similarly for the Koszul resolution Kos q(B) of B.

Note that τ is not strongly graded, so part (iii) of Proposition 2.20 does not apply even
though both A and B are Koszul algebras. Instead, we appeal to part (ii) and Remark 2.19
after taking canonical embeddings Kos q(A) ↪→ Bar q(A) and Kos q(B) ↪→ Bar q(B). (For
example, view A ⊗ V ⊗ A as a subspace of A ⊗ Ā ⊗ A; the terms in other degrees are
either 0 or the same as in the bar resolution.) The maps τ̄B, q and τ̄ q,A above are the

restrictions to B ⊗Kos q(A) and Kos q(B)⊗A of the maps of the same name in the proof of
Proposition 2.20(ii) (after identifying V with its image under the quotient map A→ Ā). In
this way, we see that the Koszul resolutions Kos q(A) and Kos q(B) are compatible with the
twisting map τ via τ̄B, q and τ̄ q,A. We extend these ideas in Theorem 4.2.
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3. Twisted product resolutions for Bimodules

Again, we fix k-algebras A and B with a twisting map τ : B⊗A→ A⊗B and consider an
A-bimodule M and B-bimodule N . We build a projective resolution of M⊗N as a bimodule
over A⊗τ B from resolutions P q(M) and P q(N) under our compatibility assumptions. We
give the construction in Lemma 3.1, prove exactness in Lemma 3.5, and show in Lemma 3.9
that the modules in the construction are indeed projective under an additional assumption.

Lemma 3.1. Let M be an A-bimodule and let N be a B-bimodule, both compatible with a
twisting map τ . Let P q(M) and P q(N) be projective A- and B-bimodule resolutions of M
and N , respectively, that are compatible with τ . For each i, j ≥ 0, let

(3.2) Xi,j = Pi(M)⊗ Pj(N) ,

an A⊗τB-bimodule via diagram (2.13). Then X q, q is a bicomplex of A⊗τB-bimodules with

horizontal and vertical differentials given by dhi,j = di ⊗ 1 and dvi,j = (−1)i ⊗ dj, where di
and dj denote the differentials of the appropriate resolutions:

...

��

...

��

...

��
X0,2

dv0,2

��

X1,2

dh1,2oo

dv1,2

��

X2,2

dh2,2oo

dv2,2

��

· · ·oo

X0,1

dv0,1

��

X1,1

dh1,1oo

dv1,1

��

X2,1

dh2,1oo

dv2,1

��

· · ·oo

X0,0 X1,0

dh1,0oo X2,0

dh2,0oo · · ·oo

Proof. The k-vector spaces Xi,j form a tensor product bicomplex with differentials as stated.
The bimodule action of A⊗τB onXi,j commutes with the horizontal and vertical differentials
since τ q,B and τA, q are chain maps. Therefore this is an A⊗τB-bimodule bicomplex. �

Definition 3.3. The twisted product complex X q is the total complex of X q, q, i.e., when
augmented by M ⊗N , it is the complex

(3.4) · · · → X2 → X1 → X0 →M ⊗N → 0

with Xn = ⊕i+j=nXi,j , and nth differential
∑

i+j=n di,j where di,j = di ⊗ 1 + (−1)i ⊗ dj .

Lemma 3.5. The twisted product complex (3.4) is exact.

Proof. By the Künneth Theorem [20, Theorem 3.6.3], for each n there is an exact sequence

0 −→
⊕
i+j=n

Hi

(
P q(M)

)
⊗Hj

(
P q(N)

)
−→ Hn

(
P q(M)⊗ P q(N)

)
−→

⊕
i+j=n−1

Tork1

(
Hi

(
P q(M)

)
,Hj

(
P q(N)

))
−→ 0 .
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Now P q(M) and P q(N) are exact other than in degree 0, where they have homology M and
N , respectively. Therefore

Hi

(
P q(M)

)
= 0 for all i > 0 and Hj

(
P q(N)) = 0 for all j > 0 .

The Tor term is 0 since k is a field. Thus for all n > 0, Hn

(
P q(M)⊗ P q(N)

)
= 0, and

H0

(
P q(M)⊗ P q(N)

) ∼= H0

(
P q(M)

)
⊗H0

(
P q(N)

) ∼= M ⊗N
as vector spaces. Thus the complex (3.4) is exact. �

In practice, one often can show directly that each Xi,j is projective as an A⊗τB-bimodule,
for example, when working with bar resolutions and/or Koszul resolutions. For the general
case, we need an extra compatibility assumption, which we explain next. As each Pi(N) is
a projective B-bimodule, it embeds into a free Be-module (Be)⊕J for some indexing set J .
In the following definition, we use the map (τ ⊗ 1)(1⊗ τ) : Be ⊗A→ A⊗Be.

Definition 3.6. A chain map τi,A : Pi(N) ⊗ A → A ⊗ Pi(N) is compatible with a chosen

embedding Pi(N) ↪→ (Be)⊕J (for some indexing set J) if the corresponding diagram is
commutative:

Pi(N)⊗A ↪ //

τi,A

��

(Be)⊕J ⊗A

((τ⊗1)(1⊗τ))⊕J

��
A⊗ Pi(N) ↪ // A⊗ (Be)⊕J .

Similarly, the map τB,i of (2.16) is compatible with a chosen embedding of Pi(M) into a free

Ae-module (Ae)⊕I (for some indexing set I) if the corresponding diagram is commutative,
i.e., if τB,i is the restriction of the map ((1⊗ τ)(τ ⊗ 1))⊕I to B ⊗ Pi(M).

Remark 3.7. In many settings, one sees directly that each Xi,j is projective, in which
case one need not consider this extra compatibility condition, as the next lemma is not
needed. This is the case, for example, when twisting by a bicharacter on grading groups
(see [1, Lemma 3.3]). In other settings, τi,A and τB,i are automatically compatible with
chosen embeddings into free modules, for example if A and B are Koszul algebras and the
embeddings are standard embeddings into bar resolutions (see [19, Proposition 1.8]).

Example 3.8. As in Examples 2.2 and 2.21, let W ∼= A⊗τB be the Weyl algebra on x, y,
A = k[x], and B = k[y]. By construction, each map τ̄i,A is compatible with the canonical

embedding Kosi(A) ↪→ Bari(A) and likewise τ̄B,i is compatible with Kosi(B) ↪→ Bari(B).

Lemma 3.9. If τB,i and τj,A are compatible with chosen embeddings of Pi(M) and Pj(N)

into free modules, then Xi,j = Pi(M)⊗ Pj(N) is a projective A⊗τB-bimodule.

Proof. First we verify the lemma in case Pi(M) = Ae, Pj(N) = Be, and the chosen embed-
dings are the identity maps. In this case, Xi,j = Ae⊗Be = A⊗Aop⊗B⊗Bop. One checks
that the map

1⊗ τ ⊗ 1 : A⊗B ⊗ (A⊗B)op −→ A⊗Aop ⊗B ⊗Bop
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is an isomorphism of (A⊗τ B)e-modules by equation (2.1) and the definition of the action
given in the proof of Lemma 3.1. If Pi(M) and Pj(N) are arbitrary free modules, and the
chosen embeddings are identity maps, we apply the above map to each summand Ae ⊗Be

of Pi(M)⊗ Pj(N) to see that Xi,j is a free (A⊗τB)e-module.
Now we consider the general case, including the possibility that at least one of Pi(M),

Pj(N) is free but the corresponding chosen embedding into a (possibly different) free module
is not the identity map. The first part of the proof together with the compatibility hypoth-
esis implies that the embedding of k-vector spaces Pi(M)⊗Pj(N) ↪→ (Ae)⊕I⊗(Be)⊕J given
by the tensor product of the two embedding maps is a map of (A⊗τB)e-modules. �

We combine the lemmas to obtain the following theorem.

Theorem 3.10. Let A and B be k-algebras, and let τ : B⊗A→ A⊗B be a twisting map.
Let M be an A-bimodule and N a B-bimodule with projective A- and B-bimodule resolutions
P q(M) and P q(N), respectively. Assume that M , N , P q(M), and P q(N) are compatible with
τ and the corresponding maps τB,i and τj,A are compatible with chosen embeddings of Pi(M)

and Pi(N) into free modules. Then the twisted product complex with

Xn = ⊕i+j=nXi,j for Xi,j = Pi(M)⊗ Pj(N)

gives a projective resolution of M ⊗N as A⊗τB-bimodule:

· · · → X2 → X1 → X0 →M ⊗N → 0 .

Proof. The result follows from Lemmas 3.1, 3.5, and 3.9. �

Remark 3.11. The theorem generally unifies known constructions of resolutions in several
different contexts, for example, twisted tensor products given by bicharacters of grading
groups [1], crossed products [9], skew group algebras (semidirect products) of Koszul alge-
bras and finite groups [16], and smash products of Koszul algebras with Hopf algebras [18].

Theorem 3.10 combined with Proposition 2.20 and Remark 3.7 implies that a twisted
product resolution of A⊗τB as a bimodule always exists, since bar resolutions may always
be twisted (and likewise Koszul resolutions, when one or both of the algebras is Koszul, see
also [12, 14, 19]):

Corollary 3.12. Let A and B be k-algebras with twisting map τ : B ⊗ A → B ⊗ A. The
following are projective resolutions of A⊗τB as a bimodule over itself.

• The twisted product complex of two bar resolutions.
• The twisted product complex of two Koszul resolutions when A and B are Koszul

algebras and τ is strongly graded.
• The twisted product complex of one bar resolution and one Koszul resolution in case

one of A or B is Koszul and the other is graded, for τ strongly graded.

Moreover, bar resolutions may be replaced by reduced bar resolutions in the above statements.
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Examples: Skew group algebras. We give some details for a class of examples intro-
duced in Example 2.3. The resolutions in [16] for S o G, where G is a finite group acting
by graded automorphisms on a Koszul algebra S, appear different from but are equivalent
to (3.4) when M = kG (the group algebra) and N = S. Note that kG⊗ S is isomorphic to
S oG as an (S oG)-bimodule via the twisting map τ . In [16], the modules Xi,j are given
as

(S oG)⊗ C ′i ⊗D′j ⊗ (S oG)

where Pi(kG) = kG⊗C ′i⊗kG, Pj(S) = S⊗D′j⊗S are free (kG)e- and Se-modules determined

by vector spaces C ′i, D
′
j , respectively. We assume Pi(kG) is G-graded and the grading is

compatible with the kG-bimodule action. We assume Pj(S) is a kG-module in such a way
that the differentials are kG-module homomorphisms, and this action is compatible with
that of S, so that Pj(S) becomes an SoG-module. Compatibility with τ follows from these
assumptions. There is an isomorphism of S oG-bimodules,

(kG⊗ C ′i ⊗ kG)⊗ (S ⊗D′j ⊗ S)
∼−→ (S oG)⊗ C ′i ⊗D′j ⊗ (S oG) ,

similar to that used in the proof of [16, Theorem 4.3], given by

g ⊗ x⊗ g′ ⊗ s⊗ y ⊗ s′ 7→ g((hg′)s)⊗ x⊗ (g′y)⊗ g′s′

for all g, g′ ∈ G, s, s′ ∈ S, x in the h-component of C ′i, and y ∈ D′j .

Example 3.13. In particular, [16, Example 4.6] involves a resolution that is neither a
Koszul resolution nor a bar resolution and yet satisfies compatibility. In that example, k is
a field of positive characteristic p, S = k[x, y], and G = 〈g〉 is a group of order p acting on
S by g · x = x, g · y = x+ y. The resolution P q(S) is the Koszul resolution Kos q(S) of S,

0→ S ⊗
∧2 V ⊗ S → S ⊗

∧1 V ⊗ S → S ⊗ S → S → 0 ,

where V = Spank{x, y}. The resolution P q(kG) is the bimodule resolution of kG,

(3.14) · · · η·−→ kG⊗ kG γ·−→ kG⊗ kG η·−→ kG⊗ kG γ·−→ kG⊗ kG m−→ kG −→ 0 ,

where γ = g ⊗ 1− 1⊗ g, η = gp−1 ⊗ 1 + gp−2 ⊗ g + · · ·+ 1⊗ gp−1, and m is multiplication.
Compatibility follows from Proposition 2.20(i) using Remark 2.19 after taking the standard
embedding Kos q(S) ↪→ Bar q(S) and embedding (3.14) into Bar q(kG) (see, e.g., [3]).

4. Bimodule resolutions of Ore extensions

Many algebras of interest are Ore extensions of other algebras. We show how to twist
bimodule resolutions for such extensions in this section.

Ore extensions as twisted tensor products. Let R be a k-algebra and fix a k-algebra
automorphism σ of R. Let δ : R→ R be a left σ-derivation of R, that is,

(4.1) δ(rs) = δ(r)s+ σ(r)δ(s) for all r, s ∈ R .

The Ore extension R[x;σ, δ] is the algebra with underlying vector space R[x] and multipli-
cation determined by that of R and of k[x] and the additional Ore relation

xr = σ(r)x+ δ(r) for all r ∈ R .
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An Ore extension R[x;σ, δ] is thus isomorphic to a twisted tensor product A⊗τ B where
A = R, B = k[x], and the twisting map τ : B ⊗A→ A⊗B satisfies

τ(x⊗ r) = σ(r)⊗ x+ δ(r)⊗ 1 for all r ∈ R .

Free resolutions for iterated Ore extensions. We will work with general Ore extensions
in Section 6. Here for simplicity we restrict to the case that the automorphism on R is the
identity, σ = 1R, so the Ore relation sets commutators xr−rx equal to elements in R. In this
case, the Ore extension is also known as a ring of formal differential operators. We consider
an iterated Ore extension S = (· · · (k[x1][x2; 1, δ2]) · · · )[xt; 1, δt], which we abbreviate as

S = k[x1, . . . , xt; δ2, . . . , δt] = k〈x1, . . . , xt〉/(xjxi − xixj − δj(xi) : 1 ≤ i < j ≤ t)

with S ∼= k[x1, . . . , xt] as a k-vector space. We assume that S is a filtered algebra with
deg(xi) = 1 for all i. Then each δj is a filtered map, i.e., δj(xi) ∈ k⊕k-span{x1, . . . , xj−1} for
i < j. This setting includes Weyl algebras and universal enveloping algebras of supersolvable
Lie algebras.

Theorem 4.2. Consider an iterated Ore extension S = k[x1, . . . , xt; δ2, . . . , δt] with identity
automorphisms σi = 1 and filtered derivations δi. There is an iterated twisted product
resolution K q that is a free resolution of S as a bimodule over itself:

Kn = S ⊗
∧n V ⊗ S

for V = k-span{x1, . . . , xt} with differentials given by (for 1 ≤ l1 < · · · < ln ≤ t)

dn(1⊗ xl1 ∧ · · · ∧ xln ⊗ 1)

=
∑

1≤i≤n
(−1)i+1

(
xli ⊗ xl1 ∧ · · · ∧ x̂li ∧ · · · ∧ xln ⊗ 1− 1⊗ xl1 ∧ · · · ∧ x̂li ∧ · · · ∧ xln ⊗ xli

)
+

∑
1≤i<j≤n

(−1)j ⊗ xl1 ∧ · · · ∧ xli−1
∧ δ̄lj (xli) ∧ xli+1

∧ · · · ∧ x̂lj ∧ · · · ∧ xln ⊗ 1 ,

where δ̄lj (xli) is the image of δlj (xli) under the projection k ⊕ V � V .

Proof. We induct on t. For each i, the Koszul resolution of k[xi] is embedded in the (reduced)
bar resolution of k[xi] as

(4.3) 0→ k[xi]⊗ Spank{xi} ⊗ k[xi]
d1−→ k[xi]⊗ k[xi]

m−→ k[xi]→ 0 ,

where d1(1⊗xi⊗1) = xi⊗1−1⊗xi and m is multiplication. For t = i = 1, the complex (4.3)
is a resolution of S satisfying the statement of the theorem.

Now assume t ≥ 2 and that the iterated Ore extension A = k[x1, . . . , xt−1; δ2, . . . , δt−1]
has a free bimodule resolution P q(A) as in the theorem. Let B = k[xt] and let P q(B) be the
Koszul resolution (4.3) for i = t. Then S = A⊗τB where

τ(xt ⊗ a) = a⊗ xt + δt(a)⊗ 1 for all a ∈ A .
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Embedding into the reduced bar resolution. We embed P q(A) into the reduced bar
resolution Bar q(A) and then define twisting maps for P q(A) via this embedding: Let φn :

Pn(A)→ A⊗(n+2) be the standard symmetrization map defined by

φn(1⊗ xl1 ∧ · · · ∧ xln ⊗ 1) =
∑

σ∈Symn

sgnσ ⊗ xlσ(1) ⊗ · · · ⊗ xlσ(n) ⊗ 1

for all 1 ≤ l1 < · · · < ln ≤ t− 1. This is a chain map from P q(A) to Bar q(A). Compose with
the quotient map Bar q(A)→ Bar q(A) to obtain a chain map

φ̄ q : P q(A) −→ Bar q(A) .

Note that the image of P q(A) in the bar resolution Bar q(A), under φ q, intersects the kernel
of this quotient map trivially. Thus the induced map φ̄ q is injective.

Iterated twisting. The reduced bar resolution is compatibile with τ via the map

τ̄B, q : B ⊗ Bar q(A) −→ Bar q(A)⊗B

from the proof of Proposition 2.20(ii). We argue that τ̄B, q restricts to a surjective map

τ̃B, q : B ⊗ P q(A) −→ P q(A)⊗B

by verifying that it preserves the image of φ̄ q, i.e., τ̄B,n takes B ⊗ Im(φ̄n) onto Im(φ̄n)⊗B
for all n. We apply τ̄B,n to

xt ⊗ φ̄n(a0 ⊗ y1 ∧ · · · ∧ yn ⊗ an+1) =
∑

π∈Symn

sgnπ (xt ⊗ a0 ⊗ yπ(1) ⊗ · · · ⊗ yπ(n) ⊗ an+1),

for some a0, an+1 in A, in order to move xt to the far right, obtaining( ∑
π∈Symn

(sgnπ) a0 ⊗ yπ(1) ⊗ · · · ⊗ yπ(n) ⊗ an+1

)
⊗ xt ∈ Im(φ̄n)⊗B

plus additional terms that arise from the relation τ(xt⊗yπ(i)) = yπ(i)⊗xt+δt(yπ(i))⊗1. (We

use the same notation for elements of A and their images under the quotient map A → Ā
in cases where no confusion can arise.) Since τ(1 ⊗ yj) = yj ⊗ 1 for all j, these additional
terms sum to∑

π∈Symn

(sgnπ) δt(a0)⊗ yπ(1) ⊗ · · · ⊗ yπ(n) ⊗ an+1 ⊗ 1

+
∑

π∈Symn

∑
1≤i≤n

(sgnπ) a0 ⊗ yπ(1) ⊗ · · · ⊗ δ̄t(yπ(i))⊗ yπ(i+1) ⊗ · · · ⊗ yπ(n) ⊗ an+1 ⊗ 1

+
∑

π∈Symn

(sgnπ) a0 ⊗ yπ(1) ⊗ · · · ⊗ yπ(n) ⊗ δt(an+1)⊗ 1

= φ̄n
(
δt(a0)⊗ y1 ∧ · · · ∧ yn ⊗ an+1

)
⊗ 1 + φ̄n

(
a0 ⊗ y1 ∧ · · · ∧ yn ⊗ δt(an+1)

)
⊗ 1

+
∑

1≤i≤n
φ̄n
(
a0 ⊗ y1 ∧ · · · ∧ δ̄t(yi) ∧ yi+1 ∧ yn ⊗ an+1

)
⊗ 1 ∈ Im(φ̄n)⊗B .

We may replace xt by xmt in the above computation using induction after noting that
τ(xmt ⊗ xi) = (1 ⊗ mB)τ(xt ⊗

(
τ(xm−1

t ⊗ xi)
)

for i < t. The above arguments can be
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modified to apply to τ̄−1
B,i as well. Thus the chain map τ̄B, q preserves the image of φ̄ q and

restricts to a surjective chain map τ̃B, q : B ⊗ P q(A) −→ P q(A)⊗B as claimed.

Compatibility on one side. The complex P q(A) inherits compatibility with τ from the
compatibility of the reduced bar complex Bar q(A) with τ . Indeed, since Bar q(A) is com-
patible with τ via a map τ̄B, q which preserves the embedding φ̄ q : P q(A) ↪→ Bar q(A), the

complex P q(A) is compatible with τ via the restriction τ̃B, q of τ̄B, q to B ⊗ P q(A). (See

Proposition 2.20(ii) and its proof and Remark 2.19.)

Compatibility on the other side. Define a chain map τ q,A : P q(B)⊗A→ A⊗ P q(B) by

setting τ0,A = (τ ⊗ 1)(1⊗ τ) and

τ1,A((1⊗ xt ⊗ 1)⊗ xi) = xi ⊗ (1⊗ xt ⊗ 1)

and then extending (uniquely) to P1(B)⊗A by requiring that compatibility conditions (2.8)
and (2.9) hold. A calculation shows that τ q,A is a chain map and that P q(B) is compatible

with τ . By their definitions, τ0,A and τ1,A are compatible with the embeddings of P0(B)

and P1(B) into corresponding terms of the (reduced) bar resolution.

Twisted product resolution. By construction, the twisted product resolution K q arising
from P q(A) and P q(B) in degree n is isomorphic to S ⊗

∧n V ⊗ S as an S-bimodule via the
isomorphisms

A⊗
∧i Spank{x1, . . . , xt−1} ⊗A⊗B ⊗

∧j Spank{xt} ⊗B
∼−→ A⊗B ⊗

∧i Spank{x1, . . . , xt−1} ⊗
∧j Spank{xt} ⊗A⊗B ,

for j = 0, 1, given by applying τ−1 (properly interpreted for each factor) to the innermost
tensor factors A and B. We check the differentials: On Xn,0, the differential is just that
arising from the factor Pn(A). Now consider on Xn−1,1, again writing xli = yi for some
indices 1 ≤ l1 < · · · < ln ≤ t− 1:

dn(1⊗ y1 ∧ · · · ∧ yn−1 ⊗ 1⊗ 1⊗ xt ⊗ 1)

=
( ∑

1≤i≤n−1

(−1)i+1
(
yi ⊗ y1 ∧ · · · ŷi ∧ · · · ∧ yn−1 ⊗ 1− 1⊗ y1 ∧ · · · ∧ ŷi ∧ · · · ∧ yn−1 ⊗ yi

)
+

∑
1≤i<j≤n−1

(−1)j ⊗ y1 ∧ · · · ∧ δ̄j(yi) ∧ · · · ∧ ŷj ∧ · · · ∧ yn−1 ⊗ 1
)
⊗ (1⊗ xt ⊗ 1)

+ (−1)n−1(1⊗ y1 ∧ · · · ∧ yn−1 ⊗ 1)⊗ (xt ⊗ 1− 1⊗ xt) ,
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which may be rewritten, under the above isomorphism, as∑
1≤i≤n−1

(−1)i+1yi ⊗ y1 ∧ · · · ∧ ŷi ∧ · · · ∧ yn−1 ⊗ xt ⊗ 1

−
∑

1≤i≤n−1

(−1)i+1 ⊗ y1 ∧ · · · ∧ ŷi ∧ · · · ∧ yn−1 ⊗ xt ⊗ yi

+
∑

1≤i<j≤n−1

(−1)j ⊗ y1 ∧ · · · ∧ δ̄j(yi) ∧ · · · ∧ ŷj ∧ · · · ∧ yn−1 ⊗ xt ⊗ 1

+ (−1)n−1xt ⊗ y1 ∧ · · · ∧ yn−1 ⊗ 1 + (−1)n ⊗ y1 ∧ · · · ∧ yn−1 ⊗ xt
+ (−1)n

∑
1≤i≤n−1

1⊗ y1 ∧ · · · ∧ δ̄t(yi) ∧ · · · ∧ yn−1 ⊗ 1 .

Once one sets yn = xt, identifies y1 ∧ · · · ∧ yn−1 ⊗ xt with y1 ∧ · · · ∧ yn−1 ∧ xt, and makes
other similar identifications, this agrees with the differential in the statement. �

Examples. The theorem applies in particular to the universal enveloping algebra U(g)
of a finite dimensional solvable Lie algebra g. Here, we assume the underlying field k is
algebraically closed, else g should be supersolvable; see [6, 1.3.14] and [2, Section 3]. The
theorem gives a bimodule Koszul resolution of U(g). Semisimple Lie algebras can then be
handled via triangular decomposition. Other examples include Weyl algebras and Sridharan
enveloping algebras [17].

5. Twisted product resolutions for (left) modules

We now consider a twisted product resolution of left modules instead of bimodules. We
give the one-sided version of bimodule constructions in Sections 2 and 3. Again, we fix
k-algebras A and B with a twisting map τ : B ⊗ A → A ⊗ B. In the constructions below,
we consider compatible A-modules, but note that we as easily could have started with
compatible B-modules instead of A-modules using the inverse twisting map τ−1 instead of
τ in order to lift (left) modules of A and B to (left) modules of A⊗B = B ⊗τ−1 A.

Let M be an A-module with module structure map ρA,M : A ⊗M → M and recall the
multiplication map mB : B ⊗B → B.

Definition 5.1. The A-module M is compatible with the twisting map τ if there is a bijective
k-linear map τB,M : B ⊗M →M ⊗B such that

τB,M (mB ⊗ 1) = (1⊗mB)(τB,M ⊗ 1)(1⊗ τB,M ) and(5.2)

τB,M (1⊗ ρA,M ) = (ρA,M ⊗ 1)(1⊗ τB,M )(τ ⊗ 1)(5.3)

as maps on B ⊗B ⊗M and on B ⊗A⊗M , respectively.

Note that this definition is equivalent to the commutativity of a diagram similar to (2.11),
where ρA,M is replaced by a one-sided module structure map.
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Let N be a B-module with module structure map ρB,N : B ⊗ N → N . In case M is
compatible with τ , the tensor product M ⊗ N may be given the structure of an A⊗τ B-
module via the following composition of maps:

(5.4) A⊗τB ⊗M⊗N
1⊗ τB,M⊗1

// A⊗M ⊗B⊗N
ρA,M⊗ρB,N // M ⊗N .

Let P q(M) be an A-projective resolution of M and P q(N) a B-projective resolution of N :

· · · → P2(M)→ P1(M)→ P0(M)→ k → 0 ,

· · · → P2(N) → P1(N) → P0(N) → k → 0 .

Definition 5.5. Let M be an A-module that is compatible with τ . The projective module
resolution P q(M) of the A-module M is compatible with the twisting map τ if each Pi(M)
is compatible with τ via maps τB,i for which τB, q : B ⊗ P q(M) → P q(M) ⊗ B is a k-linear
chain map lifting τB,M : B ⊗M →M ⊗B.

Under the assumption of compatibility, we make the following definition.

Definition 5.6. Let M be an A-module compatible with τ and P q(M) a projective resolu-
tion of M that is compatible with τ . Let N be a B-module. The twisted product complex
Y q is the total complex of the bicomplex Y q, q defined by

(5.7) Yi,j = Pi(M)⊗ Pj(N) ,

with A⊗τ B-module structure given by the maps τB, q as in equation (5.4) and with vertical

and horizontal differentials given by dhi,j = di ⊗ 1 and dvi,j = (−1)i ⊗ dj . In other words,

Yn = ⊕i+j=nYi,j with dn =
∑

i+j=n di,j where di,j = dhi,j + dvi,j .

Lemma 5.8. Assume M and P q(M) are compatible with τ . Then the twisted product
complex Y q is a complex of A⊗τB-modules.

Proof. Each space Yi,j is given the structure of an A⊗τ B-module via diagram (5.4). The
differentials are module homomorphisms since τB, q is a chain map. �

Lemma 5.9. The twisted product complex · · · → Y2 → Y1 → Y0 →M ⊗N → 0 is exact.

Proof. As in the proof of Lemma 3.5, apply the Künneth Theorem to obtain Hn(Y q) = 0 for
all n > 0 and H0(Y q) ∼= M ⊗N . �

We wish to prove in general that the modules Yi,j are projective, so we make an additional
assumption in the next lemma. Since P q(M) is a projective resolution of M as an A-module,
each Pi(M) embeds in a free A-module A⊕I .

Definition 5.10. For each i ≥ 0, the map τB,i is compatible with a chosen embedding

Pi(M) ↪→ A⊕I (for some indexing set I) if the corresponding diagram is commutative:

B ⊗ Pi(M) ↪ //

τB,i

��

B ⊗A⊕I

τ⊕I

��
Pi(M)⊗B ↪ // A⊕I ⊗B .



TWISTED TENSOR PRODUCTS 17

In many settings, one proves directly that the modules Yi,j are projective—e.g. the Ore
extensions in the next section—and so one does not need this additional compatibility
assumption, nor the next lemma.

Lemma 5.11. For i ≥ 0, if τB,i is compatible with a chosen embedding of Pi(M) into a

free A-module, then Yi,j = Pi(M)⊗ Pj(N) is a projective A⊗τB-module.

Proof. By the hypothesis, it suffices to prove the lemma in case Pi(A) = A and Pj(B) = B.
In that case, A⊗B is the right regular module A⊗τB by definition, and so is free. �

Combining Lemmas 5.8, 5.9, and 5.11, we obtain the following theorem.

Theorem 5.12. Let A and B be k-algebras with twisting map τ : B⊗A→ A⊗B. Let P q(M)
and P q(N) be projective A- and B-module resolutions of M and N , respectively. Assume M
and P q(M) are compatible with τ and that the corresponding maps τB,i are compatible with

chosen embeddings of Pi(M) into free A-modules. Then the twisted product complex with

Yn = ⊕i+j=nYi,j for Yi,j = Pi(M)⊗ Pj(N)

gives a projective resolution of M ⊗N as a module over the twisted tensor product A⊗τB:

· · · → Y2 → Y1 → Y0 →M ⊗N → 0 .

Examples. Resolutions that may be constructed in this way include the Koszul resolution
of k for a twisted tensor product of two Koszul algebras (see the proof of [19, Proposi-
tion 1.8]) and a resolution for a twisted tensor product of algebras whose twisting map is
given by a bicharacter on grading groups (see [1]). We give another class of examples in the
next section.

6. Resolutions for Ore extensions

In Section 4, we considered resolutions of an Ore extension algebra as a bimodule over
itself. Here, we consider (left) modules over an Ore extension and show how to construct
projective resolutions of these modules by regarding the Ore extension as a twisted tensor
product. Gopalakrishnan and Sridharan [7] studied Ore extensions R[x;σ, δ] in case σ is
the identity automorphism. They showed that if M is a (left) module over R[x; 1, δ], then
an R-projective resolution of M lifts to an R[x; 1, δ]-projective resolution. Here we allow
arbitrary automorphisms σ of R and give conditions under which an R-projective resolution
of an R[x;σ, δ]-module M lifts to an R[x;σ, δ]-projective resolution.

Again, let R be a k-algebra and σ a k-algebra automorphism of R. Let δ be a left σ-
derivation of R (see (4.1)) and consider the Ore extension R[x;σ, δ]. Let A = R, B = k[x],
and τ : B ⊗A→ A⊗B be the twisting map determined by τ(x⊗ r) = σ(r)⊗ x+ δ(r)⊗ 1
for all r ∈ R, as in Section 4, so that R[x;σ, δ] is the twisted tensor product A⊗τB.
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Modules over Ore extensions. Consider an R[x;σ, δ]-module M . Assume that on re-

striction to R, there is an isomorphism of R-modules, φ : M
∼−→ Mσ, where Mσ is the

vector space M with R-module action given by r ·σ m = σ(r) ·m for all r ∈ R and m ∈M .
Then M is compatible with τ : We define τB,M := B ⊗M →M ⊗B by setting

τB,M (1⊗m) = m⊗ 1 ,

τB,M (x⊗m) = φ(m)⊗ x+ xm⊗ 1 for all m ∈M
and extending by applying compatibility condition (5.2). That is, since the algebra B = k[x]
is free on the generator x, for each element m of M , we may define τB,M (xn⊗m) by applying

(5.2) to x⊗ xn−1⊗m. We check that (5.3) holds for elements of the form x⊗ r⊗m, where
r ∈ R and m ∈ M . Then a careful induction on the power of x shows that (5.3) holds for
all elements of the form xn ⊗ r ⊗m.

For example, if R[x;σ, δ] is an augmented algebra with augmentation ε : R[x;σ, δ] → k
for which εσ = ε, then εδ = 0 and the field k as a module over R[x;σ, δ] via ε has the
property that k ∼= kσ, and so k is compatible with τ .

Projective resolutions. Let P q(M) be a projective resolution of M as an R-module:

· · · d2−→ P1(M)
d1−→ P0(M)

µ−→M → 0.

For each i, set P σi (M) = (Pi(M))σ. Then

· · · d2−→ P σ1 (M)
d2−→ P σ0 (M)

φ−1µ−−−→M → 0

is also a projective resolution of M as an R-module. By the Comparison Theorem, there is
an R-module chain map from P q(M) to P σq (M) lifting the identity map M →M , which we
view as a k-linear chain map

(6.1) σ q : P q(M)→ P q(M)

with σi(rz) = σ(r)σi(z) for all i ≥ 0, r ∈ R, and z ∈ Pi(M). We will assume for Theorem 6.6
below that each σi is bijective. Let P q(B) be the Koszul resolution of k for B = k[x],

(6.2) 0→ k[x]
x·−→ k[x]

ε−→ k → 0 ,

where ε(x) = 0. The following two lemmas are proven as in [7] (where Gopalakrishnan and
Sridharan proved the special case σ = 1). We include details for completeness.

Lemma 6.3. Let P be a projective R-module. There is an R[x;σ, δ]-module structure on P
that extends the action of R.

Proof. First consider the case that P = R, the left regular module. Let x act on R by
x · r = δ(r) for all r ∈ R. One checks that the action of xr in R[x;σ, δ] agrees with that of
σ(r)x + δ(r) on P , for all r ∈ R. Next, if P is a free module, it is a direct sum of copies
of R, and x acts on each copy in this way. Finally, in general, P is a direct summand of a
free R-module F . Let ι : P → F and π : F → P be R-module homomorphisms for which
πι is the identity map. Define x · p = π(x · ι(p)) for all p ∈ P , where the action of x on
ι(p) is as given previously for a free module. Again one checks that the actions of xr and
of σ(r)x+ δ(r) agree, and so P is an R[x;σ, δ]-module as claimed. �



TWISTED TENSOR PRODUCTS 19

Compatibility requirements. We will use the next lemma to show that the resolution
P q(M) of M as an R-module is compatible with the twisting map τ (see Lemma 6.5). Let
f : M →M be the function given by the action of x on the R[x;σ, δ]-module M .

Lemma 6.4. There is a k-linear chain map δ q : P q(M) → P q(M) lifting f : M → M such
that for each i ≥ 0, δi(rz) = σ(r)δi(z) + δ(r)z for all r ∈ R and z ∈ Pi(M).

Proof. If i = 0, let δ′0 be the action of x on P0(M) given by Lemma 6.3. Then

δ′0(rz)− σ(r)δ′0(z) = δ(r)z

for r ∈ R, z ∈ P0(M). One checks that µδ′0 − fµ : P0(M) → Mσ is an R-module ho-
momorphism. As P0(M) is a projective R-module, there is an R-module homomorphism
δ′′0 : P0(M) → P σ0 (M) such that µδ′0 − fµ = µδ′′0 . Let δ0 = δ′0 − δ′′0 . One may check this
satisfies the equation in the lemma.

Now fix i > 0 and assume there are k-linear maps δj : Pj(M) → Pj(M) such that
δj(rz) = σ(r)δj(z) + δ(r)z and djδj = δj−1dj for all j, 0 ≤ j < i, and r ∈ R, z ∈ Pj(M).
Let δ′i : Pi(M)→ Pi(M) be the action of x on Pi(M) given in Lemma 6.3, so that δ′i(rz) =
σ(r)δ′i(z) + δ(r)z for all r ∈ R, z ∈ Pi(M). Consider the map

diδ
′
i − δi−1di : Pi(M) −→ P σi−1(M) .

A calculation shows that it is an R-module homomorphism. Since δi−1 is a chain map,

di−1(diδ
′
i − δi−1di) = 0 ,

and so the image of diδ
′
i−δi−1di lies in Ker (di−1) = Im(di). Since Pi(M) is projective as an

R-module, there is an R-homomorphism δ′′i : Pi(M)→ P σi (M) such that diδ
′
i−δi−1di = diδ

′′
i .

Let δi = δ′i − δ′′i , so that diδi = δi−1di by construction. One checks that for all r ∈ R and
z ∈ Pi(M),

δi(rz) = δ′i(rz)− δ′′i (rz) = σ(r)δ′i(z) + δ(r)z − σ(r)δ′′i (z) = σ(r)δi(z) + δ(r)z .

�

Lemma 6.5. The resolution P q(M) is compatible with the twisting map τ .

Proof. Define τB,i : B ⊗ Pi(M)→ Pi(M)⊗B by

τB,i(1⊗ z) = z ⊗ 1 ,

τB,i(x⊗ z) = σi(z)⊗ x+ δi(z)⊗ 1 for all z ∈ Pi(M) ,

where σ q is the chain map of (6.1), δ q is the chain map of Lemma 6.4, and we extend τB,i
to B⊗Pi(M) as before by requiring that compatibility conditions (5.2) and (5.3) hold. We
check condition (5.3) in one case as an example:

τB,i(x⊗ rz) = σi(rz)⊗ x+ δi(rz)⊗ 1 = σ(r)σi(z)⊗ x+ σ(r)δi(z)⊗ 1 + δ(r)z ⊗ 1 ,

for all r ∈ R, and z ∈ Pi(M), while on the other hand,

(ρA,i ⊗ 1)(1⊗ τB,i)(τ ⊗ 1)(x⊗ r ⊗ z)
= (ρA,i ⊗ 1)(1⊗ τB,i)(σ(r)⊗ x⊗ z + δ(r)⊗ 1⊗ z)
= (ρA,i ⊗ 1)(σ(r)⊗ σi(z)⊗ x+ σ(r)⊗ δi(z)⊗ 1 + δ(r)⊗ z ⊗ 1)

= σ(r)σi(z)⊗ x+ σ(r)δi(z)⊗ 1 + δ(r)z ⊗ 1 ;
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Condition (5.3) holds for all xn ⊗ rz by induction on n. �

Twisting resolutions for an Ore extension. We now construct a projective resolution
of M as an R[x;σ, δ]-module from a projective resolution of M as an R-module. We take
the twisted product of two resolutions: the R-projective resolution of M and the Koszul
resolution (6.2) of k as a module over B = k[x].

Theorem 6.6. Let R[x;σ, δ] be an Ore extension. Let M be an R[x;σ, δ]-module for which
Mσ ∼= M as R-modules. Consider a projective resolution P q(M) of M as an R-module and
suppose that each map σi : Pi(M)→ Pi(M) of (6.1) is bijective. For each i ≥ 0, set

Yi,0 = Yi,1 = Pi(M)⊗ k[x] and Yi,j = 0 for all j > 1

as in Lemma 5.8. Then Y q is a projective resolution of M as an R[x;σ, δ]-module.

Proof. By Lemma 6.5, P q(M) is compatible with τ , and so by Lemmas 5.8 and 5.9, the
complex · · · → Y1 → Y0 → M → 0 is an exact complex of R[x;σ, δ]-modules. We verify
directly that each Yi,j is a projective module: For each i ≥ 0 and j = 0, 1,

(6.7) Yi,j ∼= R[x;σ, δ]⊗R Pi(M)

via the R[x;σ, δ]-homomorphism given by

R[x;σ, δ]⊗R Pi(M) −→ Yi,j , x⊗ z 7→ σi(z)⊗ x+ δi(z)⊗ 1 ,

with inverse map given by

z ⊗ x 7→ x⊗ σ−1
i (z)− 1⊗ δi(σ−1

i (z)) .

Then R[x;σ, δ] ⊗R Pi(M) is projective since it is a tensor-induced module and R[x;σ, δ] is
flat over R. �

Remark 6.8. When σ is the identity, the complex Y q is precisely that of Gopalakrishnan
and Sridharan [7, Theorem 1], under the isomorphism (6.7) above. As a specific class
of examples, we obtain in this way, via iterated Ore extension, the Chevalley-Eilenberg
resolution of the U(g)-module k for a finite dimensional supersolvable Lie algebra g.
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