
DEFORMING GROUP ACTIONS ON KOSZUL ALGEBRAS

ANNE V. SHEPLER AND SARAH WITHERSPOON

Abstract. We give Braverman-Gaitsgory style conditions for general PBW
deformations of skew group algebras formed from finite groups acting on Koszul
algebras. When the characteristic divides the order of the group, this includes
deformations of the group action as well as of the Koszul relations. Techniques
involve a twisted product resolution and the Gerstenhaber bracket on Hochschild
cohomology expressed explicitly for cocycles on this resolution.

1. Introduction

Braverman and Gaitsgory [2] gave conditions for an algebra to be a PBW defor-
mation of a Koszul algebra. Etingof and Ginzburg [4] adapted these conditions to
the setting of a Koszul ring over a semisimple group ring CG using results of Beilin-
son, Ginzburg, and Soergel [1] in order to study symplectic reflection algebras.
These are certain kinds of deformations of a skew group algebra C[x1, . . . , xn]oG
that preserve a symplectic group action. Drinfeld [3] considered similar deforma-
tions of C[x1, . . . , xn] oG for an arbitrary finite group G acting linearly.

We showed in [14] how to adapt the techniques of Braverman and Gaitsgory to
an algebra defined over a group ring kG that is not necessarily semisimple. This
approach aids exploration of deformations of skew group algebras of the form
S o G for any Koszul algebra S and any finite group G. In [14], we examined
deformations preserving the action of G on the Koszul algebra S. However, other
types of deformations are possible, some arising only in the modular setting, where
the characteristic of the underlying field k divides the order of G. Here, we study
deformations of SoG that deform not only the generating relations of the Koszul
algebra S but also deform the action of G on S. This construction recollects the
graded affine Hecke algebras of Lusztig [11], in which a group action is deformed;
in the nonmodular setting, these were shown by Ram and the first author [12] to
be isomorphic to Drinfeld’s deformations.

We show how PBW deformations of algebras of the form SoG for S a Koszul al-
gebra and G a finite group are determined by conditions in Hochschild cohomology
using a new twisted resolution X r of S oG. We summarize Theorem 5.3:
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Theorem. Suppose G is a finite group acting on a Koszul algebra S by graded
automorphisms. A quadratic algebra over kG is a PBW deformation of S o G if
and only if its relations are parameterized by functions α, β, λ satisfying

(a) d∗(α + λ) = 0,
(b) [α + λ, α + λ] = 2d∗β, and
(c) [λ+ α, β] = 0,

for α, β, λ identified with cochains on a twisted product resolution X r of S oG.

The twisted product resolution in the theorem statement was constructed by Guc-
cione, Guccione, and Valqui [8] and adapted in [14] to S oG. The differentials d∗

and the Gerstenhaber bracket [ , ] in the statement are defined in Section 5, and
the parameter functions α, β, γ are defined in Section 2. Theorem 5.3 implies our
main Theorem 2.5, giving explicit PBW conditions. In the nonmodular setting, a
simpler resolution suffices, one that is induced directly from the Koszul resolution
of S itself. The twisted product resolution X r we use here partitions homologi-
cal information according to type; cochains corresponding to deformations of the
group action and to deformations of the Koszul relations live on two distinct parts
of the resolution. Conditions for PBW deformations include interaction among
the parts.

The results here apply to many algebras of interest that arise as deformations
of algebras of the form SoG. For example, one might take S to be the symmetric
algebra (polynomial ring) S(V ) on a finite dimensional vector space V , or a skew
(quantum) polynomial ring Sq(V ) with multiplication skewed by a tuple q = (qij)
of scalars, or a skew exterior algebra, or even the Jordan plane or a Sklyanin
algebra.

Every deformation of an algebra defines a Hochschild 2-cocycle of that algebra.
A central question in deformation theory asks: which cocycles may be lifted to
deformations? We use homological techniques to answer this question in our con-
text: We show in Theorem 2.5 that obstructions to lifting cocycles on algebras of
the form SoG correspond to concrete conditions on parameter functions defining
potential PBW deformations. Such deformations are filtered algebras with asso-
ciated graded algebra precisely SoG. Our theorem generalizes [14, Theorem 5.4]
to include deformations of the group action.

We obtain explicit conditions in the special case that the Koszul algebra S is a
polynomial ring in Theorem 6.1, generalizing [15, Theorem 3.1]. This result may
also be proven directly via the Composition-Diamond Lemma, used by Khare [9,
Theorem 27] for deformations of the action of a cocommutative algebra on a
polynomial ring. An advantage of our approach is that it yields conditions much
more generally for all Koszul algebras.

When the characteristic does not divide the group order, we strengthen [15,
Theorem 4.1] by showing in Theorem 7.1 that a deformation of the group action
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and Koszul relations together is isomorphic to one in which only the Koszul rela-
tions are deformed. We give an example to show that Theorem 7.1 is false in the
modular setting.

Let k be any field. We assume the characteristic of k is not 2 throughout to
make some results easier to state. All tensor products are over k unless otherwise
indicated, that is, ⊗ = ⊗k. We assume that in each graded or filtered k-algebra,
elements of k have degree 0.

2. PBW Deformations of Koszul algebras twisted by groups

In this section, we recall some definitions and state our main result giving
Braverman-Gaitsgory style conditions for PBW deformations. The proof will be
given in Section 5 after we recall and develop the needed homological algebra.

PBW deformations. Let k be a k-algebra (for example, the field k itself or
a group ring kG) and let U be a finitely generated k-bimodule. An element of
the tensor algebra Tk(U) has filtered degree d if it lies in the d-th filtered piece
⊕i≤d (U)⊗ki of Tk(U) but not in the (d+ 1)-st.

Consider a finitely generated filtered k-algebra H, so that we may write H =
Tk(U)/(P ) for some finitely generated k-bimodule U and ideal (P ) generated by a
subset P of Tk(U). Note that elements of P may be nonhomogeneous with respect
to the grading on the free algebra Tk(U) with U in degree 1.

We associate to any presentation of a filtered algebra a homogenous version,

HomogeneousVersion
(
Tk(U)/(P )

)
= Tk(U)/(R),

where R = ∪d {πd(p) : p ∈ P of filtered degree d} and πd : Tk(U) → (U)⊗kd

projects onto the homogeneous component of degree d.
We say that a filtered algebra H with a given presentation is a PBW deformation

of its homogeneous version if it has the PBW property, i.e., the associated graded
algebra of H coincides with the homogeneous version:

Gr(H) ∼= HomogeneousVersion(H) as graded algebras.

Given a fixed presentation in terms of generators and relations, we often merely say
that H is a PBW deformation. This terminology originated from the Poincaré-
Birkhoff-Witt Theorem, which states that the associated graded algebra of the
universal enveloping algebra of a Lie algebra is its homogeneous version, namely,
a polynomial ring.

Remark 2.1. The reader is cautioned that authors use the adjective PBW in
slightly different ways. For example, in Braverman-Gaitsgory [2] and also in [14],
the homogeneous version of a filtered quadratic algebra is defined by projecting
every generating relation onto its degree 2 part, instead of its highest homogeneous
part. This merely means that filtered relations of degree 1 must be considered
separately in PBW theorems there.
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Group twisted quadratic algebras. Let S be a graded quadratic k-algebra
generated by some finite dimensional k-vector space V (in degree 1), that is, S is
determined by relations R, where R is some k-subspace of V ⊗ V :

S = Tk(V )/(R) .

Let G be a finite group acting by graded automorphisms on S. This is equivalent
to G acting linearly on V with the relations R preserved set-wise (so R is a kG-
module). We denote the action of g in G on v in V by gv in V . The skew group
algebra (or semidirect product algebra) SoG (also written S#G) is the k-algebra
generated by the group algebra kG and the vector space V subject to the relations
given by R together with the relations gv− gvg for g in G and v in V . We identify
SoG with a filtered algebra over the ring k = kG generated by U = kG⊗V ⊗kG:

S oG ∼= TkG(kG⊗ V ⊗ kG)/(R ∪R′)

as graded algebras, where elements of G have degree 0 and elements of V have
degree 1, and where

(2.2) R′ = Spank{g ⊗ v ⊗ 1− 1⊗ gv ⊗ g : v ∈ V, g ∈ G} ⊂ kG⊗ V ⊗ kG .

Here we identify R ⊂ V ⊗ V with a subspace of

k⊗V ⊗k⊗V ⊗k ⊂ kG⊗V ⊗kG⊗V ⊗kG ∼= (kG⊗V ⊗kG)⊗kG (kG⊗V ⊗kG).

PBW deformations of group twisted quadratic algebras. Now suppose H

is a PBW deformation of S o G. Then H is generated by kG and V subject to
nonhomogeneous relations of degrees 2 and 1 of the form

P = {r − α(r)− β(r) : r ∈ R} and

P ′ = {r′ − λ(r′) : r′ ∈ R′}

for some k-linear parameter functions

α : R→ V ⊗ kG, β : R→ kG, λ : R′ → kG .

That is, H can be realized as the quotient

H = TkG(kG⊗ V ⊗ kG)/(P ∪ P ′).

Note we may assume that α takes values in V ⊗ kG ∼= k ⊗ V ⊗ kG, rather than
more generally in kG⊗ V ⊗ kG, without changing the k-span of P ∪P ′, since the
relations P ′ allow us to replace elements in kG⊗V ⊗kG with those in k⊗V ⊗kG.

In our main theorem below, we determine which such quotients define PBW
deformations of S o G in case S is a Koszul algebra. (We recall a definition of
Koszul algebra in Section 4.) For the statement of the theorem, we first need some
notation for decomposing any functions α, β, λ as above. We identify λ : R′ → kG
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with the function (of the same name) λ : kG ⊗ V → kG mapping g ⊗ v to
λ(g ⊗ v ⊗ 1− 1⊗ gv ⊗ g) for all g in G and v in V . We write

α(r) =
∑
g∈G

αg(r)g, β(r) =
∑
g∈G

βg(r)g, λ(h⊗ v) =
∑
g∈G

λg(h⊗ v)g

for functions αg : R→ V , βg : R→ k, λg : kG⊗V → k (identifying V with V ⊗ k
in V ⊗ kG). Write λ(g⊗−) : V → kG for the function induced from λ by fixing g
in G. Let m : kG⊗kG→ kG be multiplicaton on kG and let σ : kG⊗V → V ⊗kG
be the twist map given by

(2.3) σ(g ⊗ v) = gv ⊗ g for g in G, v in V.

For the statement of the theorem, we set

(2.4)
Hλ,α,β = TkG(kG⊗ V ⊗ kG) /

(
r − α(r)− β(r), r′ − λ(r′) : r ∈ R, r′ ∈ R′

)
for linear parameter functions α : R→ V ⊗ kG, β : R→ kG, λ : R′ → kG and for
R the space of quadratic relations and R′ the space of group action relations (2.2).
The functions α and β are extended uniquely to right kG-module homomorphisms
from R⊗ kG to V ⊗ kG and kG, respectively.

Theorem 2.5. Let G be a finite group and let V be a kG-module. Let S =
Tk(V )/(R) be a Koszul algebra with R a kG-submodule of V ⊗ V . Then a filtered
algebra H is a PBW deformation of S oG if and only if

H ∼= Hλ,α,β

for linear parameter functions α : R → V ⊗ kG, β : R → kG, λ : kG⊗ V → kG
satisfying

(1) 1⊗ λ− λ(m⊗ 1) + (λ⊗ 1)(1⊗ σ) = 0,
(2) λ(λ⊗ 1)− λ(1⊗ α) = (1⊗ β)− (β ⊗ 1)(1⊗ σ)(σ ⊗ 1),
(3) (1⊗ α)− (α⊗ 1)(1⊗ σ)(σ ⊗ 1) = λ⊗ 1 + (1⊗ λ)(σ ⊗ 1),
(4) α((1⊗ σ)(α⊗ 1)− 1⊗ α) +

∑
g∈G αg ⊗ λ(g ⊗−) = 1⊗ β − β ⊗ 1,

(5) β((1⊗ σ)(α⊗ 1)− 1⊗ α) = −λ(β ⊗ 1),
(6) α⊗ 1− 1⊗ α = 0,

upon projection of images of the maps to S o G. Here, the map in (1) is defined
on kG⊗ kG⊗ V , the maps in (2) and (3) are defined on kG⊗R, the map in (6)
is defined on (V ⊗ R) ∩ (R ⊗ V ) ⊂ V ⊗ V ⊗ V , and (6) implies that the maps in
(4) and (5) are also defined on (V ⊗R) ∩ (R⊗ V ).

We will prove the theorem in Section 5 as a corollary of Theorem 5.3, after first
developing some homological algebra in Sections 3 and 4.

The theorem above includes the case of filtered quadratic algebras defined over
the ring kG instead of the field k. Such algebras preserve the action of kG and
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correspond to the case λ = 0 in the theorem above. We recover a result from [14]
which we rephrase below to highlight the role of the twisting map σ. The theorem
was developed to provide tools particularly in the case that kG is not semsimple.

Note that the action of G on itself by conjugation induces an action on the
parameter functions α and β (with (gα)(r) = g(α( g

−1
r)) as usual and g(v ⊗ h) =

gv ⊗ ghg−1 for r in R, g in G, and v in V ).

Theorem 2.6. [14, Theorem 5.4] Let G be a finite group and let V be a kG-
module. Let S = Tk(V )/(R) be a Koszul algebra for which R is a kG-submodule
of V ⊗ V . Then a filtered quadratic algebra H is a PBW deformation of S o G
preserving the action of G if and only if

H ∼= H0,α,β

for some G-invariant linear parameter functions α : R → V ⊗ kG, β : R → kG
satisfying, upon projection to S oG,

(i) α⊗ 1− 1⊗ α = 0 ,
(ii) α((1⊗ σ)(α⊗ 1)− 1⊗ α) = 1⊗ β − β ⊗ 1,

(iii) β((1⊗ σ)(α⊗ 1)− 1⊗ α) = 0.

Here, the map in (i) is defined on (V ⊗ R) ∩ (R ⊗ V ), and (i) implies that the
maps in (ii) and (iii) are also defined on (V ⊗R) ∩ (R⊗ V ).

Proof. The additional hypothesis, that the action of G is preserved in the deforma-
tion, is equivalent to setting λ = 0 in Theorem 2.5. In this case, Condition (1) of
Theorem 2.5 is vacuous, and Conditions (2) and (3) are equivalent to G-invariance
of α and β. Conditions (4), (5), (6) become Conditions (ii), (iii), (i) here, respec-
tively. �

Remark 2.7. The conditions of the above theorems generalize those of Braverman
and Gaitsgory [2, Lemma 3.3] from Koszul algebras S to skew group algebras SoG.
Their Condition (I) corresponds to our Conditions (1), (2), and (3) in Theorem 2.5;
these conditions limit the possible relations of filtered degree 1. The nonmodular
case can be proven using the theory of Koszul rings over the semisimple ring kG,
as in [4]. In the modular case, when char(k) divides |G|, we found in [14] that
more complicated homological information is required to obtain PBW conditions
using this approach.

3. Deformations

In this section, we recall the general theory of deformations and Hochschild
cohomology that we will need and show how it applies to the algebras Hλ,α,β of
Theorem 2.5.

Recall that for any k-algebra A, the Hochschild cohomology of an A-bimodule
M in degree n is

HHn(A,M) = ExtnAe(A,M),
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where Ae = A⊗Aop is the enveloping algebra of A, and the bimodule structure of
M defines it as an Ae-module. In the case that M = A, we abbreviate HHn(A) =
HHn(A,A).

Bar and reduced bar resolutions. Hochschild cohomology can be defined using
the bar resolution, that is, the free resolution of the Ae-module A given as:

· · · δ3−→ A⊗ A⊗ A⊗ A δ2−→ A⊗ A⊗ A δ1−→ A⊗ A δ0−→ A→ 0,

where

(3.1) δn(a0 ⊗ · · · ⊗ an+1) =
n∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

for all n ≥ 0 and a0, . . . , an+1 ∈ A. If A is an N-graded algebra, then each tensor
power of A is canonically a graded A-bimodule. The Hochschild cohomology of
A inherits this grading from the bar resolution and thus is bigraded: HHi(A) =⊕

j HHi,j(A) with HHi,j(A) the subspace consisting of homogeneous elements of
graded degree j as maps. For our arguments, we will need to use the reduced
bar resolution, which replaces the Ae-module A⊗(n+2), for each n, by its vector
space quotient A ⊗ (A)⊗n ⊗ A, where A = A/k (the vector space quotient by all
scalar multiples of the multiplicative identity 1A in A). The differentials on the
bar resolution factor through these quotients to define differentials for the reduced
bar resolution, and we will use the same notation δn for these.

Deformations. A deformation of A over k[t] is an associative k[t]-algebra At
with underlying vector space A[t] such that At|t=0

∼= A as algebras. The product
∗ on a deformation At of A is determined by its values on pairs of elements of A,

(3.2) a1 ∗ a2 = a1a2 + µ1(a1 ⊗ a2)t+ µ2(a1 ⊗ a2)t2 + · · ·

where a1a2 is the product of a1 and a2 in A and each µj : A ⊗ A → A is some
k-linear map (called the j-th multiplication map) extended to be linear over k[t].
(We require that only finitely many terms in the above expansion for each pair
a1, a2 are nonzero.) We may (and do) assume that 1A is the multiplicative identity
with respect to the multiplication ∗ of At. (Each deformation is equivalent to one
with 1A serving as the multiplicative identity; see [7, p. 43].)

We identify the maps µi with 2-cochains on the reduced bar resolution using
the canonical isomorphism Hom k(A⊗ A,A) ∼= Hom Ae(A⊗ A⊗ A⊗ A,A). (Our
assumptions imply that the value of µi is 0 if either argument is the multiplicative
identity of A.) We will use the same notation for elements of A and A when no
confusion will arise.

Associativity of the multiplication ∗ implies certain conditions on the maps µi
which are elegantly phrased in [6] in terms of the differential δ and the Gersten-
haber bracket [ , ], as we explain next. The Gerstenhaber bracket for 2-cochains
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ξ, ν on the (reduced) bar resolution is the 3-cochain defined by

(3.3)
[ξ, ν](a1 ⊗ a2 ⊗ a3) = ξ(ν(a1 ⊗ a2)⊗ a3)− ξ(a1 ⊗ ν(a2 ⊗ a3))

+ν(ξ(a1 ⊗ a2)⊗ a3)− ν(a1 ⊗ ξ(a2 ⊗ a3))

for all a1, a2, a3 ∈ A. See [5] for the definition of Gerstenhaber bracket in other
degrees.

Obstructions. If At is a deformation of a k-algebra A over k[t], associativity of
multiplication ∗ implies in particular (see [6]) that

δ∗3(µ1) = 0 (µ1 is a Hochschild 2-cocycle),(3.4)

δ∗3(µ2) = 1
2
[µ1, µ1] (the first obstruction vanishes), and(3.5)

δ∗3(µ3) = [µ1, µ2] (the second obstruction vanishes).(3.6)

Here, δ∗3 denotes the map from Hom Ae(A⊗A⊗2⊗A,A) to Hom Ae(A⊗A⊗3⊗A,A)

induced by δ3, and we have identified µ1, µ2, µ3 with functions on A ⊗ A⊗2 ⊗ A,
as described above. Associativity of the multiplication ∗ also implies that higher
degree “obstructions” vanish, i.e., it forces necessary conditions on all the µj. We
will only need to look closely at the above beginning obstructions: Higher degree
obstructions relevant to our setting will automatically vanish because of the special
nature of Koszul algebras (see the proof of Theorem 5.3).

Graded deformations. Assume that the k-algebra A is N-graded. Extend the
grading on A to A[t] by setting deg(t) = 1. A graded deformation of A over k[t]
is a deformation of A over k[t] that is graded, i.e., each map µj : A ⊗ A → A is
homogeneous of degree −j. An i-th level graded deformation of A is a deformation
over k[t]/(ti+1), i.e., an algebra Ai with underlying vector space A[t]/(ti+1) and
multiplication as in (3.2) in which terms involving powers of t greater than i are
0. An i-th level graded deformation Ai of A lifts (or extends) to an (i+ 1)-st level
graded deformation Ai+1 if the j-th multiplication maps of Ai and Ai+1 coincide
for all j ≤ i.

We next point out that the algebra Hλ,α,β defined in (2.4) gives rise to a graded
deformation of S oG in case it has the PBW property.

Proposition 3.7. If Hλ,α,β is a PBW deformation of S o G, then Hλ,α,β is the
fiber of a deformation of A = S oG:

Hλ,α,β
∼= At

∣∣
t=1

as filtered algebras, for At a graded deformation of S oG over k[t].

Proof. We define the algebra At by

At = TkG(kG⊗ V ⊗ kG)[t]/(r − α(r)t− β(r)t2, r′ − λ(r′)t : r ∈ R, r′ ∈ R′).
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We claim that At and (S o G)[t] are isomorphic as k[t]-modules. To see this,
consider the natural quotient map

TkG(kG⊗ V ⊗ kG)→ TkG(kG⊗ V ⊗ kG)/(R ∪R′) ∼= S oG

and let ι from SoG to TkG(kG⊗V ⊗kG) be its natural k-linear section. Composing
ι with the quotient map onto Hλ,α,β yields an isomorphism of filtered vector spaces
since Hλ,α,β has the PBW property. Now extend ι to a k[t]-module homomorphism
from S o G[t] to TkG(kG ⊗ V ⊗ kG)[t]. The composition of this map with the
quotient map onto At can be seen to be an isomorphism of vector spaces by the
above discussion and a degree argument. The rest of the proof is a straightforward
generalization of the proof of [15, Proposition 6.5], which is the case S = S(V )
and α = 0. Here, r replaces v⊗w−w⊗ v and the first and second multiplication
maps µ1 and µ2 satisfy

λ(g ⊗ v ⊗ 1− 1⊗ gv ⊗ g) = µ1(g ⊗ v)− µ1(
gv ⊗ g),

α(r) = µ1(r), and β(r) = µ2(r)

for all g in G, v in V , and r in R. �

4. Hochschild cohomology of group twisted Koszul algebras

We will look more closely at the Hochschild 2-cocycle condition (3.4) and the
obstructions (3.5) and (3.6) in the case that A is a group twisted quadratic algebra
S o G. A convenient resolution for this purpose was introduced by Guccione,
Guccione, and Valqui [8]. We now recall a definition of a Koszul algebra and from
[14] a modified version of this construction for Koszul algebras.

Twisted product resolution. Let S be a quadratic algebra with finite dimen-
sional generating k-vector space V and subspace of relations R ⊂ V ⊗ V :

S = Tk(V )/(R) .

Recall that S is a Koszul algebra if the complex

· · · → K3
d3−→ K2

d2−→ K1
d1−→ K0

d0−→ S → 0

is a free Se-resolution of S, where Kn = S ⊗ K̃n ⊗ S with K̃0 = k, K̃1 = V , and

K̃n =
n−2⋂
j=0

(V ⊗j ⊗R⊗ V ⊗(n−2−j)), n ≥ 2,

and the differential is restricted from that of the (reduced) bar resolution of S,
defined in (3.1), so that dn = δn|Kn . (We have identified K0 with S ⊗ S. This
definition of a Koszul algebra is equivalent to several more standard definitions;
see, e.g. [10].)
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Let G be finite group acting by graded automorphisms on S and set A = SoG.
The twisted product resolution X r of A as an Ae-module is the total complex of
the double complex X r, r, where

(4.1) Xi,j = A⊗ (kG)⊗i ⊗ K̃j ⊗ A,

and Ae acts by left and right multiplication on the outermost tensor factors A:

X0,3

dv0,3

��

...

��

...

��
X0,2

dv0,2

��

X1,2
dh1,2

oo

dv1,2

��

X2,2
dh2,2

oo

dv2,2

��

· · ·oo

X0,1

dv0,1

��

X1,1
dh1,1

oo

dv1,1

��

X2,1
dh2,1

oo

dv2,1

��

· · ·oo

X0,0 X1,0
dh1,0

oo X2,0
dh2,0

oo · · ·oo

To define the differentials, we first identify each Xi,j with a tensor product over A
(see [14, Section 4]),

(4.2) Xi,j
∼= (A⊗ (kG)⊗i ⊗ kG)⊗A (S ⊗ K̃j ⊗ A),

where the right action of A on A⊗ (kG)⊗i ⊗ kG is given by

(a⊗ g1 ⊗ · · · ⊗ gi ⊗ gi+1)sh = a(g1···gi+1s)⊗ g1 ⊗ · · · ⊗ gi ⊗ gi+1h

and the left action of A on S ⊗ K̃j ⊗ A is given by

sh(s′ ⊗ x⊗ a) = s(hs′)⊗ hx⊗ ha

for all g1, . . . , gi+1, h in G, s, s′ in S, and a in A. (We have suppressed tensor
symbols in writing elements of A to avoid confusion with tensor products defining
the resolution.) The horizontal and vertical differentials on the bicomplex X r, r,
given as a tensor product over A via (4.2), are then defined by dhi,j = di ⊗ 1 and

dvi,j = (−1)i⊗dj, respectively, where the notation d is used for both the differential
on the reduced bar resolution of kG (induced to an A ⊗ (kG)op-resolution) and
on the Koszul resolution of S (induced to an S ⊗ Aop-resolution). Setting Xn =
⊕i+j=nXi,j for each n ≥ 0 yields the total complex X r:
(4.3) · · · → X2 → X1 → X0 → A→ 0,
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with differential in positive degrees n given by dn =
∑

i+j=n(dhi,j + dvi,j), and in

degree 0 by the multiplication map. By [14, Theorem 4.3], X r is a free resolution
of the Ae-module A = S oG.

Chain maps between reduced bar and twisted product resolutions. We
found in [14] useful chain maps converting between the bar resolution and the
(nonreduced) twisted product resolution X r of A = S o G. We next extend [14,
Lemma 4.7], adding more details and adapting it for use with the reduced bar
resolution. See also [15, Lemma 7.3] for the special case S = S(V ). We consider
elements of K̃j ⊂ V ⊗j to have graded degree j and elements of (kG)⊗i to have
graded degree 0.

Lemma 4.4. For A = S o G, there exist morphisms of complexes of graded A-
bimodules,

φn : Xn → A⊗ A⊗n ⊗ A and ψn : A⊗ A⊗n ⊗ A→ Xn ,

i.e., A-bimodule homomorphisms φn and ψn such that the diagram

· · · // X2
d2 //

φ2
��

X1
d1 //

φ1
��

X0
d0 //

φ0
��

A //

��

0

· · · // A⊗A⊗A⊗A
δ2 //

ψ2

OO

A⊗A⊗A
δ1 //

ψ1

OO

A⊗A
δ0 //

ψ0

OO

A //

=

OO

0

commutes, the maps φn, ψn are of each of graded degree 0, and ψnφn is the identity
map on Xn for all n ≥ 0.

Proof. We will not need in fact the general statement of the lemma in this paper,
but rather some of the explicit values of the maps in low degrees. These we give
in this proof and in an additional lemma; here we show explicitly that ψnφn is
the identity map for n = 0, 1, 2 and indicate a technique for proving the general
statement. Alternatively, the general statement may be proven by taking advan-
tage of properties of twisted product resolutions: Chain maps between the Koszul
resolution and the bar resolution exist for which the composition is the identity
map on the Koszul resolution; we compose these chain maps with an isomorphism
between the reduced bar resolution of SoG and the twisted product resolution of
two other reduced bar resolutions, one for S and one for kG, to obtain the desired
morphisms in the statement of the lemma.

We again suppress tensor symbols in writing elements of A to avoid confusion
with tensor products defining the resolution. In degree 0, ψ0 and φ0 may be chosen
to be identity maps on A⊗ A. As in [14, Lemma 4.7], we may set

φ1(1⊗ g ⊗ 1) = 1⊗ g ⊗ 1 (on X1,0), φ1(1⊗ v ⊗ 1) = 1⊗ v ⊗ 1 (on X0,1),
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for all nonidentity g in G and v in V , and these values determine φ1 as an A-
bimodule map. Moreover, we set

ψ1(1⊗ g ⊗ 1) = 1⊗ g ⊗ 1 (in X1,0),

ψ1(1⊗ vg ⊗ 1) = 1⊗ v ⊗ g + v ⊗ g ⊗ 1 (in X0,1 ⊕X1,0)

for nonidentity g in G and v in V and use the identification (4.2) for evaluating
the differential to check that d1ψ1 = ψ0δ1 on these arguments. In order to extend
ψ1 to an A-bimodule map on A ⊗ A ⊗ A, we first choose a homogeneous vector
space basis of A consisting of the elements g 6= 1G, vg, and sg as g ranges over
the elements of G, v ranges over a k-basis of V , and s ranges over a k-basis of
homogeneous elements of S of degree ≥ 2. Tensoring each of these elements on
the left and right by 1 then gives a free A-bimodule basis of A ⊗ A ⊗ A. The
function ψ1 is already defined on elements of the form 1 ⊗ g ⊗ 1 and 1 ⊗ vg ⊗ 1;
we may define ψ1 on elements of the form 1⊗ s⊗ 1 so that d1ψ1 = ψ0δ1 on these
elements and then define

ψ1(1⊗ sg ⊗ 1) = ψ1(1⊗ s⊗ g) + s⊗ g ⊗ 1

so that d1ψ1 = ψ0δ1 on these elements as well. Then ψ1φ1 is the identity map on
X1, by construction.

Define φ2 by setting

φ2(1⊗ g ⊗ h⊗ 1) = 1⊗ g ⊗ h⊗ 1 (on X2,0),

φ2(1⊗ g ⊗ v ⊗ 1) = 1⊗ g ⊗ v ⊗ 1− 1⊗ gv ⊗ g ⊗ 1 (on X1,1),

φ2(1⊗ r ⊗ 1) = 1⊗ r ⊗ 1 (on X0,2)

for all nonidentity g, h in G, v in V , and r in R. One may check that δ2φ2 = φ1d2.
Now set

ψ2(1⊗ g ⊗ h⊗ 1) = 1⊗ g ⊗ h⊗ 1 (in X2,0),

ψ2(1⊗ vh⊗ g ⊗ 1) = v ⊗ h⊗ g ⊗ 1 (in X2,0),

ψ2(1⊗ g ⊗ vh⊗ 1) = 1⊗ g ⊗ v ⊗ h+ gv ⊗ g ⊗ h⊗ 1 (in X1,1 ⊕X2,0),

ψ2(1⊗ r ⊗ 1) = 1⊗ r ⊗ 1 (in X0,2),

for all g, h in G, v in V , and r in R. A calculation shows that d2ψ2 = ψ1δ2 on these
elements. Letting g, h range over the elements of G, v over a k-basis of V , and r
over a k-basis of R, we obtain a linearly independent set consisting of elements of
the form 1⊗g⊗h⊗1, 1⊗vh⊗g⊗1, 1⊗g⊗vh⊗1, and 1⊗ r⊗1 on which ψ2 has
already been defined. Extend the k-basis of R to a k-basis of V ⊗ V by including
additional elements of the form v⊗w for v, w in V . Now define ψ2(1⊗ v⊗w⊗ 1)
arbitrarily subject to the condition that d2ψ2 = ψ1δ2 on these elements. Let

(4.5)
ψ2(1⊗ vg ⊗ w ⊗ 1) = ψ2(1⊗ v ⊗ gw ⊗ g) + v ⊗ g ⊗ w ⊗ 1, and

ψ2(1⊗ v ⊗ wg ⊗ 1) = ψ2(1⊗ v ⊗ w ⊗ g)
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for all g in G and v, w in V . One checks that d2ψ2 = ψ1δ2 on these elements
as well. Extend these elements to a free A-bimodule basis of A ⊗ A ⊗ A ⊗ A.
We may define ψ2 on the remaining free basis elements so that d2ψ2 = ψ1δ2.
By construction, ψ2φ2 is the identity map on X2. The rest of the proof may be
completed by induction, or by properties of twisted tensor products as discussed
at the start of the proof. �

We will need some further values of φ in homological degree 3, which we set
in the next lemma. The lemma is proven by directly checking the chain map
condition. Other values of φ3 may be defined by extending to a free A-bimodule
basis of A⊗ (A)⊗3 ⊗ A. Recall the map σ is defined by equation (2.3).

Lemma 4.6. We may choose the map φ3 in Lemma 4.4 so that

φ3(1⊗ x⊗ 1) = 1⊗ x⊗ 1 (on X0,3),

φ3(1⊗ g ⊗ r ⊗ 1) = 1⊗ g ⊗ r ⊗ 1− (1⊗ σ ⊗ 1⊗ 1)(1⊗ g ⊗ r ⊗ 1)

+ (1⊗ 1⊗ σ ⊗ 1)(1⊗ σ ⊗ 1⊗ 1)(1⊗ g ⊗ r ⊗ 1) (on X1,2)

for all nonidentity g in G, r in R, and x in (V ⊗R) ∩ (R⊗ V ).

5. Homological PBW conditions

We now give homological conditions for a filtered algebra to be a PBW defor-
mation of a Koszul algebra twisted by a group. These conditions are a translation
of the necessary homological Conditions (3.4), (3.5), and (3.6) into conditions on
the parameter functions α, β, λ defining a potential deformation; we prove these
conditions are in fact sufficient.

Again, let S be a Koszul algebra generated by a finite dimensional vector space
V with defining relations R and an action of a finite group G by graded auto-
morphisms. Let R′ be the space of group action relations defined in (2.2). Let
A = SoG. We use the resolution X r of (4.1) to express the Hochschild cohomology
HH

r
(A).

Remark 5.1. Just as in [15, Lemma 8.2], we may identify the k-linear functions

α : R→ V ⊗ kG, β : R→ kG, and λ : R′ → kG

with 2-cochains on the resolution X r, i.e., A-bimodule homomorphisms from X2

to A. Indeed, both α and β extend uniquely to cochains on X0,2 = A ⊗ R ⊗ A
since a cochain is an A-bimodule homomorphism and thus determined there by
its values on R. Similarly, λ corresponds to a unique cochain on X1,1 taking the
value λ(g ⊗ v ⊗ 1 − 1 ⊗ gv ⊗ g) on elements of the form 1 ⊗ g ⊗ v ⊗ 1. Here we
identify the target spaces of α, β, λ with subspaces of A. We extend these cochains
defined by α, β, λ to all of X r by setting them to be 0 on the components of X r on
which we did not already define them.
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We fix choices of chain maps φ, ψ satisfying Lemmas 4.4 and 4.6. We define
the Gerstenhaber bracket of cochains on X r by transferring the Gerstenhaber
bracket (3.3) on the (reduced) bar resolution to X r using these chain maps: If ξ, ν
are Hochschild cochains on X r, we define

(5.2) [ξ, ν] = φ∗([ψ∗(ξ), ψ∗(ν)]),

another cochain on X r. At the chain level, this bracket depends on the choice of
chain maps φ, ψ, although at the level of cohomology, it does not. The choices we
have made in Lemmas 4.4 and 4.6 provide valuable information, as we see next.

Theorem 5.3. Let S be a Koszul algebra over the field k generated by a finite
dimensional vector space V . Let G be a finite group acting on S by graded auto-
morphisms. The algebra Hλ,α,β defined in (2.4) is a PBW deformation of S o G
if and only if

(a) d∗(α + λ) = 0,
(b) [α + λ, α + λ] = 2d∗β, and
(c) [λ+ α, β] = 0,

where α, β, λ are identified with cochains on the twisted product resolution X r as
in Remark 5.1.

Proof. We adapt ideas of [2, Theorem 4.1], first translating the above Condi-
tions (a), (b), and (c) to conditions on the reduced bar resolution itself. The proof
is similar to that of [14, Theorem 5.4], but certain arguments must be altered to
allow for the additional parameter function λ.

If Hλ,α,β is a PBW deformation of S o G, then by Proposition 3.7, there are
Hochschild 2-cochains µ1 and µ2 on the (reduced) bar resolution such that the
Conditions (3.4), (3.5), and (3.6) hold, that is, µ1 is a Hochschild 2-cocycle,
[µ1, µ1] = 2δ∗(µ2), and [µ1, µ2] is a coboundary. By the proofs of Proposition 3.7
and Lemma 4.4,

α + λ = φ∗2(µ1) and β = φ∗2(µ2).

Since µ1 is a cocycle, it follows that d∗(α + λ) = 0, that is, Condition (a) holds.
For Condition (b), note that each side of the equation is automatically 0 on X3,0

and on X2,1, by a degree argument. We will evaluate each side of the equation on
X1,2 and on X0,3. By definition,

[α + λ, α + λ] = φ∗[ψ∗(α + λ), ψ∗(α + λ)]

= φ∗([ψ∗φ∗(µ1), ψ
∗φ∗(µ1)])

= 2φ∗(ψ∗φ∗(µ1)(ψ
∗φ∗(µ1)⊗ 1− 1⊗ ψ∗φ∗(µ1)).

We evaluate on X1,2. By Lemma 4.6, the image of φ3 on X1,2 is contained in

(kG⊗ Im(φ2

∣∣
X0,2

))⊕ (V ⊗ Im(φ2

∣∣
X1,1

)) ∩ (Im(φ2

∣∣
X0,2

)⊗ kG)⊕ (Im(φ2

∣∣
X1,1

)⊗ V ).
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Therefore, since ψ2φ2 is the identity map, applying ψ∗φ∗(µ1)⊗1−1⊗ψ∗φ∗(µ1) to
an element in the image of φ3 is the same as applying µ1⊗ 1− 1⊗ µ1. Since µ1 is
a Hochschild 2-cocycle, the image of µ1⊗1−1⊗µ1 is 0 upon projection to SoG,
which implies that the image of µ1 ⊗ 1 − 1 ⊗ µ1 on φ3(X1,2) is contained in the
subspace of A⊗A spanned by all g⊗ v− gv⊗ g for nonidentity g in G and v in V .
This is in the image of φ1, and so again, applying ψ∗φ∗(µ1) is the same as applying
µ1. Hence [α+ λ, α+ λ] = φ∗([µ1, µ1]) on X1,2. Condition (3.5) then implies that
Condition (b) holds on X1,2. A similar argument verifies Condition (b) on X0,3.
Condition (c) holds by a degree argument: The bracket [λ+α, β] is cohomologous
to [µ1, µ2], which by (3.6) is a coboundary. So [α + λ, β] is itself a coboundary:
[λ + α, β] = d∗(ξ) for some 2-cochain ξ. Now [λ + α, β] is of graded degree −3,
and the only 2-cochain on X r of graded degree −3 is 0.

For the converse, assume Conditions (a), (b), and (c) hold. We may now set
µ1 = ψ∗(α + λ) and µ2 = ψ∗(β). Set

γ = δ∗3(µ2)− 1
2
[µ1, µ1].

Condition (a) of the theorem implies that α + λ is a 2-cocycle and thus µ1 is a
2-cocycle on the reduced bar resolution of A. The 2-cocycle µ1 then is a first
multiplication map on A and defines a first level deformation A1 of A = S oG.

Next we will see that Condition (b) implies this first level deformation can be
extended to a second level deformation. By Lemma 4.4,

φ∗3(γ) = φ∗3(δ
∗
3 (ψ∗2(β)))− 1

2
φ∗3[ψ

∗
2(α + λ), ψ∗2(α + λ)]

= d∗(φ∗2ψ
∗
2(β))− 1

2
[α + λ, α + λ]

= d∗3(β)− 1
2
[α + λ, α + λ].

Hence φ∗3(γ) = 0 by Condition (b). This forces γ to be a coboundary, say γ = δ∗(µ)
for some 2-cochain µ on the reduced bar resolution, necessarily of graded degree
−2. Now,

d∗(φ∗(µ)) = φ∗(δ∗(µ)) = φ∗(γ) = 0 ,

so φ∗(µ) is a 2-cocycle. Then there must be a 2-cocycle µ′ on the reduced bar
resolution with φ∗µ′ = φ∗µ. We replace µ2 by µ̃2 = µ2−µ+µ′ so that φ∗(µ̃2) = β
but

2δ∗(µ̃2) = 2δ∗(µ2 + µ′)− 2γ = [µ1, µ1]

by the definition of γ, since µ′ is a cocycle. Thus the obstruction to lifting A1 to
a second level deformation using the multiplication map µ̃2 vanishes, and µ1 and
µ̃2 together define a second level deformation A2 of A.

We now argue that Condition (c) implies A2 lifts to a third level deformation of
A. Adding the coboundary µ′ − µ to µ2 adds a coboundary to [µ2, µ1], and hence
[µ̃2, µ1] = δ∗3(µ3) for some cochain µ3 on the reduced bar resolution of graded degree
−3. Thus the obstruction to lifting A2 to a third level deformation vanishes and
the multiplication maps µ1, µ̃2, µ3 define a third level deformation A3 of A.
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The obstruction to lifting A3 to a fourth level deformation of A lies in HH3,−4(A)
by [2, Proposition 1.5]. Applying the map φ∗ to this obstruction gives a cochain of
graded degree −4 on X3, as φ is of graded degree 0 as a chain map by Lemma 4.4.
But X3 is generated, as an A-bimodule, by elements of graded degree 3 or less,
and thus φ∗ applied to the obstruction is 0, implying that the obstruction is a
coboundary. Thus the deformation A3 lifts to a fourth level deformation A4 of
A. Similarly, the obstruction to lifting an i-th level deformation Ai of A lies in
HH3,−(i+1), and again since S is Koszul, the obstruction is a coboundary. So the
deformation Ai lifts to Ai+1, an (i+ 1)-st level deformation of A, for all i ≥ 1.

The corresponding graded deformation At of A is the vector space A[t] with
multiplication determined by

a ∗ a′ = aa′ + µ1(a, a
′)t+ µ2(a, a

′)t2 + µ3(a, a
′)t3 + . . .

for all a, a′ ∈ A.
We next explain that Hλ,α,β is isomorphic, as a filtered algebra, to the fiber

At|t=1. First note that At|t=1 is generated by V and G (since the associated
graded algebra of At is A). Thus we may define an algebra homomorphism

TkG(kG⊗ V ⊗ kG) −→ At
∣∣
t=1

and then use Lemma 4.4 to verify that the elements

r − α(r)− β(r) for r ∈ R, and

g ⊗ v ⊗ 1− 1⊗g v ⊗ g − λ(g ⊗ v) for g ∈ G, v ∈ V
lie in the kernel. We obtain a surjective homomorphism of filtered algebras,

Hλ,α,β −→ At
∣∣
t=1

.

We consider the dimension over k of each of the filtered components in the domain
and range: Each filtered component of Hλ,α,β has dimension at most that of the
corresponding filtered component of S o G since its associated graded algebra is
necessarily a quotient of S o G. But the associated graded algebra of At|t=1 is
precisely S oG, and so

dimk(F
d(S oG)) ≥ dimk(F

d(Hλ,α,β)) ≥ dimk(F
d(At

∣∣
t=1

)) = dimk(F
d(S oG)),

where F d indicates the summand of filtered degree d in N. Thus these dimensions
are all equal. It follows that Hλ,α,β

∼= At
∣∣
t=1

, and Hλ,α,β is a PBW deformation.
�

We now prove Theorem 2.5 as a consequence of Theorem 5.3, translating the
homological conditions into Braverman-Gaitsgory style conditions.

Proof of Theorem 2.5. We explained in Section 2 that each PBW deformation of
SoG has the form Hλ,α,β as defined in (2.4) for some parameter functions α, β, λ.
Theorem 5.3 gives necessary and sufficient conditions for such an algebra Hλ,α,β
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to be a PBW deformation of S o G. We will show that the Conditions (a), (b),
and (c) of Theorem 5.3 are equivalent to those of Theorem 2.5.

When convenient, we identify

Hom Ae(A⊗ An ⊗ A,A) ∼= Hom k(A
n
, A) .

Condition (a): d∗(α+ λ) = 0. The cochain d∗(α+ λ) has homological degree 3
and is the zero function if and only if it is 0 on each of X3,0, X2,1, X1,2, and X0,3.
It is automatically 0 on X3,0 since d(X3,0) trivially intersects X1,1⊕X0,2 on which
α + λ is defined.

On X2,1, d
∗(α) = 0 automatically, as α is 0 on X2,0⊕X1,1. We evaluate d∗(λ) on

the elements of a free Ae-basis of X2,1, using the identification (4.2) for evaluating
the differential:

d∗(λ)(1⊗ g ⊗ h⊗ v ⊗ 1)

= λ(g ⊗ h⊗ v ⊗ 1− 1⊗ gh⊗ v ⊗ 1 + 1⊗ g ⊗ hv ⊗ h
+ ghv ⊗ g ⊗ h⊗ 1− 1⊗ g ⊗ h⊗ v)

= gλ(h⊗ v)− λ(gh⊗ v) + λ(g ⊗ hv)h

in A for all g, h in G and v in V , which can be rewritten as Theorem 2.5(1).
Therefore d∗(α+ λ)|X2,1 = 0 if and only if Theorem 2.5(1) holds. (If g or h is the
identity group element 1G, then in the evaluation above, some of the terms are
0 as we are working with the reduced bar resolution. The condition remains the
same in these cases, and merely corresponds to the condition λ(1G⊗ v) = 0 for all
v in V .)

On X1,2, d
∗(α + λ) = 0 if and only if

d∗(α + λ)(1⊗ g ⊗ r ⊗ 1)

= (α + λ)(g ⊗ r ⊗ 1− 1⊗ gr ⊗ g − (σ ⊗ 1⊗ 1)(g ⊗ r ⊗ 1)− 1⊗ g ⊗ r)
= gα(r)− α(gr)g − (1⊗ λ)(σ ⊗ 1)(g ⊗ r)− (λ⊗ 1)(g ⊗ r)

vanishes for all g in G and r in R. (Note that the multiplication map takes r to
0 in A.) This is equivalent to the equality

1⊗ α− (α⊗ 1)(1⊗ σ)(σ ⊗ 1) = (1⊗ λ)(σ ⊗ 1) + λ⊗ 1

as functions on kG ⊗ R with values in A. Thus d∗(α + λ)|X1,2 = 0 if and only if
Theorem 2.5(3) holds.

On X0,3, d
∗(λ) is automatically 0 since λ is 0 on X0,2. So we compute d∗(α)|X0,3 .

Consider x in (R⊗ V ) ∩ (V ⊗R). Then

(5.4) d∗(α)(1⊗ x⊗ 1) = α(x⊗ 1− 1⊗ x) = (1⊗ α− α⊗ 1)(x).

So d∗(α+λ)|X0,3 = 0 if and only if 1⊗α−α⊗1 has image 0 in A, i.e., Theorem 2.5(6)
holds.
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Condition (b): [α+ λ, α+ λ] = 2d∗(β). On X3,0 and on X2,1, both sides of this
equation are automatically 0, as their graded degree is −2. We will compute their
values on X1,2 and on X0,3. First note that since λ and α each have homological
degree 2, by the definition (3.3) of bracket, [α, λ] = [λ, α] and so

[α + λ, α + λ] = [α, α] + 2[α, λ] + [λ, λ].

We will compute [λ, λ], [α, λ], and [α, α].
Note that [λ, λ] can take nonzero values only on X1,2. We will compute its

values on elements of the form 1⊗ g⊗ r⊗ 1 for g in G and r in R. By (3.3), (5.2),
and Lemmas 4.4 and 4.6, [λ, λ](1⊗ g ⊗ r ⊗ 1) = 2λ(λ⊗ 1)(g ⊗ r). Similarly,

[α, λ](1⊗ g ⊗ r ⊗ 1) = −λ(1⊗ α)(g ⊗ r).
Finally, note that [α, α]|X1,2 = 0 automatically for degree reasons. Just as in our
earlier calculation, we find that

d∗(β)(1⊗ g ⊗ r ⊗ 1) = (1⊗ β − (β ⊗ 1)(1⊗ σ)(σ ⊗ 1))(g ⊗ r).
Therefore, [α + λ, α + λ] = 2d∗(β) on X1,2 if and only if

2λ(λ⊗ 1)− 2λ(1⊗ α) = 2⊗ β − 2(β ⊗ 1)(1⊗ σ)(σ ⊗ 1)

on kG⊗R. This is equivalent to Theorem 2.5(2).
On X0,3, the bracket [λ, λ] vanishes. We compute [α, λ] and [α, α] on an element

1 ⊗ x ⊗ 1 of X0,3 with x in (V ⊗ R) ∩ (R ⊗ V ). Note that ψ∗(α)(r) = αψ(r) =
α(ψφ)r = α(r) for all r in R. Thus

(ψ∗(α)⊗ 1− 1⊗ ψ∗(α))(x) = (α⊗ 1− 1⊗ α)(x)

and therefore

[α, α](1⊗ x⊗ 1) = 2ψ∗(α)(α⊗ 1− 1⊗ α)(x) and

[α, λ](1⊗ x⊗ 1) = ψ∗(λ)(α⊗ 1− 1⊗ α)(x).

We apply ψ to (α ⊗ 1 − 1 ⊗ α)(x) using Lemma 4.4. Since (α ⊗ 1)(x) lies in
(V ⊗ kG)⊗V ⊂ A⊗A and (1⊗α)(x) lies in V ⊗ (V ⊗ kG) ⊂ A⊗A, we use (4.5)
to apply ψ:

ψ(α⊗ 1− 1⊗ α)(x) = (ψ(1⊗ σ)(α⊗ 1)− ψ(1⊗ α))(x) + y

for some element y in X1,1. However, α is zero on X1,1, so

ψ∗(α)(α⊗ 1− 1⊗ α)(x) = αψ((1⊗ σ)(α⊗ 1)− 1⊗ α)(x) .

We assume Condition (a) which we have shown implies Condition (6) of Theo-
rem 2.5, i.e., ((1 ⊗ σ)(α ⊗ 1) − 1 ⊗ α)(x) lies in R ⊗ kG since it is zero upon
projection to A. By the proof of Lemma 4.4,

φ((1⊗ σ)(α⊗ 1)− 1⊗ α)(x) = ((1⊗ σ)(α⊗ 1)− 1⊗ α)(x),

and applying αψ gives α((1⊗ σ)(α⊗ 1)− 1⊗ α)(x) since ψφ = 1. Hence

[α, α](1⊗ x⊗ 1) = 2α((1⊗ σ)(α⊗ 1)− 1⊗ α)(x) .
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Similarly, we apply ψ∗(λ) to (α⊗1−1⊗α)(x) again using (4.5). Recall that λ is only
nonzero on X1,1, and ψ(1⊗α) intersects X1,1 at 0; hence ψ∗(λ)(α⊗1−1⊗α)(x) =
ψ∗(λ)(α⊗ 1)(x) and

[α, λ](1⊗ x⊗ 1) = ψ∗(λ)(α⊗ 1)(x) = (
∑
g∈G

αg ⊗ λ(g ⊗−))(x) .

Therefore [α + λ, α + λ] = 2d∗(β) on X0,3 if and only if Theorem 2.5(4) holds.

Condition (c): [α + λ, β] = 0. On X3,0 X2,1, and X1,2, the left side of this
equation is automatically 0 for degree reasons. We will compute values on X0,3.
Similar to our previous calculation, we find

[λ, β] = λ(β ⊗ 1) and [α, β] = β((1⊗ σ)(α⊗ 1)− 1⊗ α)

on (V ⊗R)∩ (R⊗ V ). So [α+ λ, β] = 0 if and only if β((1⊗ σ)(α⊗ 1)− 1⊗α) =
−λ(β ⊗ 1). This is precisely Theorem 2.5(5). �

6. Application: Group actions on polynomial rings

We now consider the special case when S is the symmetric algebra S(V ) of a
finite dimensional k-vector space V . Let G be a finite group acting on S(V ) by
graded automorphisms. Let Hλ,κ be the k-algebra generated by the group ring
kG together with the vector space V and subject to the relations

• gv − gvg − λ(g, v), for g in G, v in V
• vw − wv − κ(v, w), for v, w in V,

where
λ : kG× V → kG, κ : V × V → kG⊕ (V ⊗ kG)

are bilinear functions. Letting κC and κL be the projections of κ onto kG and
V ⊗ kG, respectively, Hλ,κ is the algebra Hλ,α,β from earlier sections with α = κL

and β = κC . Its homogeneous version is the algebra

HomogeneousVersion(Hλ,κ) = S(V ) oG = H0,0 .

We say that Hλ,κ is a Drinfeld orbifold algebra if it has the PBW property:

GrHλ,κ
∼= S(V ) oG

as graded algebras. Thus Drinfeld orbifold algebras are PBW deformations of
S(V ) oG .

In characteristic zero, our definition of Drinfeld orbifold algebra coincides with
that in [13], up to isomorphism, even though no parameter λ appears there. This
is a consequence of Theorem 7.1 in the next section: In this nonmodular case,
Hλ,κ is isomorphic to H0,κ′ for some κ′.

The algebras Hλ,κ include as special cases many algebras of interest in the
literature, and our Theorem 6.1 below unifies results giving necessary and sufficient
conditions on parameter functions for Hλ,κ to have the PBW property. When λ =
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0 and κL = 0, Drinfeld orbifold algebras H0,κ include Drinfeld’s Hecke algebras [3]
and Etingof and Ginzburg’s symplectic reflection algebras [4]. When λ = 0 and
κC = 0, Drinfeld orbifold algebras H0,κ exhibit a Lie type structure: Many of
the conditions of Theorem 6.1 below are vacuous in this case, while Condition (3)
states that κL is G-invariant and Conditions (4) and (6) are analogs of the Jacobi
identity twisted by the group action. When κ = 0, Drinfeld orbifold algebras Hλ,0

include Lusztig’s graded affine Hecke algebras [11].
The following theorem simultaneously generalizes [13, Theorem 3.1] and [15,

Theorem 3.1].

Theorem 6.1. Let G be a finite group acting linearly on V , a finite dimensional
k-vector space. Then Hλ,κ is a PBW deformation of S(V ) oG if and only if

(1) λ(gh, v) = λ(g, hv)h+ gλ(h, v),

(2) κC( gu, gv)g−gκC(u, v) = λ
(
λ(g, v), u

)
−λ
(
λ(g, u), v

)
+
∑
a∈G

λ
(
g, κLa (u, v)

)
a ,

(3) g
(
κLg−1h(u, v)

)
− κLhg−1(gu, gv) = (hv − gv)λh(g, u)− (hu− gu)λh(g, v),

(4) 0 = 2
∑
σ∈Alt3

κCg (vσ(1), vσ(2))(vσ(3) − gvσ(3))

+
∑
a∈G

σ∈Alt3

κLga−1

(
vσ(1) + avσ(1), κ

L
a (vσ(2), vσ(3))

)
− 2

∑
a∈G

σ∈Alt3

κLa (vσ(1), vσ(2))λg(a, vσ(3)) ,

(5) 2
∑
σ∈Alt3

λ
(
κC(vσ(1), vσ(2)), vσ(3)

)
= −

∑
a∈G

σ∈Alt3

κCga−1

(
vσ(1) + avσ(1), κ

L
a (vσ(2), vσ(3))

)
,

(6) 0 = κLg (u, v)(w − gw) + κLg (v, w)(u− gu) + κLg (w, u)(v − gv) ,

in S(V ) oG, for all g, h in G and all u, v, w, v1, v2, v3 in V .

Proof. The theorem follows from Theorem 2.5 by rewriting the conditions explic-
itly on elements. �

Alternatively, the conditions of the theorem follow from strategic and tedious
application of the Composition-Diamond Lemma (such as in the proof of [13,
Theorem 3.1]). Condition (1) follows from consideration of overlaps of the form
ghv for g, h in G, v in V . For Conditions (2) and (3), we consider overlaps of the
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form gwv for w in V ; terms of degree 1 give rise to Condition (3) while those of
degree 0 give rise to Condition (2). Overlaps of the form uvw for u in V give the
other conditions: Terms of degree 0 give rise to Condition (5), terms of degree 1
give rise to Condition (4), and terms of degree 2 give rise Condition (6). Note
that we assume Condition (6) to deduce Conditions (4) and (5).

In the theorem above, we may set κL = 0 to obtain the conditions of [15,
Theorem 3.1] or instead set λ = 0 to obtain the conditions of [13, Theorem 3.1].
Note that in Theorem 6.1, Condition (3) measures the extent to which κL is G-
invariant. Indeed, the failure of κL to be G-invariant is recorded by d∗(λ), and so
λ is a cocycle if and only if κL is invariant. Condition (3) in particular implies
that κL1G is G-invariant.

The conditions in the theorem also generalize a special case of Theorem 2.7 in [9]
by Khare: He more generally considered actions of cocommutative algebras, while
we restrict to actions of group algebras kG. Khare more specifically restricted κL

to take values in the subspace V ∼= V ⊗ k of V ⊗ kG.
We next give some examples of Drinfeld orbifold algebras. The first example

exhibits parameters κC , κL, and λ all nonzero. The second example shows that a
new class of deformations is possible in the modular setting; see Remark 7.3.

Example 6.2. Let k have prime characteristic p > 2, and V = kv1 ⊕ kv2 ⊕ kv3.
Let G ≤ GL3(k) be the cyclic group of order p generated by the transvection g in
GL(V ) fixing v1, v2 and mapping v3 to v1 + v3:

G =
〈
g =

(
1 0 1
0 1 0
0 0 1

)〉
.

Define

λ(gi, v3) = igi−1, κC(v1, v3) = g = −κC(v3, v1), κ
L(v1, v3) = v2 = −κL(v3, v1),

and set λ, κC , κL to be zero on all other pairs of basis vectors. Then

Hλ,κ = TkG(kG⊗ V ⊗ kG)/(gv1 − v1g, gv2 − v2g, gv3 − v1g − v3g − 1,

v1v3 − v3v1 − v2 − g, v1v2 − v2v1, v2v3 − v3v2)

is a PBW deformation of S(V ) oG by Theorem 6.1.

Example 6.3. Let k have prime characteristic p > 2 and V = kv ⊕ kw. Suppose
G ≤ GL2(k) is the cyclic group of order p generated by g = ( 1 1

0 1 ) so that gv = v
and gw = v + w. Define

λ(gi, v) = igi, λ(1, w) = λ(g, w) = 0, λ(gi, w) =
(
i
2

)
gi for i > 2,

and κ = 0. Then one may check the conditions of Theorem 6.1 to conclude that

Hλ,0 = TkG(kG⊗ V ⊗ kG)/(gv − vg − g, gw − vg − wg, vw − wv)

is a PBW deformation of S(V ) oG.
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7. Comparison of modular and nonmodular settings

We now turn to the nonmodular setting, when the characteristic of the underly-
ing field k does not divide the order of the acting group G. We compare algebras
modelled on Lusztig’s graded affine Hecke algebra [11] to algebras modelled on
Drinfeld’s Hecke algebra [3] (such as the symplectic reflection algebras of Etingof
and Ginzburg [4]). The following theorem strengthens Theorem 4.1 of [15] while
simultaneously generalizing it to the setting of Drinfeld orbifold algebras (see [13])
in the nonmodular setting. The theorem was originally shown for Coxeter groups
and Lusztig’s graded affine Hecke algebras in [12].

Theorem 7.1. Suppose G acts linearly on a finite dimensional vector space V
over a field k whose characteristic is coprime to |G|. If the algebra Hλ,κ defined
in Section 6 is a PBW deformation of S(V ) oG for some parameter functions

λ : kG× V → kG and κ : V × V → kG⊕ (V ⊗ kG),

then there exists a parameter function

κ′ : V × V → kG⊕ (V ⊗ kG)

such that
Hλ,κ

∼= H0,κ′

as filtered algebras and thus H0,κ′ also exhibits the PBW property.

Proof. As in [15], define γ : V ⊗ kG→ kG by

γ(v ⊗ g) =
∑
a∈G

γa(v) ag

for γa : V → k the linear map defined by γa(v) = 1
|G|
∑

b∈G λab(b,
b−1
v) for all

v in V . (As before, for each h in G, λh : kG × V → k is defined by λ(b, v) =∑
h∈G λh(b, v)h for b in G and v in V .) We abbreviate γ(u) for γ(u ⊗ 1) for

u in V in what follows for simplicity of notation. Define a parameter function
κ′ : V × V → kG⊕ (V ⊗ kG) by

κ′(u, v) = γ(u)γ(v)− γ(v)γ(u) + λ(γ(u), v)− λ(γ(v), u)

+ κ(u, v)− κL(u, v)

+ 1
|G|

∑
g∈G

(1− γ)
(
( gκL)(u, v)

)
for u, v in V . Here, κL(u, v) is again the degree 1 part of κ, i.e., the projection
of κ(u, v) to V ⊗ kG, and we take the G-action on κL induced from the action of

G on itself by conjugation, i.e., (gκL)(u, v) = g(κL( g
−1
u, g

−1
v)) with g(v ⊗ h) =

gv ⊗ ghg−1 for g, h in G.
Let

F = TkG(kG⊗ V ⊗ kG)
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and identify v in V with 1⊗ v ⊗ 1 in F . Define an algebra homomorphism

f : F → Hλ,κ by v 7→ v + γ(v) and g 7→ g for all g ∈ G, v ∈ V,
after identifying Hλ,κ with a quotient of F . We will use Theorem 6.1 to verify
that the relations defining H0,κ′ as a quotient of F lie in the kernel of f . It will
follow that f extends to a filtered algebra homomorphism

f : H0,κ′ → Hλ,κ .

We first check that elements uv − vu − κ′(u, v) in F for u, v in V are mapped
to zero under f . On one hand, κ′(u, v) in F is mapped under f to

κ′(u, v) + 1
|G|

∑
g∈G

γ
(
( gκL)(u, v)

)
.

On the other hand, the commutator [u, v] = uv−vu in F maps to the commutator

[u+ γ(u), v + γ(v)] = [u, v] + [γ(u), γ(v)] +
(
uγ(v)− γ(v)u− vγ(u) + γ(u)v

)
in Hλ,κ. But [u, v] is κ(u, v) in Hλ,κ, and κ′(u, v) by definition expresses the com-
mutator [γ(u), γ(v)] in terms of κ(u, v) and other terms. Hence [u, v]+ [γ(u), γ(v)]
simplifies to

κ′(u, v)− λ(γ(u), v) + λ(γ(v), u) + κL(u, v)− 1
|G|

∑
g∈G

(1− γ)
(
(gκL)(u, v)

)
in Hλ,κ. We may also rewrite

uγ(v)− γ(v)u− vγ(u) + γ(u)v

as
λ(γ(u), v)− λ(γ(v), u)−

∑
g∈G

(
γg(v)( gu− u)g − γg(u)( gv − v)g

)
.

Hence, the relation uv − vu− κ′(u, v) in F maps under f to

(7.2) κL(u, v)− 1
|G|

∑
g∈G

(gκL)(u, v)−
∑
g∈G

(
γg(v)( gu− u)g − γg(u)( gv − v)g

)
.

We may then argue as in the proof of Theorem 4.1 of [15] to show that Condi-
tion (3) of Theorem 6.1 implies that∑
g∈G

(
γg(v)( gu− u)g − γg(u)( gv − v)g

)
= κL(u, v)− 1

|G|

∑
g,a∈G

g
(
κLa ( g

−1

u, g
−1

v)
)
gag−1

= κL(u, v)− 1
|G|

∑
g∈G

(gκL)(u, v) .

Thus expression (7.2) above is zero and uv − vu − κ′(u, v) lies in the kernel of f
for all u, v in V .

We may follow the rest of the proof of Theorem 4.1 of [15] to see that gv− gvg
lies in the kernel of f for all g in G and v in V and that f is an isomorphism. �
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Remark 7.3. Theorem 7.1 above is false in the modular setting, i.e., when char (k)
divides |G|. Indeed, Example 6.3 gives an algebra Hλ,0 exhibiting the PBW prop-
erty for some parameter function λ, but we claim that there is no parameter
κ′ : V × V → kG⊕ (V ⊗ kG) for which Hλ,0

∼= H0,κ′ as filtered algebras.
If there were, then H0,κ′ would exhibit the PBW property and any isomorphism

f : Hλ,0 → H0,κ′ would map the relation

gv − vg − g = gv − gvg − λ(g, v) = 0

in Hλ,0 to 0 in H0,κ′ . But f is an algebra homomorphism and takes the filtered
degree 1 component of Hλ,0 to that of H0,κ′ , giving a relation

f(g)f(v)− f(v)f(g)− f(g) = 0

in H0,κ′ with first two terms of the left hand side of filtered degree 1. In particular,
the sum of the terms of degree 0 vanish. But this implies that f(g) = 0 since the
degree 0 terms of f(g)f(v)−f(v)f(g) cancel with each other as kG is commutative.
This contradicts the assumption that f is an isomorphism.
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