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GROUP ACTIONS ON ALGEBRAS AND THE GRADED LIE

STRUCTURE OF HOCHSCHILD COHOMOLOGY

ANNE V. SHEPLER AND SARAH WITHERSPOON

Abstract. Hochschild cohomology governs deformations of algebras, and its
graded Lie structure plays a vital role. We study this structure for the Hochschild
cohomology of the skew group algebra formed by a finite group acting on an al-
gebra by automorphisms. We examine the Gerstenhaber bracket with a view
toward deformations and developing bracket formulas. We then focus on the
linear group actions and polynomial algebras that arise in orbifold theory and
representation theory; deformations in this context include graded Hecke alge-
bras and symplectic reflection algebras. We give some general results describing
when brackets are zero for polynomial skew group algebras, which allow us in
particular to find noncommutative Poisson structures. For abelian groups, we
express the bracket using inner products of group characters. Lastly, we inter-
pret results for graded Hecke algebras.

1. Introduction

Let G be a finite group acting on a C-algebra S by automorphisms. Defor-
mations of the natural semi-direct product S#G, the skew group algebra, include
many compelling and influential algebras. For example, when G acts linearly on a
finite dimensional, complex vector space V , it induces an action on the symmetric
algebra S(V ) (a polynomial ring). Deformations of S(V )#G play a profound role
in representation theory and connect diverse areas of mathematics. Graded Hecke
algebras were originally defined independently by Drinfeld [6] and (in the special
case of Weyl groups) by Lusztig [15]. These deformations of S(V )#G include sym-
plectic reflection algebras (investigated by Etingof and Ginzburg [7] in the study
of orbifolds) and rational Cherednik algebras (introduced by Cherednik [5] to solve
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Macdonald’s inner product conjectures). Gordon [11] used these algebras to prove
a version of the n! conjecture for Weyl groups due to Haiman.
The deformation theory of an algebra is governed by its Hochschild cohomology

as a graded Lie algebra under the Gerstenhaber bracket. Each deformation of the
algebra arises from a (noncommutative) Poisson structure, that is, an element of
Hochschild cohomology in degree 2 whose Gerstenhaber square bracket is zero.
Thus, a first step in understanding an algebra’s deformation theory is a depiction
of the Gerstenhaber bracket. In some situations, every noncommutative Poisson
structure integrates, i.e., lifts to a deformation (e.g., see Kontsevich [13]). Hal-
bout and Tang [12] investigate some of these structures for algebras C∞(M)#G
where M is a real manifold, concentrating on the case that M has a G-invariant
symplectic structure.
In this paper, we explore the rich algebraic structure of the Hochschild cohomol-

ogy of S#G with an eye toward deformation theory. We describe the Gerstenhaber
bracket on the Hochschild cohomology of S#G, for a general algebra S. We then
specialize to the case S = S(V ) to continue an analysis begun in two previous
articles. Hochschild cohomology is a Gerstenhaber algebra under two operations,
a cup product and a graded Lie (Gerstenhaber) bracket. In [19], we examined the
cohomology HH

q

(S(V )#G) as a graded algebra under cup product. In this paper,
we study its Gerstenhaber bracket and find noncommutative Poisson structures.
These structures catalog potential deformations of S(V )#G, most of which have
not yet been explored.
For any algebra A over a field k, both the cup product and Gerstenhaber bracket

on the Hochschild cohomology HH
q

(A) := Ext
q

A⊗Aop(A,A) are defined initially on
the bar resolution, a natural A ⊗ Aop-free resolution of A. The cup product has
another description as Yoneda composition of extensions of modules, which can be
transported to any other projective resolution. However, the Gerstenhaber bracket
has resisted such a general description. In this paper, we use isomorphisms of
cohomology which encode traffic between resolutions to analyze HH

q

(S#G) and
unearth its Gerstenhaber bracket.
For the case S = S(V ), we use Demazure operators on one hand and quan-

tum partial differentiation on the other hand to render the Gerstenhaber bracket
and gain theorems which predict its vanishing. For example, the cohomology
HH

q

(S#G) breaks into a direct sum over G. By invoking Demazure operators to
implement automorphisms of cohomology, we procure the following main result in
Section 9:

Theorem 9.2. The bracket of any two elements α, β in HH2(S(V )#G) supported
on group elements acting nontrivially on V is zero: [α, β] = 0 .

As a consequence of the theorem, the Gerstenhaber square bracket of every element
HH2(S(V )#G) supported off the kernel of the action of G on V defines a noncom-
mutative Poisson structure. In particular, if G acts faithfully, any Hochschild
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2-cocycle with zero contribution from the identity group element defines a non-
commutative Poisson structure.
The cohomology HH

q

(S#G) is graded not only by cohomological degree, but also
by polynomial degree. In [17], we showed that every constant Hochschild 2-cocycle
(i.e., of polynomial degree 0) defines a graded Hecke algebra. Since graded Hecke
algebras are deformations of S(V )#G (see Section 11), this immediately implies
that every constant Hochschild 2-cocycle has square bracket zero. We articulate
our automorphisms of cohomology using quantum partial differentiation to extend
this result in Section 8 to cocycles of arbitrary cohomological degree:

Theorem 8.1 The bracket of any two constant cocycles α, β in HH
q

(S(V )#G) is
zero: [α, β] = 0 .

Supporting these two main “zero bracket” theorems, we give formulas for cal-
culating brackets at the cochain level in Theorems 6.12 and 7.2. We apply these
formulas to the abelian case in Example 7.6 and express the bracket of 2-cocycles
in terms of inner products of characters. We use this example in Theorem 10.2
to show that the hypotheses of Theorem 9.2 can not be weakened and that its
converse is false for abelian groups.
We briefly outline our program. In Section 2, we establish notation and defini-

tions. In Sections 3 and 4, we construct an explicit, instrumental isomorphism
between HH

q

(S#G) and HH
q

(S, S#G)G and lift the Gerstenhaber bracket on
HH

q

(S#G) to an arbitrary resolution used to compute HH
q

(S, S#G)G. In Sec-
tions 5 and 6, we turn to the case S = S(V ) and examine isomorphisms of co-
homology developed in [18]. We lift the Gerstenhaber bracket on HH

q

(S(V )#G)
from the bar resolution of S(V )#G to the Koszul resolution of S(V ). In Section 7,
we give our closed formulas for the bracket in terms of quantum differentiation and
recover the classical Schouten-Nijenhuis bracket in case G = {1}. These formulas
allow us to characterize geometrically some cocycles with square bracket zero in
Section 8.
Mindful of applications to deformation theory, we turn our attention to coho-

mological degree two in Section 9. We prove the above Theorem 9.2 (which applies
to cocycles of arbitrary polynomial degree) and focus on abelian groups in Sec-
tion 10. We then apply our approach to the deformation theory of S(V )#G and
graded Hecke algebras. When a Hochschild 2-cocycle is a graded map of negative
degree, corresponding deformations are well understood and include graded Hecke
algebras (which encompass symplectic reflection algebras and rational Cherednik
algebras). In Section 11, we explicitly present graded Hecke algebras as defor-
mations defined using Hochschild cohomology, thus fitting our previous work on
graded Hecke algebras into a more general program to understand all deforma-
tions of S(V )#G. We show how to render a constant Hochschild 2-cocycle into
the defining relations of a graded Hecke algebra concretely and vice versa. In fact,
we use our results to explain how to convert any Hochschild 2-cocycle into the
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explicit multiplication map of an infinitesimal deformation of S(V )#G, allowing
for exploration of a wide class of algebras which include graded Hecke algebras as
examples.

2. Preliminary material

Let G be a finite group. We work over the complex numbers C; all tensor
products will be taken over C unless otherwise indicated. Let S be any C-algebra
on which G acts by automorphisms. Denote by gs the result of applying an element
g of G to an element s of S. The skew group algebra S#G is the vector space
S ⊗ CG with multiplication given by

(r ⊗ g)(s⊗ h) = r(gs)⊗ gh

for all r, s in S and g, h in G. We abbreviate s ⊗ g by sg (s ∈ S, g ∈ G) and
s⊗ 1, 1⊗ g simply by s, g, respectively. An element g in G acts on S by an inner
automorphism in S#G: gs(g)−1 = (gs)g(g)−1 = gs for all s in S. We work with
the induced group action on all maps throughout this article: For any map θ and
element h in GL(V ), we define hθ by (hθ)(v) := h(θ(h

−1
v)) for all v.

Hochschild cohomology and deformations. The Hochschild cohomology

of a C-algebra A with coefficients in an A-bimodule M is the graded vector space
HH

q

(A,M) = Ext
q

Ae(A,M), where Ae = A ⊗ Aop acts on A by left and right
multiplication. We abbreviate HH

q

(A) = HH
q

(A,A).
One projective resolution of A as an Ae-module is the bar resolution

(2.1) · · · δ3−→ A⊗4 δ2−→ A⊗3 δ1−→ Ae m−→ A→ 0,

where δp(a0 ⊗ · · · ⊗ ap+1) =
∑p

j=0(−1)ja0 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ ap+1, and δ0 = m

is multiplication. For each p, HomAe(A⊗(p+2), ∗) ∼= HomC(A
⊗p, ∗), and we identify

these two spaces of p-cochains throughout this article.
The Gerstenhaber bracket on Hochschild cohomology HH

q

(A) is defined at
the chain level on the bar complex. Let f ∈ HomC(A

⊗p, A) and f ′ ∈ HomC(A
⊗q, A).

The Gerstenhaber bracket [f, f ′] in HomC(A
⊗(p+q−1), A) is defined as

(2.2) [f, f ′] = f ◦f ′ − (−1)(p−1)(q−1)f ′ ◦f,
where

f◦f ′(a1 ⊗ · · · ⊗ ap+q−1)

=

p∑

k=1

(−1)(q−1)(k−1)f(a1 ⊗ · · · ⊗ ak−1 ⊗ f ′(ak ⊗ · · · ⊗ ak+q−1)⊗ ak+q ⊗ · · · ⊗ ap+q−1)

for all a1, . . . , ap+q in A. This induces a bracket on HH
q

(A) under which it is a
graded Lie algebra. The bracket is compatible with the cup product on HH

q

(A),
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in the sense that if α ∈ HHp(A), β ∈ HHq(A), and γ ∈ HHr(A), then

[α ⌣ β, γ] = [α, γ] ⌣ β + (−1)p(r−1)α ⌣ [β, γ].

Thus HH
q

(A) becomes a Gerstenhaber algebra.
Let t be an indeterminate. A formal deformation of A is an associative C[[t]]-

algebra structure on formal power series A[[t]] with multiplication determined by

a ∗ b = ab+ µ1(a⊗ b)t + µ2(a⊗ b)t2 + · · ·
for all a, b in A, where ab = m(a ⊗ b) and the µi : A ⊗ A → A are linear maps.
In case the above sum is finite for each a, b in A, we may consider the subalgebra
A[t], a deformation of A over the polynomial ring C[t]. Graded Hecke algebras
(see Section 11) are examples of deformations over C[t].
Associativity of the product ∗ implies in particular that µ1 is a Hochschild 2-

cocycle (i.e., δ∗3(µ1) = 0) and that the Gerstenhaber bracket [µ1, µ1] is a cobound-
ary (in fact, [µ1, µ1] = 2δ∗4(µ2), see [9, (42)]). If f is a Hochschild 2-cocycle, then
f may or may not be the first multiplication map µ1 for some formal deforma-
tion. The primary obstruction to lifting f to a deformation is the Gerstenhaber
bracket [f, f ] considered as an element of HH3(A). A (noncommutative) Poisson
structure on A is an element α in HH2(A) such that [α, α] = 0 as an element
of HH3(A). The set of noncommutative Poisson structures includes the cohomol-
ogy classes of the first multiplication maps µ1 of all deformations of A, and thus
every deformation of A defines a noncommutative Poisson structure. (For more
details on Hochschild cohomology, see Weibel [21], and on deformations, see Ger-
stenhaber [9]; Poisson structures for noncommutative algebras are introduced in
Block and Getzler [2] and Xu [23].)

3. Hochschild cohomology of skew group algebras

We briefly describe various isomorphisms used to compute Hochschild cohomol-
ogy. Let S be any algebra upon which a finite group G acts by automorphisms,
and let A := S#G denote the resulting skew group algebra. Let C be a set of
representatives of the conjugacy classes of G. For any g in G, let Z(g) be the
centralizer of g. A result of Ştefan [20, Cor. 3.4] implies that there is a G-action
giving the first in a series of isomorphisms of graded vector spaces:

(3.1)

HH
q

(S#G) ∼= HH
q

(S, S#G)G

∼=
(
⊕

g∈G

HH
q

(S, Sḡ)

)G

∼=
⊕

g∈C

HH
q

(S, Sḡ)Z(g).
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The first isomorphism is in fact an isomorphism of graded algebras (under the cup
product); it follows from applying a spectral sequence. We take a direct approach
in this paper to gain results on the Gerstenhaber bracket. The second isomorphism
results from decomposing the Se-module S#G into the direct sum of components
S g. The action of G permutes these components via the conjugation action of G
on itself. The third isomorphism canonically projects onto a set of representative
summands.
In the next theorem, we begin transporting Gerstenhaber brackets on HH

q

(S#G)
to the other spaces in (3.1) by etching an explicit isomorphism between HH

q

(S#G)
and HH

q

(S, S#G)G. First, some definitions. We say that a projective resolution
P q of Se-modules is G-compatible if G acts on each term in the resolution and
the action commutes with the differentials. Let R be the Reynold’s operator

on HomC(S
⊗ q

, A),

R(γ) := 1

|G|
∑

g∈G

gγ.

We shall use the same notation R to denote the analogous operator on any vector
space carrying an action of G. Let Θ∗ be the map “move group elements far right,
applying them along the way”: Define Θ∗ : HomC(S

⊗p, A)G → HomC(A
⊗p, A) by

(3.2) Θ∗(κ)(f1g1 ⊗ · · · ⊗ fpgp) = κ(f1 ⊗ g1f2 ⊗ · · · ⊗ (g1···gp−1)fp) g1 · · · gp

for all f1, . . . , fp in S and g1, . . . , gp in G. A similar map appears in [12]. In the
next theorem, we give an elementary explanation for the appearance of Θ∗ in an
explicit isomorphism of cohomology; the proof shows that Θ∗ is induced from a
map Θ at the chain level.

Remark 3.3. The notion of G-invariant cohomology here is well-formulated. If S
and B are algebras on which G acts by automorphisms and B is an S-bimodule,
we may define G-invariant cohomology HH

q

(S,B)G via any G-compatible resolu-
tion. This definition does not depend on choice of resolution. Indeed, since |G|
is invertible in our field, any chain map between resolutions can be averaged over
the group to produce a G-invariant chain map. By the Comparison Theorem [21,
Theorem 2.2.6], this yields not only an isomorphism on cohomology HH

q

(S,B)
arising from two different resolutions, but a G-invariant isomorphism.

We adapt ideas of Theorem 5.1 of [4] to our general situation. It was assumed im-
plicitly in that theorem that the resolution defining cohomology was G-compatible
and that the cochains fed into the given map were G-invariant. We generalize that
theorem while simultaneously making it explicit. We apply a Reynold’s operator
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to turn the cochains fed into the map Θ∗ invariant, as they might not be so a pri-
ori. This allows us to apply chain maps to arbitrary cocycles, in fact, to cocycles
that may not even represent invariant cohomology classes.

Theorem 3.4. Let S be an arbitrary C-algebra upon which a finite group G acts
by automorphisms, and let A = S#G. The map

Θ∗ ◦ R : HomC(S
⊗p, A)→ HomC(A

⊗p, A),

given by

(
(Θ∗ ◦ R)(β)

)
(f1g1 ⊗ · · · ⊗ fpgp) =

1

|G|
∑

g∈G

gβ(f1 ⊗ g1f2 ⊗ · · · ⊗ g1···gp−1fp) g1 · · · gp

for all f1, . . . , fp ∈ S, g1, . . . , gp ∈ G, and β ∈ HomC(S
⊗p, A), induces an isomor-

phism

HHp(S,A)G
∼−→ HHp(A).

We note that the following proof does not require the base field to be C, only
that |G| be invertible in the field.

Proof. We express every G-compatible resolution as a resolution over a ring that
succinctly absorbs the group and its action: Let

∆ := ⊕g∈G S g ⊗ S g−1 ,

a natural subalgebra of Ae containing Se. Any Se-module carrying an action of
G is naturally also a ∆-module: Each group element g acts as the ring element
g ⊗ g−1 in ∆. In fact, an Se-resolution of a module is G-compatible if and only if
it is simultaneously a ∆-resolution.
The bar resolution for S is G-compatible, i.e., extends to a ∆-resolution. We

define a different resolution of S as a ∆-module that interpolates between the bar
resolution of S and the bar resolution of A. For each p ≥ 0, let

∆p :=
{∑

f0g0 ⊗ · · · ⊗ fp+1gp+1 | fi ∈ S, gi ∈ G and g0 · · · gp+1 = 1
}
,

a ∆-submodule of A⊗(p+2). Note that ∆0 = ∆, each ∆p is a projective ∆-module,
and ∆p is also a projective Se-module by restriction. The complex

· · · δ3−→ ∆2
δ2−→ ∆1

δ1−→ ∆0
m−→ S(V )→ 0

(where m is multiplication and δi is the restriction of the differential on the bar
resolution of A) is a ∆-projective resolution of S. By restriction it is also an
Se-projective resolution of S. The inclusion S⊗(p+2) →֒ ∆p induces a restriction
map

HomSe(∆p, A)→ HomSe(S⊗(p+2), A)
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that in turn induces an automorphism on the cohomology HHp(S,A). The sub-
space ofG-invariant elements of either of the above Hom spaces is precisely the sub-
space of ∆-homomorphisms. Therefore, aG-invariant element of HomSe(S⊗(p+2), A)
identifies with an element of Hom∆(∆p, A), and its application to an element of
∆p is found via the ∆-chain map ∆ q→ S⊗( q+2) given by

(3.5) f0g0 ⊗ · · · ⊗ fp+1gp+1 7→ f0 ⊗ g0f1 ⊗ g0g1f2 ⊗ · · · ⊗ (g0g1···gp)fp+1

for all f0, . . . , fp+1 ∈ S and g0, . . . , gp+1 ∈ G. Finally, one may check that the

following map is an isomorphism of Ae-modules A⊗(p+2) ∼→ Ae ⊗∆ ∆p:

(3.6) f0g0⊗· · ·⊗fp+1gp+1 7→ (1⊗g0 · · · gp+1)⊗(f0g0⊗· · ·⊗fp+1gp+1(g0 · · · gp+1)
−1).

This gives rise to an isomorphism Hom∆(∆p, A) ∼= HomAe(A⊗(p+2), A). In fact, one
may obtain the bar resolution of A from the ∆-resolution ∆ q directly by applying
the functor Ae⊗∆⊗−; the map (3.6) realizes the corresponding Eckmann-Shapiro
isomorphism on cohomology, Ext

q

∆(S,A)
∼= Ext

q

Ae(A,A), at the chain level. Let
Θ : A⊗(p+2) → Ae ⊗∆ S⊗(p+2) denote the composition of (3.6) and (3.5), that is

Θ(f0g0⊗ · · ·⊗ fp+1gp+1) = (1⊗ g0 · · · gp+1)⊗ f0⊗ g0f1⊗ g0g1f2⊗ · · ·⊗ (g0g1···gp)fp+1

for all f0, . . . , fp+1 ∈ S and g0, . . . , gp+1 ∈ G. The induced map Θ∗ on cochains
is indeed that defined by equation (3.2). The above arguments show that this
induced map Θ∗ gives an explicit isomorphism, at the chain level, from HHp(S,A)G

to HHp(A,A). �

4. Lifting brackets to other resolutions

The Gerstenhaber bracket on the Hochschild cohomology of an algebra is de-
fined using the bar resolution of that algebra. But cohomology is often computed
using some other projective resolution. One seeks to express the induced Gersten-
haber bracket on any other projective resolution giving cohomology. Again, let
S be any algebra upon which a finite group G acts by automorphisms, and let
A := S#G denote the resulting skew group algebra. In this section, we lift the
Gerstenhaber bracket on HH

q

(A) to other resolutions used to compute cohomol-
ogy. This task is complicated by the fact that we compute the cohomology HH

q

(A)
as the space HH

q

(S,A)G (using the isomorphisms of (3.1)). Hence, we consider
alternate resolutions of S, not A.
Suppose the Hochschild cohomology of S has been determined using some Se-

projective resolution P q of S. We assume that P q is G-compatible, so that P q defines
the G-invariant cohomology HH

q

(S,A)G. Let Ψ and Φ be chain maps between the
bar resolution and P q, i.e.,

Ψp : S⊗(p+2) → Pp ,

Φp : Pp → S⊗(p+2) ,
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for all p ≥ 1, and the following diagram commutes:

(4.1) · · · // S⊗(p+2)
δp //

Ψp

��

S⊗(p+1) //

Ψp−1

��

· · ·

· · · // Pp
dp //

Φp

OO

Pp−1
//

Φp−1

OO

· · · .

Let Ψ∗ and Φ∗ denote the maps induced by application of the functor HomSe(−, A).

Lemma 4.2. The cochain maps Ψ∗ and Φ∗ induce G-invariant, inverse isomor-
phisms on the cohomology HH

q

(S,A).

Proof. Since both P q and the bar resolution are G-compatible, gΨ∗ and gΦ∗ are
chain maps for any g in G. Such chain maps are unique up to chain homotopy
equivalence, and so induce the same maps on cohomology. �

We represent an element of HH
q

(S,A) at the chain level by a function f : Pp →
A. By Theorem 3.4, the corresponding function from A⊗(p+2) to A is given by
Θ∗ ◦ R ◦Ψ∗

p(f). Lemma 4.2 thus implies:

Theorem 4.3. Let A = S#G. Let P q be any G-compatible Se-resolution of S and
let Ψ be a chain map from the bar resolution of S to P q. The map

Θ∗ ◦ R ◦Ψ∗ : HomSe(Pp, A)→ HomC(A
⊗p, A)

induces an isomorphism HHp(S,A)G
∼−→ HHp(A).

We now describe the inverse isomorphism. The inclusion map S →֒ A induces
a restriction map

res : HomC(A
⊗ q

, A)→ HomC(S
⊗ q

, A).

Theorem 4.4. Let A = S#G. Let Ψ,Φ be any chain maps converting between
the bar resolution of S and P q, as above. The maps

Φ∗ ◦ res and Θ∗ ◦ R ◦Ψ∗

on cochains, HomC(A
⊗p, A)

Φ∗ ◦ res // HomSe(Pp, A) , induce inverse isomor-
Θ∗ ◦R◦Ψ∗

oo

phisms on cohomology,

HH
q

(A)
∼←→ HH

q

(S,A)G .
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Proof. By Theorem 4.3, Θ∗ ◦ R ◦Ψ∗ induces an isomorphism from HHp(S,A)G to
HHp(A). We show that Φ∗ ◦ res defines an inverse map on cohomology.
By functoriality of Hochschild cohomology (see [14, §1.5.1]), res induces a linear

map:
res : HHp(A)→ HHp(S,A).

We saw in the proof of Theorem 3.4 that the Eckmann-Shapiro isomorphism
realized at the chain level in (3.6) induces a map from HomAe(A⊗(p+2), A) to
HomSe(∆p, A)

G. The restriction of (3.6) to S⊗(p+2) is essentially the identity map,
and it induces a map to HomSe(S(p+2), A)G agreeing with res. Hence the image of
res is G-invariant. Note that res ◦ Θ∗ = 1 on cochains, and thus on cohomology.
By the proof of Theorem 3.4, Θ∗ is invertible on cohomology, and so we conclude
that res = (Θ∗)−1 and res also yields an isomorphism on cohomology:

res : HH
q

(A)
∼−→ HH

q

(S,A)G.

Lemma 4.2 then implies that Φ∗ ◦ res induces a well-defined map on cohomology
with G-invariant image. The fact that it is inverse to Θ∗ ◦ R ◦ Ψ∗ follows from
the observations that R commutes with Φ∗ (as Φ∗ is invariant), Φ∗ and Ψ∗ are
inverses on cohomology, and R is the identity on G-invariants. �

Remark 4.5. We may replace Ψ∗ in Theorems 4.3 and 4.4 above by any other
cochain map (with the same domain and range), provided that map induces an
automorphism inverse to Φ∗ on the cohomology HH

q

(S,A), even if it is not in-
duced by a map on the original projective resolution. (As Φ∗ is G-invariant on
cohomology, so too is its inverse.)

Remark 4.6. Some comments are in order before we give a formula for the Ger-
stenhaber bracket. By Theorem 4.4, a cocycle in HomC(A

⊗p, A) is determined by
its values on S⊗p, and so we may compute the bracket of two cocycles by deter-
mining how that bracket acts on elements in S⊗p. The ring S embeds canonically
in A, and we identify this ring with its image when convenient. We also note that,
for the purpose of using Theorem 4.4, it suffices to start with a (not necessarily
G-invariant) cocycle α in HomSe(P q, A) and apply Θ∗◦R◦Ψ∗, since R◦Ψ∗(α) is co-
homologous to R◦Ψ∗ ◦R(α): Indeed, observe that R(Ψ∗(R(α))) = R(R(Ψ∗)(α))
and that R(R(Ψ∗)(α)) ∼ R(Ψ∗(α)) since Ψ∗ and R(Ψ∗) are both chain maps.

We now lift the Gerstenhaber bracket on HH
q

(A) to the cohomology HH
q

(S,A)G

expressed in terms of any resolution of S. Again, we assume the resolution is
G-compatible, or else it may not define HH

q

(S,A)G. Theorem 4.4 implies the
following formula for the graded Lie bracket at the cochain level, on cocycles in
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HomSe(P q, A)G. We use Definition 2.2 of the bracket on HH
q

(A) at the cochain
level.

Theorem 4.7. Let P q be any G-compatible Se-resolution of S. The isomorphism
HH

q

(A) ∼= HH
q

(S,A)G induces the following bracket on HH
q

(S,A)G (expressed via
P q): For α, β in HomSe(P q, A) representing G-invariant cohomology classes, the
cohomology class of [α, β] is represented at the cochain level by

1

|G|2
∑

a,b∈G

Φ∗[Θ∗ a(Ψ∗α),Θ∗ b(Ψ∗β)],

where the bracket [ , ] on the right side is the Gerstenhaber bracket on HH
q

(A).

Proof. We apply the inverse isomorphisms of Theorem 4.4 to lift the bracket
from the bar complex of A to P q: The above formula gives the resulting bracket
Φ∗res [Θ∗RΨ∗(α),Θ∗RΨ∗(β)]. Note that the restriction map res is not needed in
the formula since the output of Φ is automatically in S⊗ q

. Also note that it is not
necessary to apply the Reynolds operator to α and β before applying Ψ∗ since we
are interested only in the bracket at the level of cohomology (see Remark 4.6). �

5. Koszul resolution

Let G be a finite group and V a (not necessarily faithful) CG-module of finite di-
mension n. The Hochschild cohomology of the skew group algebra HH

q

(S(V )#G)
is computed using the Koszul resolution of the polynomial ring S(V ) while the cup
product and Gerstenhaber bracket are defined on the bar resolution of S(V )#G.
In this section, we use machinery developed in Section 4 to translate between
spaces and between resolutions.
First, some preliminaries. We denote the image of v in V under the action of

g in G by gv. Let V ∗ denote the contragredient (or dual) representation. For any
basis v1, . . . , vn of V , let v∗1 , . . . , v

∗
n be the dual basis of V ∗. Denote the set of

G-invariants in V by V G := {v ∈ V : gv = v for all g ∈ G} and the g-invariant
subspace of V by V g := {v ∈ V : gv = v} for any g in G. Since G is finite, we may
assume G acts by isometries on V (i.e., G preserves a Hermitian form 〈 , 〉). If h lies
in the centralizer Z(g), then h preserves both V g and its orthogonal complement
(V g)⊥ (defined with respect to the Hermitian form). We shall frequently use the
observation that (V g)⊥ = im(1− g).
The Koszul resolution K q(S(V )) is given by K0(S(V )) = S(V )e and

(5.1) Kp(S(V )) = S(V )e ⊗∧p(V )

for p ≥ 1, with differentials defined by

(5.2) dp(1⊗1⊗vj1∧· · ·∧vjp) =
p∑

i=1

(−1)i+1(vji⊗1−1⊗vji)⊗(vj1∧· · ·∧v̂ji∧· · ·∧vjp)
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for any choice of basis v1, . . . , vn of V (e.g., see Weibel [21, §4.5]). We identify
HomC(

∧p V, S(V )g) with S(V )g ⊗∧p V ∗ for each g in G.
We fix the set of cochains arising from the Koszul resolution (from which the

cohomology classes emerge) as vector forms on V tagged by group elements: Let

(5.3) C
q

=
⊕

g∈G

C
q

g, where Cp
g := S(V )ḡ ⊗∧p V ∗ for g ∈ G.

We refer to C
q

g as the set of cochains supported on g. Similarly, if X is a subset
of G, we set C

q

X := ⊕g∈XC
q

g, the set of cochains supported on X . Note that
group elements permute the summands of C

q

via the conjugation action of G on
itself.
We apply the notation of Section 4 to the case S = S(V ). Let P q be the Koszul

resolution (5.1) of S(V ). Since the bar and Koszul complexes of S(V ) are both
S(V )e-resolutions, there exist chain maps Φ and Ψ between the two complexes,

Ψp : S(V )⊗(p+2) → S(V )e ⊗∧p V,

Φp : S(V )e ⊗∧p V → S(V )⊗(p+2),

for all p ≥ 1, such that Diagram 4.1 commutes. Let Φ be the canonical inclusion
of the Koszul resolution (5.1) into the bar resolution (2.1):

(5.4) Φp(1⊗ 1⊗ vj1 ∧ · · · ∧ vjp) =
∑

π∈Symp

sgn(π)⊗ vjπ(1)
⊗ · · · ⊗ vjπ(p)

⊗ 1

for all vj1 , . . . , vjp in V . (See [18] for an explicit chain map Ψ in this case.) We
obtain the following commutative diagram of induced cochain maps:

(5.5) HomC(S(V )⊗p, A)
δ∗ //

Φ∗
p

��

HomC(S(V )⊗(p+1), A)

Φ∗
p+1

��
Cp d∗ //

Ψ∗
p

OO

Cp+1 .

Ψ∗
p+1

OO

Note that both the Koszul and bar resolutions areG-compatible. Using Lemma 4.2,
we identify Φ∗ and Ψ∗ with their restrictions to

HH
q

(S(V ), S(V )#G)G .

Given any basis v1, . . . , vn of V , let ∂/∂vi denote the usual partial differential
operator with respect to vi. In addition, given a complex number ǫ 6= 1, we define
the ǫ-quantum partial differential operator with respect to v := vi as the
scaled Demazure (BGG) operator ∂v,ǫ : S(V )→ S(V ) given by

(5.6) ∂v,ǫ(f) = (1− ǫ)−1 f − sf

v
=

f − sf

v − sv
,

where s ∈ GL(V ) is the reflection whose matrix with respect to the basis v1, . . . , vn
is diag(1, . . . , 1, ǫ, 1, . . . , 1) with ǫ in the ith slot. Set ∂v,ǫ = ∂/∂v when ǫ = 1. The
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operator ∂v,ǫ coincides with the usual definition of quantum partial differentiation:

∂v1,ǫ(v
k1
1 vk22 · · · vknn ) = [k1]ǫ v

k1−1
1 vk22 · · · vknn ,

where [k]ǫ is the quantum integer [k]ǫ := 1 + ǫ+ ǫ2 + · · ·+ ǫk−1.
Next, we recall an explicit map Υ, involving quantum differential operators, that

replaces Ψ∗:

(5.7) HomC(S(V )⊗p, A)
δ∗ //

Φ∗
p

��

HomC(S(V )⊗(p+1), A)

Φ∗
p+1

��
Cp d∗ //

Υp

OO

Cp+1 .

Υp+1

OO

For each g in G, fix a basis Bg = {v1, . . . , vn} of V consisting of eigenvectors of g
with corresponding eigenvalues ǫ1, . . . , ǫn. Decompose g into reflections according
to this basis: Let g = s1 · · · sn where each si in GL(V ) is the reflection (or the
identity) defined by si(vj) = vj for j 6= i and si(vi) = ǫivi. Let ∂i := ∂vi,ǫi, the
quantum partial derivative with respect to Bg.

Definition 5.8. We define a linear map Υ from the dual Koszul complex to the
dual bar complex for S(V ) with coefficients in A := S(V )#G,

Υp : Cp → HomC(S(V )⊗p, A) .

Fix g in G with basis Bg of V as above. Let α = fgg⊗ v∗j1 ∧ · · · ∧ v∗jp lie in Cp with

fg in S(V ) and 1 ≤ j1 < . . . < jp ≤ n. Define Υ(α) : S(V )⊗p → S(V )ḡ by

Υ(α)(f1 ⊗ · · · ⊗ fp) =

(
∏

k=1,...,p

s1s2···sjk−1(∂jkfk)

)
fgg .

Then Υ is a cochain map (see [18]) and thus induces an endomorphism Υ of coho-
mology HH

q

(S(V ), A). Denote the restriction of Υ to the g-component of C
q

and
of HH

q

(S(V ), A) ∼= ⊕g∈G HH
q

(S(V ), S(V )ḡ) by Υg = Υg,Bg
so that

Υ=
⊕

g∈G

Υg.

In formulas, we wish to highlight group elements explicitly instead of leaving
them hidden in the definition of Υ, and thus we find it convenient to define a
version of Υ untagged by group elements:
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Definition 5.9. Let projG→1 : S(V )#G→ S(V ) be the projection map that drops
group element tags: fg 7→ f for all g in G and f in S(V ). Define

Υ := projG→1 ◦Υ: C
q→

⊕

g∈G

HomC(S(V )⊗
q

, S(V )) .

We shall use the following observation often.

Remark 5.10. For the fixed basis Bg = {v1, . . . , vn} and α = fgg⊗ v∗j1 ∧ · · · ∧ v∗jp
in Cp

g (with j1 < . . . < jp), note that

Υ(α)(vi1 ⊗ · · · ⊗ vip) = 0 unless i1 = j1, . . . , ip = jp .

Generally, Υ(α)(f1 ⊗ · · · ⊗ fp) = 0 whenever ∂
∂vjk

(fk) = 0 for some k.

The following proposition from [18] provides a cornerstone for our computations.

Proposition 5.11. The map Υ induces an isomorphism on the Hochschild coho-
mology of the skew group algebra

HH
q

(S(V )#G) ∼=
(
⊕

g∈G

HH
q
(
S(V ), S(V )ḡ

)
)G

.

Specifically, Υ and Φ∗ are G-invariant, inverse isomorphisms on cohomology con-
verting between expressions in terms of the Koszul resolution and the bar resolu-
tion.

In fact, the map Υ is easily seen to be a right inverse to Φ∗ on cochains, not just
on cohomology; see [19, Prop. 5.4].

Remark 5.12. The cochain map Υ=
⊕

g∈G Υg,Bg
depends on the choices of bases

Bg of eigenvectors of g in G, but Υinduces an automorphism on cohomology which
does not depend on the choice of basis. (This follows from Proposition 5.11 above,
as Φ is independent of basis.)

6. Brackets for polynomial skew group algebras

Let G be a finite group and let V be a finite dimensional CG-module. We
apply the previous results to determine the Gerstenhaber bracket of HH

q

(S(V )#G)
explicitly. We lift the Gerstenhaber bracket on HH

q

(S(V )#G), which is defined
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via the bar complex of S(V )#G, to the cohomology HH
q

(S(V ), S(V )#G)G, which
is computed via the Koszul complex of S(V ).
The next theorem allows one to replace the Hochschild cohomology of S(V )#G

with a convenient space of forms. Set

(6.1)

H
q

g := S(V g)g ⊗∧ q−codimV g

(V g)∗ ⊗∧codimV g

((V g)⊥)∗ and

H
q

:=
⊕

g∈G

H
q

g ,

where a negative exterior power is defined to be 0. We regard these spaces as sub-
sets of C

q

, the space of cochains arising from the Koszul complex (see (5.3)), after
making canonical identifications. Note that for each g in G, the centralizer Z(g)

acts diagonally on the tensor factors in H
q

g. The third factor
∧codimV g

((V g)⊥)∗

of H
q

g is a vector space of dimension one with a possibly nontrivial Z(g)-action.
The theorem below is due to Ginzburg and Kaledin [10, (6.4)] for faithful group
actions in a more general geometric setting. See also Farinati [8, Section 3.2] in
the algebraic setting. Our formulation is from [17, (3.3) and (3.4)].

Theorem 6.2. Set A := S(V )#G. Cohomology classes arise as tagged vector
forms:

• H
q

is a set of cohomology class representatives for HH
q

(S(V ), A) arising
from the Koszul resolution: The inclusion map H

q →֒ C
q

induces an iso-
morphism H

q ∼= HH
q

(S(V ), A).
• HH

q

(A) ∼= HH
q

(S(V ), A)G ∼= (H
q

)G .

Remark 6.3. The only contribution to degree two cohomology HH2(S(V )#G)
comes from group elements acting either trivially or as bireflections:

H2
g 6= 0 implies V g = V or codimV g = 2 .

Indeed, by Definition 6.1, (H
q

)G ∼= ⊕g∈C(H
q

g)
Z(g) where C is a set of representatives

of the conjugacy classes of G. Since each group element g in G centralizes itself,
the determinant of g on V is necessarily 1 whenever (H

q

g)
Z(g) is nonzero (since

g acts on
∧codimV g

((V g)⊥)∗ by the inverse of its determinant). In fact, if g acts
nontrivially on V , it does not contribute to cohomology in degrees 0 and 1.

Our results from previous sections allow us to realize the isomorphism of The-
orem 6.2 explicitly at the chain level in the next theorem, which will be used
extensively in our bracket calculations:
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Theorem 6.4. Let A = S(V )#G. The map

Γ := Θ∗ ◦ R ◦Υ: Cp → HomC(A
⊗p, A)

α 7→ 1

|G|
∑

g∈G

Θ∗(g(Υα))

induces an isomorphism
(H

q

)G
∼−→ HH

q

(A).

Proof. The statement follows from Theorem 4.3, Remark 4.5, Proposition 5.11,
and Theorem 6.2. �

Remark 6.5. We explained explicitly in [17] how a constant Hochschild 2-cocycle
defines a graded Hecke algebra. More generally, Theorem 6.4 offers a direct con-
version from vector forms in (H

q

)G to functions on tensor powers of S(V )#G
representing elements in HH

q

(S(V )#G): For all α in Hp,

Γ(α)(f1g1 ⊗ · · · ⊗ fpgp) =
1

|G|
∑

g∈G

g(Υα)(f1 ⊗ g1f2 ⊗ · · · ⊗ g1···gp−1fp) g1 · · · gp

for all f1, . . . , fp in S(V ) and g1, . . . , gp in G. In particular, if p = 2, then
Γ(α)(f1g1 ⊗ f2g2) =

1
|G|

∑
g∈G

g(Υα)(f1 ⊗ g1f2) g1g2.

We now record some inverse isomorphisms that will facilitate finding bracket
formulas. For each g in G, let {v1, . . . , vn} be a basis of V consisting of eigenvectors
of g and let

ProjHg
: C

q

g → H
q

g

be the map which takes any C-basis element (vm1
1 · · · vmn

n ) g ⊗ vi1 ∧ · · · ∧ vip of C
q

g

to itself if it lies in H
q

g and to zero otherwise. Set ProjH :=
⊕

g∈G ProjHg
. Then

ProjH : C
q→ H

q

projects each cocycle in C
q

to its cohomology class representative in H
q

. (See, for
example, the computation of [8, Section 3.2].) In fact, the map ProjH splits with
respect to the canonical embedding H

q →֒ C
q

. Now consider projection just on
the polynomial part of a form: Let

ProjV g : S(V )g ⊗∧ q

V ∗ → S(V g)g ⊗∧ q

V ∗

be the canonical projection arising from the isomorphism S(V g) ∼= S(V )/I((V g)⊥)
for each g in G. Then ProjHg

= ProjHg
◦ProjV g and thus any cocycle in Cg which

vanishes under ProjV g is zero in cohomology. (In fact, we can write ProjH as a
composition of

⊕
g ProjV g with a similar projection map on the exterior algebra.)
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The inclusion map S(V ) →֒ A again induces a restriction map (as in Section 4):

res : HomC(A
⊗ q

, A)→ HomC(S(V )⊗
q

, A).

Theorem 4.4 implies that the following compositions (for S = S(V )) induce
inverse isomorphisms on cohomology, as asserted in the next theorem:

HomC(A
⊗p, A)

res //
HomC(S

⊗p, A)G
�� //

Θ∗
oo HomC(S

⊗p, A)
Φ∗

//

R
oo Cp

ProjH //

Υ
oo Hp .? _oo

Theorem 6.6. Let A = S(V )#G. The maps

Γ′ := ProjH ◦ Φ∗ ◦ res and Γ := Θ∗ ◦ R ◦Υ

on cochains, HomC(A
⊗p, A)

Γ′
// Hp , induce inverse isomorphisms

Γ
oo

HHp(A)
∼←→ (Hp)G.

The next theorem, a consequence of Theorem 4.7, describes the graded Lie
bracket on (H

q

)G induced by the Gerstenhaber bracket on HH
q

(S(V )#G).

Theorem 6.7. The Gerstenhaber bracket on HH
q

(S(V )#G) induces the following
graded Lie bracket on (H

q

)G under the isomorphism (H
q

)G ∼= HH
q

(S(V )#G) of
Theorem 6.6: For α, β in (H

q

)G,

[α, β] =
1

|G|2 ProjH
∑

a,b∈G

Φ∗[Θ∗ a(Υα),Θ∗ b(Υβ)]

where the bracket [ , ] on the right is the Gerstenhaber bracket on HH
q

(S(V )#G)
given at the cochain level.

In the remainder of this section, we use the above theorem to give formulas for
the Gerstenhaber bracket on (H

q

)G ∼= HH
q

(S(V )#G). We introduce notation for
a prebracket at the cochain level to aid computations and allow for an explicit,
closed formula. Recall that we have fixed a basis Bg of V consisting of eigenvectors
of g for each g in G. These choices are for computational convenience; our results
do not depend on the choices. For a multi-index I = (i1, . . . , im), we write dvI for
v∗i1 ∧ · · · ∧ v∗im . In formulas below, note that we sum over all multi-indices I of a
given length, not just those with indices of increasing order. We use the untagged
version Υ of the map Υ with image in S(V ) (see Definition 5.9) to highlight the
group elements appearing in various formulas.
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Definition 6.8. Define a prebracket (bilinear map) on the set of cochains C
q

defined in (5.3),

[[ , ]] : Cp
g × Cq

h → Cp+q−1
gh + Cp+q−1

hg ,

for g and h in G, depending on a basis of eigenvectors B1 for g and a basis of
eigenvectors B2 for h as follows. For α in Cp

g and β in Cq
h, define α◦β to be

∑

I=(i1,...,im)

1≤k≤p

(−1)(q−1)(k−1)Υg,B1(α)
(
vi1⊗· · ·⊗vik−1

⊗f (ik)
h ⊗ hvik+q

⊗· · ·⊗ hvim
)
gh⊗dvI ,

where m = p + q − 1, f
(ik)
h := Υh,B2(β)(vik ⊗ · · · ⊗ vik+q−1

), and v1, . . . , vn is any
basis of V . Define

[[α, β]]
(B1,B2)

= α ◦ β − (−1)(p−1)(q−1) β ◦α .

Remark 6.9. When computing brackets, one may be tempted to seek results by
working with just α◦β (or just β ◦α) and extending by symmetry. However the
operation ◦ is not defined on cohomology. Furthermore, one must exercise care
in treating the operation ◦ alone (e.g., see the proof of Theorem 9.2 below), as
one risks covertly changing the bases used to apply Υ in the middle of a bracket
calculation. Similarly, one must exercise care when examining the bracket of two
cocycles summand by summand, although the bracket is linear: The bases used
to apply Υ should not depend on the pair of summands considered. The maps
Υ and Υ are independent of the choices of bases used when taking brackets of
cohomology classes, but a choice should be made once and for all throughout the
whole calculation of a Gerstenhaber bracket.

We are particularly interested in brackets and prebrackets of elements of coho-
mological degree 2. For α in C2

g and β in C2
h, the above definition gives

(6.10)
[[α, β]]

(B1,B2)
=

∑

1≤i,j,k≤n

[
Υ1α

(
Υ2β(vi ⊗ vj)⊗ hvk

)
gh − Υ1α

(
vi ⊗Υ2β(vj ⊗ vk)

)
gh

+Υ2β
(
Υ1α(vi ⊗ vj)⊗ gvk

)
hg − Υ2β

(
vi ⊗Υ1α(vj ⊗ vk)

)
hg
]
⊗ (v∗i ∧ v∗j ∧ v∗k)

where v1, . . . , vn is any basis of V and Υ1 := Υg,B1 and Υ2 := Υh,B2.

Remark 6.11. The theorem below articulates the Gerstenhaber bracket in terms
of a fixed basis Bg of V for each g in G. Although each individual prebracket (6.8)
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depends on these choices, the formula for the bracket given below is independent
of these choices (by Remark 5.12).

Theorem 6.12. Definition 6.8 gives a formula for the Gerstenhaber bracket on
HH

q

(S(V )#G) as realized on (H
q

)G: For g, h in G and α in H
q

g and β in H
q

h,

[α, β] =
1

|G|2 ProjH
∑

a,b∈G

[[ aα, bβ ]]
( aBg , bBh)

.

Proof. By Theorem 6.7, the Gerstenhaber bracket [ , ] on HH
q

(S(V )#G) induces
the following bracket on H

q

:

[α, β] =
1

|G|2 ProjH
∑

a,b∈G

Φ∗[Θ∗ a(Υα),Θ∗ b(Υβ)] .

We show that this formula is exactly that claimed in the special case when α and
β have cohomological degree 2; the general case follows analogously.
Let v1, . . . , vn be any basis of V . We determine Φ∗[Θ∗ a(Υα),Θ∗ b(Υβ)] explicitly

in the case a = b = 1G as an element of
(
S(V )gh+ S(V )hg

)
⊗∧3 V ∗ ∼= HomC

(∧3 V, S(V )gh+ S(V )hg
)

by evaluating on input of the form vi∧vj ∧vk. The computation for general a, b in
G is similar, using (for example) a(Υα) = Υaga−1,aBg

(aα) (see [18, Proposition 3.8]).
For all i, j, k (see Equation (5.4)),

Φ∗ [Θ∗ (Υα),Θ∗ (Υβ)] (vi ∧ vj ∧ vk)

= [Θ∗ (Υα),Θ∗ (Υβ)] Φ(vi ∧ vj ∧ vk)

=
∑

π∈Sym3

sgn(π) [Θ∗ (Υα),Θ∗ (Υβ)] (vπ(i) ⊗ vπ(j) ⊗ vπ(k)) .

We expand the Gerstenhaber bracket on HH
q

(S(V )#G) to obtain

(6.13)

∑

π∈Sym3

sgn(π)

[
Θ∗(Υα)

(
Θ∗(Υβ)(vπ(i) ⊗ vπ(j))⊗ vπ(k)

)

− Θ∗(Υα)
(
vπ(i) ⊗Θ∗(Υβ)(vπ(j) ⊗ vπ(k))

)

+ Θ∗(Υβ)
(
Θ∗(Υα)(vπ(i) ⊗ vπ(j))⊗ vπ(k)

)

− Θ∗(Υβ)
(
vπ(i) ⊗Θ∗(Υα)(vπ(j) ⊗ vπ(k))

)]
.
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But for any w1, w2, w3 in V ,

Θ∗(Υα)
(
Θ∗(Υβ)(w1 ⊗ w2)⊗ w3

)
= Θ∗

(
Υα
)(

Υβ(w1 ⊗ w2)⊗ w3

)

= Υα

(
Υβ(w1 ⊗ w2)⊗ hw3

)
gh.

We obtain similar expressions for the other terms arising in the bracket, and hence
the above sum is simply

[[α, β ]]
(Bg , Bh)

(vi ∧ vj ∧ vk) .

Similarly, we see that for all a, b in G,

Φ∗
[
Θ∗ a(Υα),Θ∗ b(Υβ)

]
= [[ aα, bβ ]]

( aBg , bBh)
,

and the result follows. �

Remark 6.14. The theorem above actually gives a formula for a bracket on H
q

,
not just on (H

q

)G ∼= HH
q

(S(V )#G). One can show that this extension to all of H
q

agrees with the composition of the Reynolds operator onH
q

with the Gerstenhaber
bracket on (H

q

)G: By Theorem 6.12 and Remark 4.6, [α, β] is G-invariant and
cohomologous to [R(α),R(β)] for all α, β in H

q

. Hence, the extension to H
q

is
artifical in some sense. Indeed, a natural Gerstenhaber bracket on all of H

q

does
not make sense, as this space does not present itself as the Hochschild cohomology
of an algebra with coefficients in that same algebra. This idea may be used to
explain the formula of Theorem 6.12: When applying Theorem 6.12 to G-invariant
elements α and β, we might write α =

∑
c∈[G/Z(g)]

cα′ and β =
∑

d∈[G/Z(h)]
dβ ′,

where α′ ∈ (H
q

g)
Z(g) and β ′ ∈ (H

q

h)
Z(h) are representative summands. (Here, [G/A]

is a set of representatives of the cosets G/A for any subgroup A of G.) Then

[α, β] =
1

|G|2 ProjH
∑

a,b∈G

c∈[G/Z(g)], d∈[G/Z(h)]

[[ acα′, bdβ ′ ]]
( aB

cgc−1 , bBdhd−1 )
.

However this more complicated expression is cohomologous to that of Theorem 6.12,
since R ◦ Υ(α) is cohomologous to R ◦ Υ ◦ R(α) (see Remark 4.6, noting that
Ψ∗ = Υ).

7. Explicit bracket formulas

Let G be a finite group and let V be a finite dimensional CG-module. In this
section, we give a closed formula for the prebracket on HH

q

(S(V )#G). We shall
use this formula in later sections to obtain new results on zero brackets and to
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locate noncommutative Poisson structures. We also recover the classical Schouten-
Nijenhuis bracket in this section and we give an example.
The prebracket of Definition 6.8 simplifies enourmously when we work with a

bases of simultaneous eigenvectors for g and h in G. Indeed, Remark 5.10 predicts
that most terms of Definition 6.8 are zero. We capitalize on this idea in the next
theorem and corollaries. When the actions of g and h are not simultaneously
diagonalizable, we enact a change of basis at various points of the calculation of
the prebracket to never-the-less take advantage of Remark 5.10. The following
proof shows how to keep track of the effect on the map Υ (mindful of cautionary
Remark 6.9).
First, some notation. For g, h in G, let M = Mg,h be the change of basis matrix

between Bg and Bh: For Bg = {w1, . . . , wn} and Bh = {v1, . . . , vn} (our fixed bases
of eigenvectors of g and h, respectively), set M = (aij) where, for i = 1, . . . , n,

(7.1) vi = a1iw1 + · · ·+ aniwn.

The formula below involves determinants of certain submatrices of M . If I and J
are (ordered) subsets of {1, . . . , n}, denote byMI;J the submatrix ofM obtained by
deleting all rows except those indexed by I and deleting all columns except those
indexed by J . Recall that dvI := v∗i1∧· · ·∧v∗im for a multi-index I = (i1, . . . , im), not
necessarily in increasing order. Below we use the operation ◦ giving the prebracket
of Definition 6.8. We also use the quantum partial differentiation operators ∂v,ǫ
(see (5.6)) after decomposing g into reflections, g = s1 · · · sn, with respect to Bg,
i.e., each si in GL(V ) is defined by si(wi) =

gwi = ǫiwi and si(wj) = wj for j 6= i.

Theorem 7.2. Let g, h lie in G with change of basis matrix M = Mg,h as above.
Decompose g into reflections, g = s1 · · · sn, with respect to Bg as above. Let

α = fgg ⊗ dwJ ∈ Hp
g where J = (j1 < . . . < jp) and

β = f ′
hh⊗ dvL ∈ Hq

h where L = (l1 < . . . < lq) .

Then α◦β is given as an element of Cp+q−1
gh by the following formula: For m =

p+ q − 1 and I = (i1 < . . . < im),

(α◦β)(vi1 ∧ · · · ∧ vim) =
∑

1≤k≤p

(−1)ν(k) det(MJk;I−L)
s1···sjk−1(∂jkf

′
h) fg gh,

where det(M∗;I−L) = 0 for L 6⊂ I, Jk := (j1, . . . , jk−1, jk+1, . . . , jp), ∂i = ∂ǫi,wi
, and

ν(k) = 1− q − k + λ(1) + · · ·+ λ(q)−
(
q
2

)
for λ defined by ls = iλ(s).

Proof. By Definition 6.8, (α◦β)(vi1 ∧ · · · ∧ vim) is equal to∑

1≤k≤p

π∈Symm

(−1)(q−1)(k−1)(sgn π) (Υgα)(viπ(1)
⊗· · ·⊗viπ(k−1)

⊗(f ′
h)

(iπ(k))⊗hviπ(k+q)
⊗· · ·⊗hviπ(m)

)h,
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where (f ′
h)

(iπ(k)) = (Υhβ)(viπ(k)
⊗ · · · ⊗ viπ(k+q−1)

). Fix k and note that by Re-

mark 5.10, (f ′
h)

(iπ(k)) is nonzero only if L = (iπ(k), . . . , iπ(k+q−1)). Hence, we may
restrict the sum to those permutations π for which iπ(k) = l1, . . . , iπ(k+q−1) = lq.
We identify this set of permutations with the symmetric group Symp−1 (of per-
mutations on the set {1, . . . , k− 1, k+ q, . . . , m}) in the standard way. Under this
identification, the factor sgn(π) changes by

(−1)λ(1)−k(−1)λ(2)−(k+1) · · · (−1)λ(q)−(k+q−1) .

For such permutations π, the vectors viπ(k+q)
, . . . , viπ(m)

lie in V h (as the exterior

part of β ∈ Hq
h includes a volume form on (V h)⊥, and hence vi ∈ V h for i /∈ L).

Therefore hviπ(k+q)
= viπ(k+q)

, . . . , hviπ(m)
= viπ(m)

. Note also that (f ′
h)

(iπ(k)) = f ′
h for

all such π. We now invoke the change of basis

viπ(s)
= a1,iπ(s)

w1 + · · ·+ an,iπ(s)
wn

for s = 1, . . . , k − 1, k + q, . . . , m to obtain
Υg(α)(viπ(1)

⊗ · · · ⊗ viπ(k−1)
⊗ f ′

h ⊗ viπ(k+q)
⊗ · · · ⊗ viπ(m)

)

= aj1,iπ(1)
· · · ajk−1,iπ(k−1)

· ajk+1,iπ(k+q)
· · · ajp,iπ(m)

s1···sjk−1(∂jkf
′
h)fg g.

Thus the k-th summand of (α◦β)(vi1 ∧ · · · ∧ vim) is a sum over π ∈ Symp−1 of

(−1)(q−1)(k−1)+λ(1)+···+λ(q)−k−(k+1)−···−(k+q−1)(sgn π)

times

aj1,iπ(1)
· · · ajk−1,iπ(ik−1)

ajk+1,iπ(k+q)
· · ·ajp,iπ(m)

s1···sjk−1(∂jkf
′
h)fg gh.

By definition of the determinant and some sign simplifications, this is precisely
the formula claimed. �

In the remainder of this section, we refine the formula of Theorem 7.2 in the
special case that the actions of g and h commute. In this case, we may choose
Bg = Bh to be a simultaneous basis of eigenvectors for both g and h, and the
change of basis matrix M in Theorem 7.2 is simply the identity matrix. We
introduce some notation to capture the single summand that remains, for each k,
after the prebracket formula in Definiton 6.8 collapses. For any two multi-indices
J = (j1, . . . , jp) and L = (l1, . . . , lq), and k ≤ p, set

Ik := (j1, . . . , jk−1, l1, . . . , lq, jk+1, . . . , jp)

I ′k := (l1, . . . , lk−1, j1, . . . , jp, lk+1, . . . , lq).

Corollary 7.3. Suppose the actions of g, h in G on V commute and Bg = Bh =
{v1, . . . , vn} is a simultaneous basis of eigenvectors for g and h. Let α = fgg⊗dvJ
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lie in Hp
g and β = f ′

hh⊗ dvL lie in Hq
h, for multi-indices J = (j1 < . . . < jp) and

L = (l1 < . . . < lq). Then

[[α, β]]
(Bg ,Bh)

=
∑

1≤k≤p

(−1)(q−1)(k−1)s1···sjk−1(∂jkf
′
h) fg gh⊗ dvIk

−(−1)(p−1)(q−1)·
∑

1≤k≤q

(−1)(p−1)(k−1) s′1···s
′
lk−1(∂′

lk
fg) f

′
h hg ⊗ dvI′

k

where si, s
′
i are diagonal reflections (or identity maps) with sivi =

gvi = ǫivi and
s′ivi =

hvi = ǫ′ivi, and where ∂i = ∂vi,ǫi and ∂′
i = ∂vi,ǫ′i .

If the group elements g and h act as the identity, we recover the classical
Schouten-Nijenhuis bracket, as detailed in the next two corollaries. Indeed, we
view Corollary 7.3 as giving a quantum version of the Schouten-Nijenhuis bracket.

Corollary 7.4. Let g and h in G both act trivially on V (e.g., g = h = 1G).
Let α = fgg ⊗ dvJ lie in Hp

g and β = f ′
hh ⊗ dvL lie in Hq

h, for multi-indices
J = (j1 < . . . < jp) and L = (l1 < . . . < lq). If Bg = {v1, . . . , vn} = Bh, then

[[α, β]]
(Bg,Bh)

=
∑

1≤k≤p

(−1)(q−1)(k−1) ∂

∂vjk
(f ′

h) fg gh⊗ dvIk

− (−1)(p−1)(q−1)
∑

1≤k≤q

(−1)(p−1)(k−1) ∂

∂vlk
(fg) f

′
h hg ⊗ dvI′

k
.

If the group G is trivial, then the bracket agrees with the prebracket:

Corollary 7.5. If G = {1}, we recover the classical Schouten-Nijenhuis bracket:
Let α = f1 ⊗ dvJ in degree p and β = f2 ⊗ dvL in degree q. Then

[α, β] =
∑

1≤k≤p

(−1)(q−1)(k−1) ∂

∂vjk
(f2)f1 ⊗ dvIk

− (−1)(p−1)(q−1)
∑

1≤k≤q

(−1)(p−1)(k−1) ∂

∂vlk
(f1)f2 ⊗ dvI′

k
.

For abelian groups, brackets enjoy a combinatorial description:

Example 7.6. Let G be an abelian group acting on V with dimV ≥ 3. Let
B = {v1, . . . , vn}, a simultaneous basis of eigenvectors for G. For i ∈ {1, . . . , n},
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let χi be the character defined by gvi = χi(g) vi for each g in G. Fix g, h ∈ G and

α = (vc11 vc22 vc33 ) g ⊗ v∗1 ∧ v∗2,

β = (vd11 vd22 vd33 ) h⊗ v∗2 ∧ v∗3 ,

elements of H2
g , H

2
h, respectively. (Note that if g acts nontrivially on V , then

c1 = c2 = 0, and if h acts nontrivially on V , then d2 = d3 = 0.) A calculation
using Theorems 6.12 and 7.2 gives the bracket:

[α, β] = κ ProjH vc1+d1
1 vc2+d2−1

2 vc3+d3
3 gh⊗ v∗1 ∧ v∗2 ∧ v∗3 ,

where

κ = 〈χc1−1
1 χc2−1

2 , χ−c3
3 〉〈χd1

1 , χ1−d2
2 χ1−d3

3 〉
(
[c2]ǫ χ1(h)

c1 − [d2]ǫ′ χ1(g)
d1
)
.

Here, ǫ = χ2(h), ǫ
′ = χ2(g), [m]λ is the quantum integer 1 + λ + . . . + λm−1 (or

zero when m = 0), and 〈 , 〉 denotes the inner product of characters on G. The
map ProjH in particular projects the polynomial coefficient onto S(V gh): vi 7→ vi
if χi(gh) = 1, vi 7→ 0 otherwise. Thus [α, β] is usually 0, but can be nonzero
as a consequence of the orthogonality relations on characters of finite groups (see
Proposition 10.1 below).

8. Zero brackets

Let G be a finite group and let V be a finite dimensional CG-module. Every
deformation arises from a Hochschild 2-cocycle α whose square bracket [α, α] is a
coboundary. We use the formulas of Section 7 to now determine some conditions
under which brackets are zero. In the process, we take advantage of our depiction
of cohomology automorphisms in terms of quantum partial derivatives. We begin
with an easy corollary of our formulation of the Gerstenhaber bracket as a sum of
prebrackets.
We say that a cochain α in C

q

is constant if the polynomial coefficient of α is
constant, i.e., if α lies in the subspace

⊕
g∈GC g ⊗∧V ∗. We showed in [17] that

any constant Hochschild 2-cocycle lifts to a graded Hecke algebra. As graded Hecke
algebras are deformations of S(V )#G (see Section 11), every constant Hochschild
2-cocycle defines a noncommutative Poisson structure. The following consequence
of Theorem 6.12 extends this result to arbitrary cohomological degree.

Theorem 8.1. Suppose α and β in H
q

are constant. Then [α, β] = 0.

Proof. Theorem 6.12 gives the Gerstenhaber bracket as a sum of prebrackets of
cochains aα and bβ for a, b in G. Definition 6.8 expresses the prebracket in terms
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of quantum partial differentiation of polynomial coefficients of cochains (see Defi-
nitions 5.8 and 5.9). As the cochains aα and bβ are constant, any partial derivative
of their coefficients is zero. Hence, each prebracket is zero. �

As an immediate consequence of the theorem, we obtain:

Corollary 8.2. Any constant Hochschild cocycle in HH
q

(S(V )#G) defines a non-
commutative Poisson structure.

We need a quick linear algebra lemma in order to give more results on zero
brackets.

Lemma 8.3. Let v1, . . . , vn and w1, . . . , wn be two bases of V with change of basis
matrix M determined by Equation 7.1. If J and L are two multi-indices with

SpanC{wj | j ∈ J} ∩ SpanC{vl | l ∈ L} 6= {0} ,
then det(MJ ;L′) = 0 for any L′ with L ∩ L′ = ∅.

Proof. Write
∑

j∈J cjwj =
∑

l∈L dlvl for some scalars cj , dl, not all 0. We substitute

vi = a1iwi + . . .+ aniwn to see that
∑

l∈L dlail = 0 for i /∈ J . If we delete the rows
of M indexed by J , these equations give a linear dependence relation among the
columns indexed by L. Thus det(MJ ;L′) = 0. �

As a consequence, we have the following proposition.

Proposition 8.4. Suppose g, h lie in G and (V g)⊥∩ (V h)⊥ is nontrivial and fixed
setwise by G. Let α and β be elements of (H

q

)G supported on the conjugacy classes
of g and h, respectively. Then

[α, β] = 0 .

Proof. Let α′ be the summand of α supported on g itself and let β ′ be the summand
of β supported on h. Then |Z(g)|α = Rα′. (Indeed, since α is G-invariant, α′

is Z(g)-invariant and α =
∑

c
cα′, a sum over coset representatives c of G/Z(g).)

Similarly, |Z(h)| β = Rβ ′. Remark 4.6 then implies that

(|Z(g)| |Z(h)|) [α, β] = [Rα′,Rβ ′ ] = [α′, β ′ ] ,

and hence we compute [α′, β ′ ]. Set W := (V g)⊥ ∩ (V h)⊥ and recall that the
Hermitian form on V is G-invariant. By Remark 6.11, we may assume that Bg =
{w1, w2, . . . , wn} and Bh = {v1, v2, . . . , vn} are orthogonal bases with w1, v1 in W .
Without loss of generality, suppose

α′ = fgg ⊗ w∗
j1
∧ · · · ∧ w∗

jp and β ′ = f ′
hh⊗ v∗l1 ∧ · · · ∧ v∗lq
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in H
q

where fg ∈ S(V g), f ′
h ∈ S(V h) and j1 = l1 = 1. As β ′ lies in Hq

h, the linear
span of vl1 , . . . , vlq contains (V h)⊥ and thus w1. Hence, for k 6= 1,

SpanC{wji | i = 1, . . . , p ; i 6= k} ∩ SpanC{ vli | i = 1, . . . , q} 6= {0} .
Theorem 7.2 and Lemma 8.3 then imply that the k-th summand of α′ ◦ β ′ in the
prebracket [[α′, β ′ ]]

(Bg , Bh)
is zero for k 6= 1 (as detMJk ;I−L = 0). But the first

(k = 1) summand is also zero, since w1 = wj1 lies in (V h)⊥ while f ′
h lies in V h,

forcing the partial derivative of f ′
h with respect to w1 and Bg to be zero: ∂1(f

′
h) =

0. (Indeed, since w1 ∈ (V h)⊥ and Bg is orthogonal, V h ⊂ SpanC{w2, . . . , wn}:
Were some w1 + a2w2 + . . . anwn to lie in V h (with ai ∈ C), the inner product
〈w1, w1〉 = 〈w1, w1 + a2w2 + . . .+ anwn〉 would be zero.) Hence α′ ◦ β ′ = 0. By a
symmetric argument, interchanging the role of g and h, β ′ ◦α′ is also zero.
The same arguments apply when we compute the prebracket [[ aα′, bβ ′ ]] with

respect to the pair of bases ( aBg,
bBh) for a, b in G, as aw1 and bv1 both lie in

W = aW = bW by hypothesis and

(8.5) W ⊂ a((V g)⊥) ∩ b((V h)⊥) = (V aga−1

)⊥ ∩ (V bhb−1

)⊥ .

Hence, Theorem 6.12 implies that 0 = [α′, β ′] = [α, β]. �

We immediately obtain some interesting corollaries for square brackets:

Corollary 8.6. Let g lie in G. If V g 6= V is fixed setwise by G, then any
Hochschild cocycle α in HH

q

(S(V )#G) supported on conjugates of g defines a
noncommutative Poisson bracket:

[α, α] = 0 .

Note that the hypothesis of the corollary is automatically satisfied for any ele-
ment g in the center of G acting nontrivially on V . Thus the square bracket of any
Hochschild cocycle in HH

q

(S(V )#G) supported on conjugates of such an element
g is zero.
More generally, we have a corollary for brackets of possibly different cocycles:

Corollary 8.7. Suppose g, h lie in the center of G with (V g)⊥∩ (V h)⊥ nontrivial.
Then the bracket of any two Hochschild cocycles α, β in HH

q

(S(V )#G) supported
on conjugates of g, h, respectively, is zero:

[α, β] = 0 .

In particular, if G is abelian, such a bracket is always 0 whenever (V g)⊥ ∩ (V h)⊥

is nontrivial.
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9. Zero brackets in cohomological degree 2

Let G be a finite group and let V be a finite dimensional CG-module. We are
particularly interested in the Gerstenhaber bracket in cohomological degree 2, since
every deformation of S(V )#G arises from a Hochschild 2-cocycle µ with square
bracket [µ, µ] zero in cohomology, i.e., from a noncommutative Poisson structure
(see Section 2). Graded Hecke algebras are deformations of S(V )#G that arise
from noncommutative Poisson structures of a particular form (see Section 11).
In Theorem 9.2 below, we prove that Hochschild 2-cocycles supported on group
elements acting nontrivially on V always have zero bracket. As an immediate
consequence, if G acts faithfully, then any single Hochschild 2-cocycle supported
on nonidentity group elements defines a noncommutative Poisson structure.
The proof of Theorem 9.2 rests on the following combinatorial lemma about

Demazure operators and reflections. In fact, by enunciating our automorphisms
of cohomology in terms of Demazure operators, we show in this lemma that the
operation ◦ (see Definitions 6.8 and 2.2) is essentially zero on 2-cocycles after
projecting to cohomology classes under the hypotheses of the theorem.

Lemma 9.1. Suppose g in G acts as a bireflection, i.e., codimV g = 2. For all w
in V , α in H2

g , and m ≥ 0, the difference w − gw divides

Υα(wm ⊗ w)−Υα(w ⊗ wm).

Proof. Let Bg = {v1, . . . , vn}. Without loss of generality, assume v1, v2 span (V g)⊥.
Let ǫ1, ǫ2 be the corresponding (nontrivial) eigenvalues of g. Write α = fgg⊗v∗1∧v∗2
for some fg in S(V ). Let s1 and s2 in GL(V ) be diagonal reflections decomposing
g, i.e., s1v1 =

gv1 = ǫ1v1,
s1v2 = v2,

s2v1 = v1,
s2v2 =

g(v2) = ǫ2v2, and g = s1s2 =
s2s1. By Definitions 5.8 and 5.9, Υα(wm ⊗ w) − Υα(w ⊗ wm) is the following
multiple of fg:

(∂1w
m) s1(∂2w)−(∂1w) s1(∂2w

m)

=

(
wm − s1wm

v1 − s1v1

)
s1
(
w − s2w

v2 − s2v2

)
−
(
w − s1w

v1 − s1v1

)
s1
(
wm − s2wm

v2 − s2v2

)
.



28 ANNE V. SHEPLER AND SARAH WITHERSPOON

Since v1 − s1v1 = (1 − ǫ1)v1 and v2 − s2v2 = (1 − ǫ2)v2, we may factor out the

scalar (1− ǫ1)
−1(1− ǫ2)

−1 from each summand, leaving us with
1

v1v2
times

(wm − s1wm) ( s1w − gw)− (w − s1w) ( s1wm − gwm)

= wm( s1w)− wm( gw) + ( s1wm)( gw)− w( s1wm) + w( gwm)− ( s1w)( gwm)

= ( s1w)(wm − gwm) + ( s1wm)( gw − w)− wm( gw) + wm+1 − wm+1 + w( gwm)

= (w − gw)(wm − s1wm)− (w − s1w)(wm − gwm)

= (w − gw)(w − s1w)[wm−1 + wm−2( s1w) + . . .+ s1wm−1]

− (w − s1w)(w − gw)[wm−1 + wm−2( gw) + · · ·+ gwm−1]

= (w − gw)(w − s1w)

·
(
wm−2( s1w − gw) + wm−3( s1w2 − gw2) + . . .+ ( s1wm−1 − gwm−1)

)
.

Now w − s1w lies in im(1 − s1) = (V s1)⊥ = SpanC{v1}. Similarly, for each i,
s1wi− gwi = ( s1wi)− s2( s1wi) lies in im(1−s2) = SpanC{v2}. Hence, v1v2 divides
the above expression in S(V ) and the quotient by v1v2 is divisible by w− gw. �

We are now ready to show that the Gerstenhaber bracket is zero on cocycles
supported on group elements acting nontrivially. In the next section, we show that
the converse of this theorem is false and that the hypothesis in the theorem can
not be easily weakened. Let K denote the kernel of the action of G on V .

Theorem 9.2. The bracket of any two elements α, β in HH2(S(V )#G) supported
off K is zero:

[α, β] = 0 .

Proof. For each k in G, we fix a basis Bk of V consisting of eigenvectors of k so
that the first codim(V k) vectors in that list span (V k)⊥. Then for all a in G, the

first codim(V aka−1
) vectors in the basis aBk span (V aka−1

)⊥ as well.
Since the bracket is linear, we may assume without loss of generality that α and

β are each supported on the conjugacy class of a single element in G. In fact, it is
enough to consider single summands: Assume that α lies in H2

g and β lies in H2
h

for some g and h in G. By Theorem 6.12, our Definition 6.8 gives a closed formula
for the Gerstenhaber bracket on HH

q

(S(V )#G) as realized on H
q

:

[α, β] =
1

|G|2 ProjH
∑

a,b∈G

[[ aα, bβ ]]
( aBg , bBh)

.

(By Remark 6.11, this bracket does not depend on our choices of bases Bk for each
k in G.) Write B1 := {w1, . . . , wn} for aBg and B2 := {v1, . . . , vn} for bBh. We
assume first that a = b = 1G. Consider the prebracket [[α, β]] := [[α, β]]

(B1,B2)
, a
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cochain in C3
gh +C3

hg, and suppose that H3
gh or H3

hg is nonzero. We show that this
prebracket is either identically zero or projects to zero under the map ProjH .
For any i < j < k and Υ1 = ΥB1,g and Υ2 = ΥB2,h, Equation (6.10) gives

(9.3)

[[α, β]](vi ∧ vj ∧ vk) =
∑

π∈Sym3

sgn(π)·
(
Υ1α

(
Υ2β(vπ(i) ⊗ vπ(j))⊗ hvπ(k)

)
gh − Υ1α

(
vπ(i) ⊗Υ2β(vπ(j) ⊗ vπ(k))

)
gh

+Υ2β
(
Υ1α(vπ(i) ⊗ vπ(j))⊗ gvπ(k)

)
hg − Υ2β

(
vπ(i) ⊗Υ1α(vπ(j) ⊗ vπ(k))

)
hg

)
.

We may assume g and h act as bireflections, i.e., codimV g = codimV h = 2, else
H2

g or H2
h is zero by Remark 6.3. We consider three cases, depending on whether

the spaces (V g)⊥ and (V h)⊥ intersect in dimension 0, 1, or 2.
Case 1: Disjoint orthogonal complements. Assume that (V g)⊥ ∩ (V h)⊥ =

0. Then
codimV g + codimV h = codimV gh = codimV hg

(e.g., see [18, Lemma 2.1]). Thus codimV gh = 4 = codimV hg, and by examination
of Definition 6.1, H3

gh = 0 = H3
hg (as H

q

gh “begins” in degree 4). But we have
excluded this case from consideration.
Case 2. Equal orthogonal complements. Assume that (V g)⊥ and (V h)⊥

are equal, i.e., dim((V g)⊥ ∩ (V h)⊥) = 2, and v1, v2 span (V g)⊥ = (V h)⊥. Consider

α = fgḡ ⊗ (v∗1 ∧ v∗2) and β = f ′
hh̄⊗ (v∗1 ∧ v∗2),

where fg, f
′
h ∈ S(V g) = S(V h). If nonzero, Υ1α

(
Υ2β(vi⊗vj)⊗hvk

)
= Υ1α

(
f ′
h⊗ hvk

)

up to a constant. But Υ1α
(
f ′
h ⊗ ∗

)
= 0 by Remark 5.10, as f ′

h ∈ S(V g) has zero

partial derivative with respect to any basis element in (V g)⊥. Hence

0 = Υ1α
(
Υ2β(vi ⊗ vj)⊗ hvk

)
.

Similarly,

0 = Υ1α
(
vi⊗Υ2β(vj ⊗ vk)

)
= Υ2β

(
Υ1α(vi⊗ vj)⊗ gvk

)
= Υ2β

(
vi⊗Υ1α(vj ⊗ vk)

)

for all distinct i, j, and k and thus Equation 9.3 yields zero. Hence, [[α, β]] = 0.
Case 3. Overlapping orthogonal complements. Assume the two spaces

(V g)⊥ and (V h)⊥ overlap only partially, i.e., dim((V g)⊥ ∩ (V h)⊥) = 1. The re-
mainder of the proof is devoted to this last case.
We now refine our bases B1 and B2 to ease determination of the prebracket.

Recall that B1 = {w1, . . . , wn} and B2 = {v1, . . . , vn} are bases of V with w1, w2 in
(V g)⊥, v1, v2 in (V h)⊥, w3, . . . , wn in V g, and v3, . . . , vn in V h. We make additional
assumptions. Let W = (V g)⊥+(V h)⊥. The space W has dimension 3 since (V g)⊥

and (V h)⊥ intersect in dimension 1. Notice that V g intersects W nontrivially, as
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otherwise dim(W + V g) = dim(W ) + dim(V g) = 3 + (n − 2) = n + 1 > dimV .
Also note that W⊥ = V g ∩V h. Thus, we may assume further that w1, w2, w3 span
W , w4, . . . , wn span W⊥, and v4 = w4, . . . , vn = wn.
These refining assumptions have no effect on the prebracket [[α, β]]. Although

Υ is independent of choice of bases as a map on cohomology, it depends on the
choices B1 and B2 as a cochain map. (See cautionary Remark 6.9.) Yet in refining
our choices of B1 and B2, we have not altered the values of Υ(α) or Υ(β) as
cochains. Indeed, quantum partial differentiation with respect to one subset of
variables in a basis ignores any change of basis affecting only the other variables.
The exterior part of α is an element of

∧
((V g)⊥)∗ (as α lies in H2

g ), so the map

Υ(α) differentiates with respect to vectors in (V g)⊥. Since we altered the basis of
B1 on V g alone, the map Υ(α) is unchanged. Similarly, Υ(β) is also unchanged.
We examine the coefficient of gh in Equation 9.3. Consider

α = fgḡ ⊗ w∗
1 ∧ w∗

2 and β = f ′
hh̄⊗ v∗1 ∧ v∗2,

where fg ∈ S(V g) and f ′
h ∈ S(V h). We rewrite the sum (giving the coefficient of

gh) with indices in a different order:
(9.4)

∑

π∈Sym3

sgn(π)

[
Υ1α

(
Υ2β(vπ(i) ⊗ vπ(j))⊗ hvπ(k)

)
−Υ1α

(
vπ(i) ⊗Υ2β(vπ(j) ⊗ vπ(k))

)]

=
∑

π∈Sym3

sgn(π)

[
Υ1α

(
Υ2β(vπ(i) ⊗ vπ(j))⊗ hvπ(k)

)
−Υ1α

(
vπ(k) ⊗Υ2β(vπ(i) ⊗ vπ(j))

)]
.

By Remark 5.10, each of the above summands is zero for every permutation save
one. Indeed, the summand corresponding to π is zero unless π(i) = 1, π(j) = 2,
and π(k) = 3 (since v4 = w4, . . . , vn = wn), and we are left with

(9.5)
Υ1α

(
Υ2β(v1 ⊗ v2)⊗ hv3

)
− Υ1α

(
v3 ⊗Υ2β(v1 ⊗ v2)

)

= Υ1α
(
f ′
h ⊗ v3

)
− Υ1α

(
v3 ⊗ f ′

h

)
.

We show that this difference maps to zero under the projection S(V )→ S(V gh).
We reduce to the case when f ′

h is a power of v3. Indeed, the above difference is
just

∂1(f
′
h)

s1∂2(v3)− ∂1(v3)
s1∂2(f

′
h)

where s1 is some reflection and ∂i is some partial quantum differentiation with
respect to wi in the basis {w1, w2, w3, w4=v4, . . . , wn=vn}. As ∂1, ∂2 are both
C[v4, . . . , vn]-linear, and f ′

h lies in S(V h) = C[v3, . . . , vn], we may break f ′
h into

its monomial summands (in the basis {v1, . . . , vn}) and pull out all factors from
C[v4, . . . , vn] when evaluating the above difference. Thus, it suffices to consider
the special case when f ′

h = vm3 for some m ≥ 0.
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By Lemma 9.1, u := v3 − gv3 divides

(9.6) Υ1α(v
m
3 ⊗ v3) − Υ1α(v3 ⊗ vm3 ) .

But notice that u lies in (V gh)⊥, since

gh(u) = gh(v3 − gv3) =
gv3 − ghgv3 =

1−gh( gv3),

i.e., ghu lies in im(1 − gh) = (V gh)⊥. Thus the difference (9.6) lies in the ideal
I((V gh)⊥) of S(V ) and projects to zero under the map S(V )→ S(V gh).
By a symmetric argument, the coefficient of hg in Equation 9.3 projects to

zero under the map S(V ) → S(V hg). Thus, the prebracket [[α, β]] projects to
zero under the map ProjH . The same arguments apply to [[ aα, bβ ]]

( aBg , bBh)
for

arbitrary a, b in G. Hence,

[α, β] :=
1

|G|2 ProjH
∑

a,b∈G

[[ aα, bβ]]
( aBg , bBh)

= 0 .

�

The theorem above implies that if α lies in HH2(S(V )#G) with [α, α] 6= 0, then
the support of α includes at least one group element acting as the identity on V :

Corollary 9.7. The Gerstenhaber square bracket of every α in HH2(S(V )#G)
supported off of K is zero, i.e., α defines a noncommutative Poisson structure on
S(V )#G:

[α, α] = 0 .

Next, we illustrate our results by giving an explicit example of a Gerstenhaber
bracket in degree 2.

Example 9.8. Let G = D8, the dihedral group of order 8, generated by g and h
with relations g4 = 1 = h2, hgh−1 = g3, realized as a subgroup of GL3(C) in the
following way:

g =




0 i 0
i 0 0
0 0 1


 , h =




1 0 0
0 −1 0
0 0 −1


 ,

where i =
√
−1. Let Bh = {v1, v2, v3} be the corresponding basis of C3, and set

Bg = {w1, w2, w3} where w1 = v1 + v2, w2 = −v1 + v2, and w3 = v3, so that
gw1 = iw1 and gw2 = −iw2. Define

α = v3 g ⊗ w∗
1 ∧ w∗

2 in H2
g

β = v31 h⊗ v∗2 ∧ v∗3 in H2
h .
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Note that v3 ∈ S(V g), v31 ∈ S(V h), and α, β are Z(g)-, Z(h)-invariant, respectively.
We compute [α, β ]. By Definition 6.8, (α◦β)(v1 ∧ v2 ∧ v3) is equal to
∑

π∈Sym3

(sgn π)Υα
(
Υβ(vπ(1) ⊗ vπ(2))⊗ hvπ(3)

)
gh−Υα

(
vπ(1) ⊗Υβ(vπ(2) ⊗ vπ(3))

)
gh.

The π = 1 and π = (123) terms are
(
− 3

16
w2

1 −
3

16
(1 + i)w1w2 −

i

16
w2

2

)
v3 gh and

(
− i

16
w2

1 +
3

16
(1 + i)w1w2 −

3

16
w2

2

)
v3 gh,

respectively, and the remaining terms are 0. Combining these, we find that the
coefficient of gh in (α◦β)(v1 ∧ v2 ∧ v3) is

(−3− i

16
w2

1 +
−3− i

16
w2

2

)
v3.

Thus α◦β is nonzero, as a function at the chain level, given our choices of bases.
By Lemma 9.1, (α◦β)(v1 ∧ v2 ∧ v3) is divisible by u := (1 − g)v1 = v1 − iv2, and
indeed w2

1+w2
2 is a scalar multiple of (v1+ iv2)(v1−iv2), the product of an element

in V gh with an element in (V gh)⊥. Hence, [α, β] projects to zero under the map
ProjH , i.e., it is a coboundary. Similar calculations give aα ◦ bβ and bβ ◦ aα for all
a, b in G. Thus [α, β] = 0 in cohomology, as predicted by Theorem 9.2.

10. Abelian groups and inner products of characters

We now consider the Gerstenhaber bracket for abelian groups. Orthogonality
relations on characters allow us to place Theorem 9.2 in context. We observe that
the hypothesis of the theorem cannot be weakened and we show that its converse
is false.
Let G be a finite abelian group and V a (not necessarily faithful) CG-module

of finite dimension n. We first explain how inner products of characters of G
determine the Gerstenhaber bracket on HH

q

(S(V )#G). It would be interesting
to know whether a similar description holds for arbitrary groups. We concentrate
on cohomological degree 2 due to connections with deformation theory. Assume
dimV ≥ 3, as otherwise the Hochschild cohomology of S(V )#G in degree 3 is
always zero.
Fix a simultaneous basis of eigenvectors for G, say B = {v1, . . . , vn}. For i ∈
{1, . . . , n}, let χi be the character defined by gvi = χi(g) vi for each g in G. The
Gerstenhaber bracket of 2-cocycles in (H

q

)G ∼= HH
q

(S(V )#G) may be computed
summand by summand, at the cochain level, as the bracket is linear and extends to
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H
q

(see Remark 6.14). Thus, it suffices to describe the bracket on simple cochains
of the form

α = fgg ⊗ v∗i ∧ v∗j and β = f ′
hh⊗ v∗k ∧ v∗m

where fg, f
′
h are monomials and g, h lie in G. Three cases arise.

Case 1: If the exterior parts of α and β agree up to sign (i.e., {i, j} = {k,m}),
then the bracket [α, β] (given by Equation (6.10)) is easily seen to be zero by
Remark 5.10.
Case 2: If the exterior parts of α and β partially overlap, relabel indices so

that

α = fg g ⊗ v∗1 ∧ v∗2 and β = f ′
h h⊗ v∗2 ∧ v∗3 .

The bracket operations [∗, β] and [α, ∗] are then both C[v4, . . . , vn]-linear: [viα, β] =
[α, viβ] = vi[α, β] for i ≥ 4. The bracket computation thus reduces to that of Ex-
ample 7.6, in which fg = vc11 vc22 vc33 and f ′

h = vd11 vd22 vd33 . The formula in that example
expresses the bracket [α, β] in terms of inner products of the group characters χi.
Note that the bracket [α, β] is zero or χc1+d1−1

1 χc2+d2−2
2 χc3+d3−1

3 = 1, and thus the
bracket [α, β] is G-invariant (see the formula), even if α and β are not (verifying
Remark 6.14).
Case 3: If the exterior parts of α and β do not overlap (i.e., {i, j}∩{k,m} = ∅),

a similar but lengthier formula results. We may assume

α = (vc11 vc22 vc33 vc44 ) g ⊗ v∗1 ∧ v∗2 and β = (vd11 vd22 vd33 vd44 ) h⊗ v∗3 ∧ v∗4 .

The bracket [α, β] is given by

ProjH
∑

1≤l≤4

κl

(
vc1+d1
1 vc2+d2

2 vc3+d3
3 vc4+d4

4 v−1
l

)
gh⊗ v∗1 ∧ · · · ∧ v̂∗l ∧ · · · ∧ v∗4 ,

where

κ1 := +〈χc1−1
1 χc2+1

2 χc3
3 χ

c4
4 , 1〉〈χd1

1 χd2−2
2 χd3−1

3 χd4−1
4 , 1〉 · [d1]χ1(g),

κ2 := −〈χc1+1
1 χc2−1

2 χc3
3 χ

c4
4 , 1〉〈χd1−2

1 χd2
2 χd3−1

3 χd4−1
4 , 1〉 · [d2]χ2(g) · χd1

1 (g),

κ3 := +〈χc1−1
1 χc2−1

2 χc3
3 χ

c4−2
4 , 1〉〈χd1

1 χd2
2 χd3−1

3 χd4+1
4 , 1〉 · [c3]χ3(h) · (χc1

1 χ
c2
2 )(h),

κ4 := −〈χc1−1
1 χc2−1

2 χc3−2
3 χc4

4 , 1〉〈χd1
1 χd2

2 χd3+1
3 χd4−1

4 , 1〉 · [c4]χ4(h) · (χc1
1 χ

c2
2 χ

c3
3 )(h),

〈 , 〉 denotes inner product of group characters and [m]λ is the quantum integer
1 + λ + λ2 + . . . + λm−1 (or zero when m = 0). Note that [α, β] is either zero or
χc1+d1−1
1 χc2+d2−1

2 χc3+d3−1
3 χc4+d4−1

4 = 1. Thus the bracket [α, β] is G-invariant, even
if α and β are not, as results in previous sections predict.

We now use our analysis of the Gerstenhaber bracket for abelian groups to revisit
Theorem 9.2 and Corollary 9.7. The next two results show that the hypotheses
on Theorem 9.2 and Corollary 9.7 cannot be weakened. Theorem 10.2 below
reveals that the converse of Theorem 9.2 is false for any abelian group. We do
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not know whether the statements below hold for nonabelian groups. Recall that
K = {g ∈ G : V g = V }, the kernel of the action of G on V .

Proposition 10.1. Let G be an abelian group. Suppose g, h lie in K and dimV
is at least 3. Then there are elements α, β in HH2(S(V )#G) supported on g, h,
respectively, with nonzero Gerstenhaber bracket: [α, β] 6= 0.

Proof. We shall use the notation and formula of Example 7.6. Let

α =
(
v1v

|G|+1
2

)
g ⊗ v∗1 ∧ v∗2 and β =

(
v2v

|G|+1
3

)
h⊗ v∗2 ∧ v∗3 ,

i.e., set c1 = 1, c2 = |G|+ 1, c3 = 0, d1 = 0, d2 = 1, and d3 = |G| + 1. Note that
α and β are invariant cocycles. Then

[α, β] = κ
(
v1v

|G|+1
2 v

|G|+1
3

)
gh⊗ v∗1 ∧ v∗2 ∧ v∗3

where
κ = 〈1 · 1, 1〉〈1, 1 · 1〉(|G|+ 1− 1) = |G|

and 1 denotes the trivial character of G. Hence [α, β] is nonzero. �

The last proposition implies:

Theorem 10.2. Let G be an abelian group. Then

• There is a 2-cocycle supported on K whose square bracket is nonzero.
• There is a 2-cocycle supported on K whose square bracket is zero.

Proof. We prove a slightly stronger statement. Let k be any element of K. We
apply Proposition 10.1 in the case that g = h = k. We obtain cocycles α, β in
(H

q

k)
G ∼= HH2(S(V )#G) with [α, β] 6= 0. Then as

[α + β, α+ β] = [α, α] + 2[α, β] + [β, β] ,

there must be a cocycle supported on k with square bracket nonzero.
Now set α = (v1v2)k⊗ v∗1 ∧ v∗2 . Since G acts diagonally, α is G-invariant, i.e., α

lies in (H2)G ∼= HH2(S(V )#G). Yet [α, α] = 0 (see Case 1 above). �

We end this section by pointing out a direct and easy proof of Theorem 9.2 for
abelian groups as follows. Suppose α and β in (H2)G are supported off K but
[α, β] 6= 0. Then the bracket of some summand of α and some summand of β is
nonzero. We consider the three cases at the beginning of this section. The bracket
in Case 1 is always zero. The bracket in Case 3 is also zero: Remark 6.3 implies
that v1, v2 span (V g)⊥ while v3, v4 span (V h)⊥; hence C[v1, v2, v3, v4] projects to
zero under the map S(V ) → S(V gh) = S(V hg) and the bracket lies in the kernel
of ProjH . We thus reduce to Case 2 and Example 7.6: We assume v1, v2 span
(V g)⊥ and v2, v3 span (V h)⊥. Then [α, β] = 0 as the polynomial coefficient of α
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(in S(V g)) and the polynomial coeffient of β (in S(V h)) both vanish after taking
the partial derivative with respect to v2. (See Remark 5.10 or the formula of
Example 7.6 with c1 = c2 = d2 = d3 = 0.)

11. Graded (Drinfeld) Hecke algebras

We end by briefly highlighting connections with graded Hecke algebras (or Drin-
feld Hecke algebras), which include symplectic reflection algebras (and rational
Cherednik algebras). We show how the maps in previous sections give explicit
conversions among graded Hecke algebras, deformation theory, and Hochschild
cocycles (expressed as vector forms).
Let G be a finite group and let V be a finite dimensional CG-module. Let

T (V ) denote the tensor algebra on V and let κ : V × V → CG be a bilinear,
skew-symmetric function. A graded Hecke algebra is a quotient

(11.1) H = T (V )#G/(v ⊗ w − w ⊗ v − κ(v, w) | v, w ∈ V )

that satisfies the Poincaré-Birkhoff-Witt property: Any linear splitting of the
canonical projection T (V ) → S(V ) induces a vector space isomorphism H ∼=
S(V )#G. We extend scalars to the polynomial ring C[t] and consider every graded
Hecke algebra as a quotient

(11.2) T (V )#G[t]/(v ⊗ w − w ⊗ v − κ(v, w) t | v, w ∈ V ) .

See [16, 17] for basic definitions.
We first restate [22, Theorem 3.2] in our context. (Alternatively, results from [1]

and [3] could be used to obtain this and related statements on deformations of
S(V )#G.) Recall that the i-th multiplication map for a given deformation of
S(V )#G is denoted µi (see Section 2). Consider S(V )#G to be a graded algebra
with deg v = 1, deg g = 0 for all v in V , g in G. We agree that the zero map has
degree i for any integer i.

Theorem 11.3. Every graded Hecke algebra is isomorphic to a deformation of
S(V )#G. In fact, up to isomorphism, the graded Hecke algebras are precisely the
deformations of S(V )#G over C[t] for which the i-th multiplication map lowers
degree by 2i, i.e., µi is a (homogeneous) graded map with deg µi = −2i (i ≥ 1).

We now discuss the explicit conversions among graded Hecke algebras, defor-
mations, and Hochschild cocycles by interpreting the above theorem and its proof
using our results from previous sections.

Deformations to Graded Hecke Algebras. Given a fixed deformation of
S(V )#G over C[t] for which deg µi = −2i (i ≥ 1), we obtain a graded Hecke
algebra by defining κ : V × V → CG by

κ(v, w) = µ1(v ⊗ w)− µ1(w ⊗ v).
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Note that κ is skew-symmetric by definition, even if µ1 is not skew-symmetric. It
is shown in [22] that the graded Hecke algebra (11.1) corresponding to this choice
is isomorphic to the deformation with which we started.

Hochschild Cocycles to Graded Hecke Algebras. We identify HH
q

(S(V )#G)
with a subset of C

q

, vector forms tagged by group elements, using Theorem 6.2.
The algebra S(V ) is graded by polynomial degree: S(V ) =

⊕
k≥0 S(V )(k). This

induces a grading on S(V )#G (after assigning degree 0 to each g in G) which is
inherited by C

q

:

C
q

=
⊕

k≥0, g∈G

S(V )(k) g ⊗
∧ q

V ∗.

Recall that a Hochschild p-cocycle is said to be constant if it lies in the 0-th
graded piece of Cp, i.e., defines a vector form with constant polynomial part. We
rephrase Theorem 8.7 of [17], which uses Theorem 11.3 to determine that every
graded Hecke algebra arises from a constant 2-form.

Theorem 11.4. The parameter space of graded Hecke algebras is isomorphic to
the space of constant Hochschild 2-cocycles,

(⊕

g∈G

g ⊗∧2−codimV g

(V g)∗ ⊗∧codimV g

((V g)⊥)∗
)G

.

We next give an explicit conversion from constant 2-cocycles to graded Hecke
algebras.

Proposition 11.5. The correspondence above is induced from the map:

{constant Hochschild 2-cocycles} → {graded Hecke algebras}
α 7→ (T (V )#G)/Iα ,

where Iα is the ideal generated by {v⊗w−w⊗v−α(v∧ w)| v, w ∈ V } and α ∈ C2 ∼=
HomC(

∧2 V,CG) . (I.e., α defines a graded Hecke algebra with κ(v, w) = α(v∧w).)

Proof. We use our conversion map Γ : (H
q

)G → HH
q

(S(V )#G) of Theorem 6.4.
The values of the multiplication map µ1 in a deformation are given by the corre-
sponding Hochschild 2-cocycle in HH

q

(S(V )#G). Let α lie in (H2)G with isomor-
phic image Γ(α) in HH

q

(S(V )#G). Note that for any v, w in V ,

(Υα)(v ⊗ w − w ⊗ v) = α(v ∧ w) .
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Then,

Γ(α)(v ⊗ w − w ⊗ v) =
1

|G|
∑

g∈G

Θ∗ g(Υα)(v ⊗ w − w ⊗ v)

=
1

|G|
∑

g∈G

g
(
(Υα) g−1

(v ⊗ w − w ⊗ v)
)

=
1

|G|
∑

g∈G

g
(
α g−1

(v ∧ w)
)

=
1

|G|
∑

g∈G

( gα)(v ∧ w)

= α(v ∧ w) .

By Theorem 11.3 and its proof, µi(v ⊗ w) = 0 for all i ≥ 2. Thus we have
Γ(α)(v⊗w−w⊗v)t = (µ1(v⊗w)−µ1(w⊗v))t = v ∗w−w ∗v in the deformation
of S(V )#G over C[t]. This corresponds to the relation in the graded Hecke algebra
α(v ∧ w) = v ⊗ w − w ⊗ v. �

Hochschild Cocycles to Infinitesimal Deformations. The interpretation in
the last result and its proof hold for Hochschild cocycles of arbitrary polyno-
mial degree, not just constant cocycles: The proof gives the conversion from any
Hochschild 2-cocycle to an infinitesimal deformation. In fact, a closed form ex-
presses the multiplication map µ1 in terms of quantum differentiation. Let α in
(H

q

)G be a Hochschild 2-cocycle; then α defines a multiplication map A⊗A→ A
for A = S(V )#G given by

(11.6) µ1(f1h1 ⊗ f2h2) =
1

|G|
∑

g∈G

g(Υα)(f1 ⊗ h1f2) h1h2

(see Remark 6.5). If µ1 integrates, then the above formula gives the coefficient of
t in the product of f1h1, f2h2 in the corresponding deformation of S(V )#G over
C[t]. In particular, when α is constant, the formula defines the first multiplication
map µ1 of a deformation of S(V )#G arising from a graded Hecke algebra. (We
see directly in that case that µ1 must lower degree by 2.)

Graded Hecke algebras to Deformations and Hochschild Cocycles. Con-
sider a graded Hecke algebra defined by κ. Define α in C2 ∼= HomC(

∧2 V,CG)
by

α(v ∧ w) = κ(v, w) ∈ CG .

Theorem 6.6 implies that α defines a constant Hochschild cocycle in HH2(S(V )#G),
since κ defines the first multiplication map µ1 of a deformation (i.e., a cocycle
in HH2(S(V )#G)) by Theorem 11.3. (Alternatively, we may use Theorem 11.4
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above.) The second author [22] showed how to define functions µi (i ≥ 1) giv-
ing the corresponding deformation of S(V )#G over C[t]. But the construction of
the µi is iterative, involving repeated applications of the relations in the graded
Hecke algebra. Our closed formula (11.6) improves this description by giving the
multiplication map µ1 in terms of quantum differentiation.

Faithful versus nonfaithful actions. We end by pointing out that it is not
sufficient merely to consider G modulo the kernel of its representation in this
theory: The Hochschild cohomology of S(V )#G for G acting nonfaithfully on V
requires extra care. As an example, we explicitly point out the contribution from
the kernel of the representation of G on V to the space of graded Hecke algebras.
(The effect of the kernel on the ring structure of cohomology under cup product is
described in [19].) Theorem 11.4 and Remark 6.3 imply (also see [16, Theorem 1.9]
and [17, Corollary 8.17]):

Corollary 11.7. The parameter space of graded Hecke algebras is isomorphic to
⊕

g∈C

codimV g=2
det h|

(V g)⊥
=1, ∀h∈Z(g)

(
C g ⊗ vol⊥g

)
⊕

⊕

g∈C

V g=V

(
g ⊗∧2 V ∗

)Z(g)
,

where vol⊥g is any fixed choice of volume form on ((V g)⊥)∗, and C is a set of
representatives of conjugacy classes of G.

References

[1] A. Beilinson, V. Ginzburg, and W. Soergel, “Koszul duality patterns in represenation
theory,” J. Amer. Math. Soc. 9 (1996), no. 2, 473–527.

[2] J. Block and E. Getzler, “Quantization of foliations,” Proceedings of the XXth Interna-
tional Conference on Differential Geometric Methods in Theoretical Physics, Vol. 1, 2
(New York, 1991), 471-487, World Sci. Publ., River Edge, NJ, 1992.
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[20] D. Ştefan, “Hochschild cohomology on Hopf Galois extensions,” J. Pure Appl. Algebra

103 (1995), 221–233.
[21] C. A. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Adv. Math.

38, Cambridge Univ. Press, Cambridge, 1994.
[22] S. Witherspoon, “Twisted graded Hecke algebras,” J. Algebra 317 (2007), 30–42.
[23] P. Xu, “Noncommutative Poisson algebras,” Amer. J. Math. 116 (1994), no. 1, 101–125.

Department of Mathematics, University of North Texas, Denton, Texas 76203,
USA

E-mail address : ashepler@unt.edu

Department of Mathematics, Texas A&M University, College Station, Texas
77843, USA

E-mail address : sjw@math.tamu.edu


	1. Introduction
	2. Preliminary material
	Hochschild cohomology and deformations

	3. Hochschild cohomology of skew group algebras
	4. Lifting brackets to other resolutions
	5. Koszul resolution
	6. Brackets for polynomial skew group algebras
	7. Explicit bracket formulas
	8. Zero brackets
	9. Zero brackets in cohomological degree 2
	10. Abelian groups and inner products of characters
	11. Graded (Drinfeld) Hecke algebras
	Deformations to Graded Hecke Algebras
	 Hochschild Cocycles to Graded Hecke Algebras
	Hochschild Cocycles to Infinitesimal Deformations
	Graded Hecke algebras to Deformations and Hochschild Cocycles
	Faithful versus nonfaithful actions

	References

