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ANNE V. SHEPLER AND SARAH WITHERSPOON

Abstract. We sample some Poincaré-Birkhoff-Witt theorems appearing in
mathematics. Along the way, we compare modern techniques used to estab-
lish such results, for example, the Composition-Diamond Lemma, Gröbner ba-
sis theory, and the homological approaches of Braverman and Gaitsgory and
of Polishchuk and Positselski. We discuss several contexts for PBW theorems
and their applications, such as Drinfeld-Jimbo quantum groups, graded Hecke
algebras, and symplectic reflection and related algebras.

1. Introduction

In 1900, Poincaré [76] published a fundamental result on Lie algebras that would
prove a powerful tool in representation theory: A Lie algebra embeds into an
associative algebra that behaves in many ways like a polynomial ring. Capelli [20]
proved a special case of this theorem, for the general linear group, ten years
earlier. In 1937, Birkhoff [10] and Witt [97] independently formulated and proved
versions of the theorem that we use today, although neither author cited this earlier
work. The result was called the Birkhoff-Witt Theorem for years and then later
the Poincaré-Witt Theorem (see Cartan and Eilenberg [21]) before Bourbaki [14]
prompted use of its current name, the Poincaré-Birkhoff-Witt Theorem.

The original theorem on Lie algebras was greatly expanded over time by a num-
ber of authors to describe various algebras, especially those defined by quadratic-
type relations (including Koszul rings over semisimple algebras). Poincaré-Birkhoff-
Witt theorems are often used as a springboard for investigating the representation
theory of algebras. These theorems are used to

• reveal an algebra as a deformation of another, well-behaved algebra,
• posit a convenient basis (of “monomials”) for an algebra, and
• endow an algebra with a canonical homogeneous (or graded) version.

In this survey, we sample some of the various Poincaré-Birkhoff-Witt theorems,
applications, and techniques used to date for proving these results. Our survey
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is not intended to be all-inclusive; we instead seek to highlight a few of the more
recent contributions and provide a helpful resource for users of Poincaré-Birkhoff-
Witt theorems, which we henceforth refer to as PBW theorems.

We begin with a quick review in Section 2 of the original PBW Theorem for
enveloping algebras of Lie algebras. We next discuss PBW properties for qua-
dratic algebras in Section 3, and for Koszul algebras in particular, before turning
to arbitrary finitely generated algebras in Section 4. We recall needed facts on
Hochschild cohomology and algebraic deformation theory in Section 5, and more
background on Koszul algebras is given in Section 6. Sections 7–8 outline tech-
niques for proving PBW results recently used in more general settings, some by
way of homological methods and others via the Composition-Diamond Lemma
(and Gröbner basis theory). One inevitably is led to similar computations when
applying any of these techniques to specific algebras, but with different points
of view. Homological approaches can help to organize computations and may
contain additional information, while approaches using Gröbner basis theory are
particularly well-suited for computer computation. We focus on some classes of
algebras in Sections 9 and 10 of recent interest: Drinfeld-Jimbo quantum groups,
Nichols algebras of diagonal type, symplectic reflection algebras, rational Chered-
nik algebras, and graded (Drinfeld) Hecke algebras. In Section 11, we mention
applications in positive characteristic (including algebras built on group actions in
the modular case) and other generalizations that mathematicians have only just
begun to explore.

We take all tensor products over an underlying field k unless otherwise indicated
and assume all algebras are associative k-algebras with unity. Note that although
we limit discussions to finitely generated algebras over k for simplicity, many
remarks extend to more general settings.

2. Lie algebras and the classical PBW Theorem

All PBW theorems harken back to a classical theorem for universal enveloping
algebras of Lie algebras established independently by Poincaré [76], Birkhoff [10],
and Witt [97]. In this section, we recall this original PBW theorem in order to set
the stage for other PBW theorems and properties; for comprehensive historical
treatments, see [47, 94].

A finite dimensional Lie algebra is a finite dimensional vector space g over a
field k together with a binary operation [ , ] : g× g→ g satisfying

(i) (antisymmetry) [v, v] = 0 and
(ii) (Jacobi identity) [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0

for all u, v, w ∈ g. Condition (i) implies [v, w] = −[w, v] for all v, w in g (and is
equivalent to this condition in all characteristics other than 2).
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The universal enveloping algebra U(g) of g is the associative algebra generated
by the vectors in g with relations vw − wv = [v, w] for all v, w in g, i.e.,

U(g) = T (g)
/

(v ⊗ w − w ⊗ v − [v, w] : v, w ∈ g),

where T (g) is the tensor algebra of the vector space g over k. It can be defined
by a universal property: U(g) is the (unique up to isomorphism) associative al-
gebra such that any linear map φ from g to an associative algebra A satisfying
[φ(v), φ(w)] = φ([v, w]) for all v, w ∈ g factors through U(g). (The bracket opera-
tion on an associative algebra A is given by [a, b] := ab − ba for all a, b ∈ A.) As
an algebra, U(g) is filtered, under the assignment of degree 1 to each vector in g.

Original PBW Theorem. A Lie algebra g embeds into its universal enveloping
algebra U(g), and the associated graded algebra of U(g) is isomorphic to S(g), the
symmetric algebra on the vector space g.

Thus the original PBW Theorem compares a universal enveloping algebra U(g)
to an algebra of (commutative) polynomials. Since monomials form a k-basis for
a polynomial algebra, the original PBW theorem is often rephrased in terms of a
PBW basis (with tensor signs between vectors dropped):

PBW Basis Theorem. Let v1, . . . , vn be an ordered k-vector space basis of the
Lie algebra g. Then {va11 · · · vann : ai ∈ N} is a k-basis of the universal enveloping
algebra U(g).

Example 2.1. The Lie algebra sl2(C) consists of 2 × 2 matrices of trace 0 with
entries in C under the bracket operation on the associative algebra of all 2 × 2
matrices. The standard basis of sl2(C) is

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
,

for which [e, f ] = h, [h, e] = 2e, [h, f ] = −2f . Thus U(sl2(C)) is the associative
C-algebra generated by three symbols that we also denote by e, f, h (abusing
notation) subject to the relations ef − fe = h, he − eh = 2e, hf − fh = −2f .
It has C-basis {eahbf c : a, b, c ∈ N}.

Proofs of the original PBW Theorem vary (and by how much is open to inter-
pretation). The interested reader may wish to consult, for example, the texts [21],
[28], [55], [57], and [95]. Jacobson [56] proved a PBW theorem for restricted
enveloping algebras in positive characteristic. Higgins [54] gives references and a
comprehensive PBW theorem over more general ground rings. A PBW theorem for
Lie superalgebras goes back to Milnor and Moore [72] (see also Kac [59]). Grivel’s
historical article [47] includes further references on generalizations to other ground
rings, to Leibniz algebras, and to Weyl algebras. In Sections 7 and 8 below, we
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discuss two proof techniques particularly well suited to generalization: a combi-
natorial approach through the Composition-Diamond Lemma and a homological
approach through algebraic deformation theory. First we lay some groundwork on
quadratic algebras.

3. Homogeneous quadratic algebras

Many authors have defined the notions of PBW algebra, PBW basis, PBW
deformation, or PBW property in order to establish theorems like the original
PBW Theorem in more general settings. Let us compare a few of these concepts,
beginning in this section with those defined for homogeneous quadratic algebras.

Quadratic algebras. Consider a finite dimensional vector space V over k with
basis v1, . . . , vn. Let T be its tensor algebra over k, i.e., the free k-algebra
k〈v1, . . . , vn〉 generated by the vi. Then T is an N-graded k-algebra with

T 0 = k, T 1 = V, T 2 = V ⊗ V, T 3 = V ⊗ V ⊗ V, etc.

We often omit tensor signs in writing elements of T as is customary in noncom-
mutive algebra, e.g., writing x3 for x⊗ x⊗ x and xy for x⊗ y.

Suppose P is a set of filtered (nonhomogeneous) relations in degree 2,

P ⊆ T 0 ⊕ T 1 ⊕ T 2,

and let I = (P ) be the 2-sided ideal in T generated by P . The quotient A = T/I
is a nonhomogeneous quadratic algebra. If P consists of elements of homogeneous
degree 2, i.e., P ⊆ T 2, then A is a homogeneous quadratic algebra. Thus a qua-
dratic algebra is just an algebra whose relations are generated by (homogeneous
or nonhomogenous) quadratic expressions.

We usually write each element of a finitely presented algebra A = T/I as a coset
representative in T , suppressing mention of the ideal I. Then a k-basis for A is a
subset of T representing cosets modulo I which form a basis for A as a k-vector
space. Some authors say a quadratic algebra has a PBW basis if it has the same
k-basis as a universal enveloping algebra, i.e., if {va11 · · · vann : ai ∈ N} is a basis
for A as a k-vector space. Such algebras include Weyl algebras, quantum/skew
polynomial rings, some iterated Ore extensions, some quantum groups, etc.

Priddy’s PBW algebras. Priddy [79] gave a broader definition of PBW basis
for homogeneous quadratic algebras in terms of any ordered basis of V (say, v1 <
v2 < · · · < vn) in establishing the notion of Koszul algebras. (A quadratic algebra
is Koszul if the boundary maps in its minimal free resolution have matrix entries
that are linear forms; see Section 6.) Priddy first extended the ordering degree-
lexicographically to a monomial ordering on the tensor algebra T , where we regard
pure tensors in v1, . . . , vn as monomials. He then called a k-vector space basis for
A = T/I a PBW basis (and the algebra A a PBW algebra) if the product of any
two basis elements either lay again in the basis or could be expressed modulo I as
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a sum of larger elements in the basis. In doing so, Priddy [79, Theorem 5.3] gave
a class of Koszul algebras which is easy to study:

Theorem 3.1. If a homogeneous quadratic algebra has a PBW basis, then it is
Koszul.

Polishchuk and Positselski reframed Priddy’s idea; we summarize their approach
(see [77, Chapter 4, Section 1]) using the notion of leading monomial LM of any
element of T written in terms of the basis v1, . . . , vn of V . Suppose the set of
generating relations P is a subspace of T 2. Consider those monomials that are not
divisible by the leading monomial of any generating quadratic relation:

BP = {monomials m ∈ T : LM(a) - m, ∀a ∈ P} .

Polishchuk and Positselski call BP a PBW basis of the quadratic algebra A (and
A a PBW algebra) whenever BP is a k-basis of A.

Gröbner bases. Priddy’s definition and the reformulation of Polishchuk and
Positselski immediately call to mind the theory of Gröbner bases. Recall that
a set G of nonzero elements generating an ideal I is called a (noncommutative)
Gröbner basis if the leading monomial of each nonzero element of I is divisible by
the leading monomial of some element of G with respect to a fixed monomial (i.e.,
term) ordering (see [73] or [64]). (Gröbner bases and Gröbner-Shirshov bases were
developed independently in various contexts by Shirshov [90] in 1962, Hironaka [48]
in 1964, Buchberger [17] in 1965, Bokut’ [11] in 1976, and Bergman [9] in 1978.) A
Gröbner basis G is quadratic if it consists of homogeneous elements of degree 2 (i.e.,
lies in T 2) and it is minimal if no proper subset is also a Gröbner basis. A version of
the Composition-Diamond Lemma for associative algebras (see Section 8) implies
that if G is a Gröbner basis for I, then

BG = {monomials m ∈ T : LM(a) - m, ∀a ∈ G }

is a k-basis for A = T (V )/I.

Example 3.2. Let A be the C-algebra generated by symbols x, y with a single
generating relation xy = y2. Set V = C-span{x, y} and P = {xy − y2} so that
A = T (V )/(P ). A Gröbner basis G for the ideal I = (P ) with respect to the
degree-lexicographical monomial ordering with x < y is infinite:

G = {yxny − xn+1y : n ∈ N},
BP = {monomials m ∈ T that are not divisible by y2},
BG = {monomials m ∈ T that are not divisible by yxny for any n ∈ N}.

Hence, A is not a PBW algebra using the ordering x < y since BG is a C-basis for
A but BP is not.
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If we instead take some monomial ordering with x > y, then G = P is a Gröbner
basis for the ideal I = (P ) and BG = BP is a C-basis of A:

BP = BG = {monomials m ∈ T that are not divisible by xy}
= {yaxb : a, b ∈ N}.

Hence A is a PBW algebra using the ordering y < x.

Quadratic Gröbner bases. How do the sets of monomials BP and BG compare
after fixing an appropriate monomial ordering? Suppose G is a minimal Gröbner
basis for I = (P ) (which implies that no element of G has leading monomial di-
viding that of another). Then BG ⊂ BP , and the reverse inclusion holds whenever
G is quadratic (since then G must be a subset of the subspace P ). Since each
graded piece of A is finite dimensional over k, a PBW basis thus corresponds to a
quadratic Gröbner basis:

BP is a PBW basis of A ⇐⇒ BG = BP ⇐⇒ G is quadratic.

Thus authors sometimes call any algebra defined by an ideal of relations with a
quadratic Gröbner basis a PBW algebra. In any case (see [2], [19], [36], [65]):

Theorem 3.3. Any quadratic algebra whose ideal of relations has a (noncommu-
tative) quadratic Gröbner basis is Koszul.

Backelin (see [77, Chapter 4, Section 3]) gave an example of a Koszul algebra
defined by an ideal of relations with no quadratic Gröbner basis. Eisenbud, Reeves,
and Totaro [31, p. 187] gave an example of a commutative Koszul algebra whose
ideal of relations does not have a quadratic Gröbner basis with respect to any
ordering, even after a change of basis (see also [36]).

We relate Gröbner bases and PBW theorems for nonhomogeneous algebras in
Section 8.

4. Nonhomogeneous algebras: PBW deformations

Algebras defined by generators and relations are not naturally graded, but
merely filtered, and often one wants to pass to some graded or homogeneous
version of the algebra for quick information. There is more than one way to do
this in general. The original PBW Theorem shows that the universal enveloping
algebra of a Lie algebra has one natural homogeneous version. Authors apply
this idea to other algebras, saying that an algebra satisfies a PBW property when
graded versions are isomorphic and call the original algebra a PBW deformation
of this graded version. We make these notions precise in this section and relate
them to the work of Braverman and Gaitsgory and of Polishchuk and Positselski
on Koszul algebras in the next section.
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Filtered algebras. Again, consider an algebra A generated by a finite dimen-
sional vector space V over a field k with some defining set of relations P . (More
generally, one might consider a module over a group algebra or some other k-
algebra.) Let T =

⊕
i≥0 T

i be the tensor algebra over V and let I = (P ) be the
two-sided ideal of relations so that

A = T/I .

If I is homogeneous, then the quotient algebra A is graded. In general, I is nonho-
mogeneous and the quotient algebra is only filtered, with i-th filtered component
F i(A) = F i(T/I) = (F i(T ) + I)/I induced from the filtration on T obtained by
assigning degree one to each vector in V (i.e., F i(T ) = T 0 ⊕ T 1 ⊕ . . .⊕ T i).

Homogeneous versions. One associates to the filtered algebra A two possibly
different graded versions. On one hand, we cross out lower order terms in the
generating set P of relations to obtain a homogeneous version of the original
algebra. On the other hand, we cross out lower order terms in each element of the
entire ideal of relations. Then PBW conditions are precisely those under which
these two graded versions of the original algebra coincide, as we recall next.

The associated graded algebra of A,

gr(A) =
⊕
i≥0

F i(A)
/
F i−1(A) ,

is a graded version of A which does not depend on the choice of generators P of
the ideal of relations I. (We set F−1 = {0}.) The associated graded algebra may
be realized concretely by projecting each element in the ideal I onto its leading
homogeneous part (see Li [64, Theorem 3.2]):

gr
(
T
/
I
) ∼= T

/
(LH(I)) ,

where LH(S) = {LH(f) : f ∈ S} for any S ⊆ T and LH(f) picks off the leading (or
highest) homogeneous part of f in the graded algebra T . (Formally, LH(f) = fd
for f =

∑d
i=1 fi with each fi in T i and fd nonzero.) Those looking for a shortcut

may be tempted instead simply to project elements of the generating set P onto
their leading homogeneous parts. A natural surjection (of graded algebras) always
arises from this homogeneous version of A determined by P to the associated
graded algebra of A:

T
/

(LH(P )) � gr
(
T
/
I
)
.

PBW deformations. We say the algebra T/I is a PBW deformation of its ho-
mogeneous version T/(LH(P )) (or satisfies the PBW property with respect to P )
when the above surjection is also injective, i.e., when the associated graded algebra
and the homogeneous algebra determined by P coincide (see [15]):

T
/

(LH(I)) ∼= gr
(
T
/
I

)
∼= T

/
(LH(P )) .
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In the next section, we explain the connections among PBW deformations, graded
(and formal) deformations, and Hochschild cohomology.

In this language, the original PBW Theorem for universal enveloping algebras
asserts that the set

P = {v ⊗ w − w ⊗ v − [v, w] : v, w ∈ V }

gives rise to a quotient algebra T/(P ) that is a PBW deformation of the commu-
tative polynomial ring S(V ), for V the underlying vector space of a Lie algebra.
Here, each element of V has degree 1 so that the relations are nonhomogeneous of
degree 2 and T/(P ) is a nonhomogenous quadratic algebra.

We include an example next to show how the PBW property depends on choice
of generating relations P defining the algebra T/I. (But note that if A satisfies
the PBW property with respect to some generating set P of relations, then the
subspace P generates is unique; see [88, Proposition 2.1].)

Example 4.1. We mention a filtered algebra that exhibits the PBW property
with respect to one generating set of relations but not another. Consider the
(noncommutative) algebra A generated by symbols x and y with defining relations
xy = x and yx = y:

A = k〈x, y〉/(xy − x, yx− y) ,

where k〈x, y〉 is the free k-algebra generated by x and y. The algebra A does not
satisfy the PBW property with respect to the generating relations xy−x and yx−y.
Indeed, the relations imply that x2 = x and y2 = y in A and thus the associated
graded algebra gr(A) is trivial in degree two while the homogeneous version of A is
not (as x2 and y2 represent nonzero classes). The algebra A does exhibit the PBW
property with respect to the larger generating set {xy − x, yx− y, x2 − x, y2 − y}
since

grA ∼= k〈x, y〉/(xy, yx, x2, y2) .

Examples 8.1 and 8.2 explain this recovery of the PBW property in terms of
Gröbner bases and the Composition-Diamond Lemma.

5. Deformation Theory and Hochschild cohomology

In the last section, we saw that an algebra defined by nonhomogeneous rela-
tions is called a PBW deformation when the homogeneous version determined by
generating relations coincides with its associated graded algebra. How may one
view formally the original nonhomogeneous algebra as a deformation of its ho-
mogeneous version? In this section, we begin to fit PBW deformations into the
theory of algebraic deformations. We recall the theory of deformations of algebras
and Hochschild cohomology, a homological tool used to predict deformations and
prove PBW properties.
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Graded deformations. Let t be a formal parameter. A graded deformation of a
graded k-algebra A is a graded associative k[t]-algebra At (for t in degree 1) which
is isomorphic to A[t] = A⊗k k[t] as a k[t]-module with

At|t=0
∼= A.

If we specialize t to an element of k in the algebra At, then we may no longer have
a graded algebra, but a filtered algebra instead.

PBW deformations may be viewed as graded deformations: Each PBW de-
formation is a graded deformation of its homogeneous version with parameter
t specialized to some element of k. Indeed, given a finitely generated algebra
A = T/(P ), we may insert a formal parameter t of degree 1 throughout the defin-
ing relations P to make each relation homogeneous and extend scalars to k[t]; the
result yields a graded algebra Bt over k[t] with A = Bt|t=1 and B = Bt|t=0, the
homogeneous version of A. One may verify that if A satisfies the PBW property,
then this interpolating algebra Bt also satisfies a PBW condition over k[t] and that
Bt and B[t] are isomorphic as k[t]-modules. Thus as Bt is an associative graded
algebra, it defines a graded deformation of B.

Suppose At is a graded deformation of a graded k-algebra A. Then up to
isomorphism, At is just the vector space A[t] together with some associative mul-
tiplication given by

(5.1) a ∗ b = ab+ µ1(a⊗ b)t+ µ2(a⊗ b)t2 + · · · ,

where ab is the product of a and b in A and for each i, and each µi is a linear map
from A ⊗ A to A of degree −i, extended to be k[t]-linear. The degree condition
on the maps µi are forced by the fact that At is graded for t in degree 1. (One
sometimes considers a formal deformation, defined over formal power series k[[t]]
instead of polynomials k[t].)

The condition that the multiplication ∗ in A[t] be associative imposes conditions
on the functions µi which are often expressed using Hochschild cohomology. For
example, comparing coefficients of t in the equation (a ∗ b) ∗ c = a ∗ (b ∗ c), we see
that µ1 must satisfy

(5.2) aµ1(b⊗ c) + µ1(a⊗ bc) = µ1(ab⊗ c) + µ1(a⊗ b)c

for all a, b, c ∈ A. We see below that this condition implies that µ1 is a Hochschild
2-cocycle. Comparing coefficients of t2 yields a condition on µ1, µ2 called the first
obstruction, comparing coefficients of t3 yields a condition on µ1, µ2, µ3 called the
second obstruction, and so on. (See [38].)

Hochschild cohomology. Hochschild cohomology is a generalization of group
cohomology well suited to noncommutative algebras. It gives information about
an algebra A viewed as a bimodule over itself, thus capturing right and left multi-
plication, and predicts possible multiplication maps µi that could be used to define
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a deformation of A. One may define the Hochschild cohomology of a k-algebra
concretely as Hochschild cocycles modulo Hochschild coboundaries by setting

Hochschild i-cochains = {linear functions φ : A⊗ · · · ⊗ A︸ ︷︷ ︸
i−times

→ A}

(i.e., multilinear maps A× · · · × A→ A) with linear boundary operator

δ∗i+1 : i-cochains→ (i+ 1)-cochains

given by

(δ∗i+1φ)(a0 ⊗ · · · ⊗ ai) =

a0φ(a1 ⊗ · · · ⊗ ai) +
∑

0≤j≤i−1

(−1)j+1φ(a0 ⊗ · · · ⊗ aj−1 ⊗ ajaj+1 ⊗ aj+2 ⊗ · · · ⊗ ai)

+ (−1)i+1φ(a0 ⊗ · · · ⊗ ai−1)ai .

We identify A with {0-cochains}. Then

HHi(A) := Ker δ∗i+1/Im δ∗i .

We are interested in other concrete realizations of Hochschild cohomology giving
isomorphic cohomology groups. Formally, we view any k-algebra A as a bimodule
over itself, i.e., a right Ae-module where Ae is its enveloping algebra, A⊗Aop, for
Aop the opposite algebra of A. The Hochschild cohomology of A is then just

HH
r
(A) = Ext

r
Ae(A,A).

This cohomology is often computed using the A-bimodule bar resolution of A:

(5.3) · · · −→ A⊗4
δ2−→ A⊗3

δ1−→ A⊗2
δ0−→ A −→ 0,

where δ0 is the multiplication in A, and, for each i ≥ 1,

δi(a0 ⊗ · · · ⊗ ai+1) =
i∑

j=0

(−1)ja0 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ ai+1

for a0, . . . , ai+1 in A. We take the homology of this complex after dropping the
initial term A and applying Hom A⊗Aop(−, A) to obtain the above description of
Hochschild cohomology in terms of Hochschild cocycles and coboundaries, using
the identification

Hom A⊗Aop(A⊗ A⊗i ⊗ A,A) ∼= Hom k(A
⊗i, A).
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6. Koszul algebras

We wish to extend the original PBW Theorem for universal enveloping algebras
to other nonhomogeneous quadratic algebras. When is a given algebra a PBW
deformation of another well-understood and well-behaved algebra? Can we re-
place the polynomial algebra in the original PBW theorem by any homogeneous
quadratic algebra, provided it is well-behaved in some way? We turn to Koszul
algebras as a wide class of quadratic algebras generalizing the class of polynomial
algebras. In this section, we briefly recall the definition of a Koszul algebra.

6.1. Koszul complex. The algebra S is a Koszul algebra if the underlying field k
admits a linear S-free resolution, i.e., one with boundary maps given by matrices
whose entries are linear forms. Equivalently, S is a Koszul algebra if the following
complex of left S-modules is acyclic:

(6.1) · · · −→ K3(S) −→ K2(S) −→ K1(S) −→ K0(S) −→ k −→ 0

where K0(S) = S, K1(S) = S ⊗ V , K2(S) = S ⊗R, and for i ≥ 3,

Ki(S) = S ⊗

(
i−2⋂
j=0

V ⊗j ⊗R⊗ V ⊗(i−2−j)
)
.

The differential is that inherited from the bar resolution of k as an S-bimodule,

(6.2) · · · ∂4−→ S⊗4
∂3−→ S⊗3

∂2−→ S⊗2
∂1−→ S

ε−→ k −→ 0,

where ε is the augmentation (ε(v) = 0 for all v in V ) and for each i ≥ 1,

∂i(s0 ⊗ · · · ⊗ si) = (−1)iε(si)s0 ⊗ · · · ⊗ si−1 +
i−1∑
j=0

(−1)js0 ⊗ · · · ⊗ sjsj+1 ⊗ · · · ⊗ si.

(Note that for each i, Ki(S) is an S-submodule of S⊗(i+1).)

Bimodule Koszul complex. Braverman and Gaitsgory gave an equivalent def-
inition of Koszul algebra via the bimodule Koszul complex: Let

(6.3) K̃i(S) = Ki(S)⊗ S,

an Se-module (equivalently S-bimodule) where Se = S⊗Sop. Then K̃ r(S) embeds
into the bimodule bar resolution (5.3) whose i-th term is S⊗(i+2), and S is Koszul if

and only if K̃ r(S) is a bimodule resolution of S. Thus we may obtain the Hochschild
cohomology HH

r
(S) of S (which contains information about its deformations)

by applying Hom Se(−, S) either to the Koszul resolution K̃ r(S) or to the bar
resolution (5.3) of S as an Se-module (after dropping the initial nonzero terms of
each) and taking homology. We see in the next section how these resolutions and
the resulting cohomology are used in homological proofs of a generalization of the
PBW Theorem from [15, 77, 78].
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7. Homological methods and deformations of Koszul algebras

Polishchuk and Positselski [77, 78] and Braverman and Gaitsgory [15] extended
the idea of the original PBW Theorem for universal enveloping algebras to other
nonhomogeneous quadratic algebras by replacing the polynomial algebra in the
theorem by an arbitrary Koszul algebra. They stated conditions for a version of
the original PBW Theorem to hold in this greater generality and gave homological
proofs. (Polishchuk and Positselski [77] in fact gave two proofs, one homological
that goes back to Positselski [78] and another using distributive lattices.) We
briefly summarize these two homological approaches in this section and discuss
generalizations.

Theorem of Polishchuk and Positselski, Braverman and Gaitsgory. As
in the last sections, let V be a finite dimensional vector space over a field k and
let T be its tensor algebra over k with i-th filtered component F i(T ). Consider a
subspace P of F 2(T ) defining a nonhomogeneous quadratic algebra

A = T
/

(P ) .

Let R = LH(P ) ∩ T 2 be the projection of P onto the homogeneous component of
degree 2, and set

S = T
/

(R) ,

a homogeneous quadratic algebra (the homogeneous version of A as in Section 4).
Then A is a PBW deformation of S when grA and S are isomorphic as graded
algebras.

Braverman and Gaitsgory and also Polishchuk and Positselski gave a general-
ization of the PBW Theorem [15, 77, 78] as follows:

Theorem 7.1. Let A be a nonhomogeneous quadratic algebra, A = T/(P ), and
S = T/(R) its corresponding homogeneous quadratic algebra. Suppose S is a
Koszul algebra. Then A is a PBW deformation of S if, and only if, the following
two conditions hold:

(I) P ∩ F 1(T ) = {0}, and
(J) (F 1(T ) · P · F 1(T )) ∩ F 2(T ) = P .

We have chosen the notation of Braverman and Gaitsgory. The necessity of
conditions (I) and (J) can be seen by direct algebraic manipulations. Similarly,
direct computation shows that if (I) holds, then (J) is equivalent to (i), (ii), and
(iii) of Theorem 7.2 below. Braverman and Gaitsgory used algebraic deformation
theory to show that these conditions are also sufficient. Polishchuk and Positselski
used properties of an explicit complex defined using the Koszul dual of S. The
conditions (i), (ii), (iii) facilitate these connections to homological algebra, and
they are easier in practice to verify than checking (J) directly. But in order to
state these conditions, we require a canonical decomposition for elements of P :
Condition (I) of Theorem 7.1 implies that every element of P can be written as
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the sum of a nonzero element of R (of degree 2), a linear term, and a constant
term, i.e., there exist linear functions α : R→ V , β : R→ k for which

P = {r − α(r)− β(r) | r ∈ R}.
One may then rewrite Condition (J) and reformulate Theorem 7.1 as follows.

Theorem 7.2. Let A be a nonhomogeneous quadratic algebra, A = T/(P ), and
S = T/(R) its corresponding homogeneous quadratic algebra. Suppose S is a
Koszul algebra. Then A is a PBW deformation of S if, and only if, the following
conditions hold:

(I) P ∩ F 1(T ) = {0},
(i) Im(α⊗ id − id ⊗ α) ⊆ R,
(ii) α ◦ (α⊗ id − id ⊗ α) = −(β ⊗ id − id ⊗ β),
(iii) β ◦ (α⊗ id − id ⊗ α) = 0,

where the maps α⊗ id − id ⊗ α and β ⊗ id − id ⊗ β are defined on the subspace
(R⊗ V ) ∩ (V ⊗R) of T .

We explain next how the original PBW Theorem is a consequence of Theo-
rem 7.2. Indeed, Polishchuk and Positselski [77, Chapter 5, Sections 1 and 2]
described the “self-consistency conditions” (i), (ii), and (iii) of the theorem as
generalizing the Jacobi identity for Lie brackets.

Example 7.3. Let g be a finite dimensional complex Lie algebra, A = U(g) its
universal enveloping algebra, and S = S(g). Then R has C-basis all v⊗w−w⊗ v
for v, w in V , and α(v⊗w−w⊗ v) = [v, w], β ≡ 0. Condition (I) is equivalent to
antisymmetry of the bracket. Condition (J) is equivalent to the Jacobi identity,
with (i), (ii) expressing the condition separately in each degree in the tensor algebra
(β ≡ 0 in this case). More generally, there are examples with β 6≡ 0, for instance,
the Sridharan enveloping algebras [92].

Homological proofs. We now explain how Braverman and Gaitsgory and Pol-
ishchuk and Positselski used algebraic deformation theory and Hochschild coho-
mology to prove that the conditions of Theorem 7.2 are sufficient. Braverman
and Gaitsgory constructed a graded deformation St interpolating between S and
A (i.e., with S = St|t=0 and A = St|t=1), implying that gr(A) ∼= S as graded
algebras. They constructed the deformation St as follows.

• They identified α with a choice of first multiplication map µ1 and β with
a choice of second multiplication map µ2, via the canonical embedding of
the bimodule Koszul resolution (6.3) into the bar resolution (5.3) of S. (In
order to do this, one must extend α, β (respectively, µ1, µ2) to be maps on
a larger space via an isomorphism Hom k(R, S) ∼= Hom Se(S ⊗ R ⊗ S, S)
(respectively, Hom k(S ⊗ S, S) ∼= Hom Se(S⊗4, S).)



14 ANNE V. SHEPLER AND SARAH WITHERSPOON

• Condition (i) is then seen to be equivalent to µ1 being a Hochschild 2-
cocycle (i.e., satisfies Equation (5.2)).
• Condition (ii) is equivalent to the vanishing of the first obstruction.
• Condition (iii) is equivalent to the vanishing of the second obstruction.
• All other obstructions vanish automatically for a Koszul algebra due to the

structure of its Hochschild cohomology (see [15]).
• Thus there exist maps µi for i > 2 defining an associative multiplication ∗

(as in Equation (5.1)) on S[t].

Positselski [78, Theorem 3.3] (see also [77, Proposition 5.7.2]) gave a different
homological proof of Theorem 7.2. Let B be the Koszul dual S! := Ext∗S(k, k) of
S. Then S ∼= B! := Ext∗B(k, k). Polishchuk defined a complex whose terms are the
same as those in the bar resolution of B but with boundary maps modified using
the functions α : R→ V , β : R→ k by first identifying β with an element h of B2

and α with a dual to a derivation d on B. The conditions (i), (ii), and (iii) on α, β
correspond to conditions on d, h, under which Positselski called B a CDG-algebra.
The idea is that CDG-algebra structures on B are dual to PBW deformations of
S. Positselski’s proof relies on the Koszul property of S (equivalently of B) to
imply collapsing of a spectral sequence with E2

p,q = Ext−q,pB (k, k). The sequence
converges to the homology of the original complex for B. Koszulness implies the
only nonzero terms occur when p + q = 0, and we are left with the homology of
the total complex in degree 0. By its definition this is simply the algebra A, and
it follows that grA ∼= B! ∼= S.

Generalizations and extensions. Theorem 7.2 describes nonhomogeneous qua-
dratic algebras whose quadratic versions are Koszul. What if one replaces the un-
derlying field by an arbitrary ring? Etingof and Ginzburg [33] noted that Braver-
man and Gaitsgory’s proof of Theorem 7.2 is in fact valid more generally for Koszul
rings over semisimple subrings as defined by Beilinson, Ginzburg, and Soergel [6].
They chose their semisimple subring to be the complex group algebra CG of a finite
group G acting symplectically and their Koszul ring to be a polynomial algebra
S(V ). They were interested in the case α ≡ 0 for their applications to symplectic
reflection algebras (outlined in Section 10 below). Halbout, Oudom, and Tang [49]
state a generalization of Theorem 7.2 in this setting that allows nonzero α (i.e.,
allows relations defining the algebra A to set commutators of vectors in V to a
combination of group algebra elements and vectors). A proof using the Koszul
ring theory of Beilinson, Ginzburg, and Soergel and the results of Braverman
and Gaitsgory is outlined in our paper [86] for arbitrary group algebras over the
complex numbers. We also included a second proof there for group algebras over
arbitrary fields (of characteristic not 2) using the Composition-Diamond Lemma
(described in the next section), which has the advantage that it is characteristic
free. We adapted the program of Braverman and Gaitsgory to arbitrary nonho-
mogeneous quadratic algebras and Koszul rings defined over non-semisimple rings
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in [88], including group rings kG where the characteristic of k divides the order of
the group G.

The theory of Braverman and Gaitsgory was further generalized to algebras
that are N -Koszul (all relations homogeneous of degree N plus a homological
condition) over semisimple or von Neumann regular rings by a number of authors
(see [8, 34, 53]). Cassidy and Shelton [22] generalized the theory of Braverman
and Gaitsgory in a different direction, to graded algebras over a field satisfying a
particular homological finiteness condition (not necessarily having all relations in
a single fixed degree).

8. The Composition-Diamond Lemma and Gröbner basis theory

PBW theorems are often proven using diamond or composition lemmas and the
theory of (noncommutative) Gröbner bases. Diamond lemmas predict existence
of a canonical normal form in a mathematical system. Often one is presented
with various ways of simplifying an element to obtain a normal form. If two
different ways of rewriting the original element result in the same desired reduced
expression, one is reminded of diverging paths meeting like the sides of the shape
of a diamond. Diamond lemmas often originate from Newman’s Lemma [74] for
graph theory. Shirshov (see [90] and [91]) gave a general version for Lie polynomials
in 1962 which Bokut’ (see [11] and [12]) extended to associative algebras in 1976,
using the term “Composition Lemma.” Around the same time (Bokut’ cites a
preprint by Bergman), Bergman [9] developed a similar result which he instead
called the Diamond Lemma.

Both the Diamond Lemma and Composition Lemma are easy to explain but
difficult to state precisely without the formalism absorbed by Gröbner basis the-
ory. In fact, the level of rigor necessary to carefully state and prove these results
can be the subject of debate. Bergman himself writes that the lemma “has been
considered obvious and used freely by some ring-theorists... but others seem un-
aware of it and write out tortuous verifications.” (Some authors are reminded of
life in a lunatic asylum (see [52]) when making the basic idea rigorous.) We leave
careful definitions to any one of numerous texts (for example, see [3], [18], or [65])
and instead present the intuitive idea behind the result developed by Shirshov,
Bokut’, and Bergman.

The Result of Bokut’ (and Shirshov). We first give the original result of
Bokut’ (see [11, Proposition 1 and Corollary 1]), who used a degree-lexicographical
monomial ordering (also see [13]).

Original Composition Lemma . Suppose a set of relations P defining a k-
algebra A is “closed under composition.” Then the set of monomials that do not
contain the leading monomial of any element of P as a subword is a k-basis of A.
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Before explaining the notion of “closed under composition,” we rephrase the
results of Bokut’ in modern language using Gröbner bases to give a PBW-like
basis as in Section 3 (see [45], or [73], for example). Fix a monomial ordering on
a free k-algebra T and again write LM(p) for the leading monomial of any p in
T . We include the converse of the lemma which can be deduced from the work
of Shirshov and Bokut’ and was given explicitly by Bergman, who used arbitrary
monomial orderings.

Gröbner basis version of Composition Lemma. The set P is a (noncom-
mutative) Gröbner basis of the ideal I it generates if and only if

BP = {monomials m in T : m not divisible by any LM(p), p ∈ P}
is a k-basis for the algebra A = T/I.

Example 8.1. Let A be the k-algebra generated by symbols x and y and relations
xy = x and yx = y (Example 4.1):

A = k〈x, y〉/(xy − x, yx− y) .

Let P be the set of defining relations, P = {xy − x, yx − y}, and consider the
degree-lexicographical monomial ordering with x > y. Then P is not a Gröbner
basis of the ideal it generates since x2 − x = x(yx − y) − (xy − x)(x − 1) lies
in the ideal (P ) and has leading monomial x2, which does not lie in the ideal
generated by the leading monomials of the elements of P . Indeed, BP contains
both x2 and x and hence can not be a basis for A. We set P ′ = {xy − x, yx −
y, x2 − x, y2 − y} to obtain a Gröbner basis of (P ). Then BP ′ = {monomials m :
m not divisible by xy, yx, x2, y2} is a k-basis for the algebra A.

Resolving ambiguities. Bergman focused on the problem of resolving ambigui-
ties that arise when trying to rewrite elements of an algebra using different defining
relations. Consider a k-algebra A defined by a finite set of generators and a finite
set of relations

m1 = f1, m2 = f2, . . . , mk = fk ,

where the mi are monomials (in the set of generators of A) and the fi are linear
combinations of monomials. Suppose we prefer the right side of our relations and
try to eradicate the mi whenever possible in writing the elements of A in terms of
its generators. Can we define the notion of a canonical form for every element of A
by deciding to replace each mi by fi whenever possible? We say an expression for
an element of A is reduced if no mi appears (as a subword anywhere), i.e., when
no further replacements using the defining relations of A are possible. The idea
of a canonical form for A then makes sense if the set of reduced expressions is a
k-basis for A, i.e., if every element can be written uniquely in reduced form.
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A natural ambiguity arises: If a monomial m contains both m1 and m2 as
(overlapping) subwords, do we “reduce” first m1 to f1 or rather first m2 to f2 by
replacing? (In the last example, the word xyx contains overlapping subwords xy
and yx.) If the order of application of the two relations does not matter and we
end up with the same reduced expression, then we say the (overlap) ambiguity
was resolvable. The Composition-Diamond Lemma states that knowing certain
ambiguities resolve is enough to conclude that a canonical normal form exists for
all elements in the algebra.

Example 8.2. Again, let A be the k-algebra generated by symbols x and y and
relations xy = x and yx = y (Example 4.1). We decide to eradicate xy and
yx whenever possible in expressions for the elements of A using just the defining
relations. On one hand, we may reduce xyx to x2 (using the first relation); on the
other hand, we may reduce xyx to xy (using the second relation) then to x (using
the first relation). The words x and x2 can not be reduced further using just the
defining relations, so we consider them both “reduced”. Yet they represent the
same element xyx of A. Thus, a canonical “reduced” form does not make sense
given this choice of defining relations for the algebra A.

The result of Bergman. One makes the above notions precise by introducing a
monomial ordering and giving formal definitions for ambiguities, reduction, rewrit-
ing procedures, resolving, etc. We consider the quotient algebra A = T/(P ) where
T (a tensor algebra) is the free k-algebra on the generators of A and P is a (say)
finite set of generating relations. We single out a monomial mi in each generating
relation, writing

P = {mi − fi : 1 ≤ i ≤ k} ,
and choose a monomial ordering so that mi is the leading monomial of each mi−fi
(assuming such an ordering exists). Then the reduced elements are exactly those
spanned by BP . If all the ambiguities among elements of P are resolvable, we
obtain a PBW-like basis, but Bokut’ and Bergman give a condition that is easier
to check. Instead of choosing to replace monomial m1 by f1 or monomial m2 by f2
when they both appear as subwords of a monomial m, we make both replacements
separately and take the difference. If we can express this difference as a linear
combination of elements p in the ideal (P ) with LM(p) < m, then we say the
ambiguity was resolvable relative to the ordering. (Bokut’ used “closed under
composition” to describe this condition along with minimality of P .) See [9,
Theorem 1.2].

Diamond Lemma idea. The following are equivalent:

• The set of reduced words is a k-basis of T/(P ).
• All ambiguities among elements of P are resolvable.
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• All ambiguities among elements of P are resolvable relative to the ordering.
• Every element in (P ) can be reduced to zero in T/(P ) by just using the

relations in P .

In essence, the lemma says that if the generating set of relations P is well-
behaved with respect to some monomial ordering, then one can define a canonical
form just by checking that nothing goes wrong with the set P instead of checking
for problems implied by the whole ideal (P ). Thus, resolving ambiguities is just
another way of testing for a Gröbner basis (see [45]): The set P is a Gröbner basis
for the ideal (P ) if and only if all ambiguities among elements of P are resolvable.

Applications. Although the idea of the Composition-Diamond lemma can be
phrased in many ways, the hypothesis to be checked in the various versions of the
lemma requires very similar computations in application. One finds precursors
of the ideas underlying the Composition-Diamond Lemma in the original proofs
given by Poincaré, Birkhoff, and Witt of the PBW Theorem for universal en-
veloping algebras of Lie algebras. These techniques and computations have been
used in a number of other settings. For example, explicit PBW conditions are
given for Drinfeld Hecke algebras (which include symplectic reflection algebras)
by Ram and Shepler [80]; see Section 10. In [86], we studied the general case of
algebras defined by relations which set commutators to lower order terms using
both a homological approach and the Composition-Diamond Lemma (as it holds
in arbitrary characteristic). These algebras, called Drinfeld orbifold algebras, in-
clude Sridharan enveloping algebras, Drinfeld Hecke algebras, enveloping algebras
of Lie algebras, Weyl algebras, and twists of these algebras with group actions.
Gröbner bases were used explicitly by Levandovskky and Shepler [63] in replacing
a commutative polynomial algebra by a skew (or quantum) polynomial algebra in
the theory of Drinfeld Hecke algebras. Bergman’s Diamond Lemma was used by
Khare [61] to generalize the Drinfeld Hecke algebras of Section 10 from the setting
of group actions to that of algebra actions.

Of course the Composition-Diamond Lemma and Gröbner-Shirshov bases have
been used to explore many different kinds of algebras (and in particular to find
PBW-like bases) that we will not discuss here. See Bokut’ and Kukin [13] and
Bokut’ and Chen [12] for many such examples.

Note that some authors prove PBW theorems by creating a space upon which
the algebra in question acts (see, e.g., Humphreys [55] or Griffeth [46, first ver-
sion]). Showing that the given space is actually a module for the algebra requires
checking certain relations that are similar to the conditions that one must check
before invoking the Composition-Diamond Lemma.

9. Drinfeld-Jimbo quantum groups and related Hopf algebras

Quantized enveloping algebras (that is, Drinfeld-Jimbo quantum groups [30, 58])
are deformations of universal enveloping algebras of Lie algebras. (Technically,
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they are bialgebra deformations rather than algebra deformations.) Many mathe-
maticians discovered PBW bases for these algebras, in particular Lusztig [68, 69,
70] in a very general setting and DeConcini and Kac [27] by defining a correspond-
ing algebra filtration. Although there are many incarnations of these algebras, we
restrict ourselves to the simply-laced case and to algebras over the complex num-
bers for ease of notation. We state a PBW theorem in this context and refer the
reader to the literature for more general statements (see, e.g., [70]).

Quantum groups. Let g be a finite dimensional semisimple complex Lie algebra
of rank n with symmetric Cartan matrix (aij). Let q be a nonzero complex number,
q 6= ±1. (Often q is taken to be an indeterminate instead.) The quantum group
Uq(g) is the associative C-algebra defined by generators

E1, . . . , En, F1, . . . , Fn, K
±1
1 , . . . , K±1n

and relations

K±1i K±1j = K±1j K±1i , KiK
−1
i = 1 = K−1i Ki,

KiEj = qaijEjKi, KiFj = q−aijFjKi,

EiFj − FjEi = δij
Ki −K−1i
q − q−1

,

E2
iEj − (q + q−1)EiEjEi + EjE

2
i = 0 if aij = −1, EiEj = EjEi if aij = 0,

F 2
i Fj − (q + q−1)FiFjFi + FjF

2
i = 0 if aij = −1, FiFj = FjFi if aij = 0.

The last two sets of relations are called the quantum Serre relations.
Let W be the Weyl group of g. Fix a reduced expression of the longest ele-

ment w0 of W . This choice yields a total order on the set Φ+ of positive roots,
β1, . . . , βm. To each α ∈ Φ+, Lusztig [68, 69, 70] assigned an element Eα (re-
spectively, Fα) in Uq(g) determined by this ordering that is an iterated braided
commutator of the generators E1, . . . , En (respectively, F1, . . . , Fn). These “root
vectors” then appear in a PBW basis:

PBW Theorem for Quantum Groups. There is a basis of Uq(g) given by

{Ea1
β1
· · ·Eam

βm
Kb1

1 · · ·Kbn
n F

c1
β1
· · ·F cm

βm
: ai, ci ≥ 0, bi ∈ Z}.

Moreover, there is a filtration on the subalgebra U>0
q (g) (respectively, U<0

q (g)) gen-
erated by E1, . . . , En (respectively, F1, . . . , Fn) for which the associated graded al-
gebra is isomorphic to a skew polynomial ring.

The skew polynomial ring to which the theorem refers is generated by the images
of the Eα (respectively, Fα), with relations EαEβ = qαβEβEα (respectively, FαFβ =
qαβFβFα) where each qαβ is a scalar determined by q and by α, β in Φ+.
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Example 9.1. The algebra U>0
q (sl3) is generated by E1, E2. Let

E12 := E1E2 − qE2E1.

Then, as a consequence of the quantum Serre relations, E1E12 = q−1E12E1 and
E12E2 = q−1E2E12, and, by definition of E12, we also have E1E2 = qE2E1 + E12.
In the associated graded algebra, this last relation becomes E1E2 = qE2E1. The
algebras U>0

q (sln) are similar, however in general the filtration on U>0
q (g) stated

in the theorem is more complicated.

Proofs and related results. There are several proofs in the literature of the first
statement of the above theorem and related results, beginning with Khoroshkin
and Tolstoy [62], Lusztig [68, 69, 70], Takeuchi [93], and Yamane [98]. These gener-
ally involve explicit computations facilitated by representation theory. Specifically,
one obtains representations of Uq(g) from those of the corresponding Lie algebra g
by deformation, and one then uses what is known in the classical setting to obtain
information about Uq(g). Ringel [81] gave a different approach via Hall algebras.
The filtration and structure of the associated graded algebra of U>0(g) was first
given by DeConcini and Kac [27]. For a general “quantum PBW Theorem” that
applies to some of these algebras, see Berger [7].

In case q is a root of unity (of order `), there are finite dimensional versions of
Drinfeld-Jimbo quantum groups. The small quantum group uq(g) may be defined
as the quotient of Uq(g) by the ideal generated by all E`

α, F
`
α, K

`
α − 1. This finite

dimensional algebra has k-basis given by elements in the PBW basis of the above
theorem for which 0 ≤ ai, bi, ci < `.

The existence of PBW bases for Uq(g) and uq(g) plays a crucial role in their
representation theory, just as it does in the classical setting of Lie algebras. Bases
of finite dimensional simple modules and other modules are defined from weight
vectors and PBW bases [69]. R-matrices may be expressed in terms of PBW basis
elements [30, 58, 82]. Computations of cohomology take advantage of the structure
provided by the PBW basis and filtration (e.g., see [39], based on techniques
developed for restricted Lie algebras [35]).

More generally, PBW bases and some Lie-theoretic structure appear in a much
larger class of Hopf algebras. Efforts to understand finite dimensional Hopf alge-
bras of various types led in particular to a study of those arising from underlying
Nichols algebras. Consequently, a classification of some types of pointed Hopf
algebras was completed by Andruskiewitsch and Schneider [1], Heckenberger [51],
and Rosso [83]. A Nichols algebra is a “braided” graded Hopf algebra that is
connected, generated by its degree 1 elements, and whose subspace of primitive
elements is precisely its degree 1 component. The simplest Nichols algebras are
those of “diagonal type,” and these underlie the Drinfeld-Jimbo quantum groups
and the Hopf algebras in the above-mentioned classification. These algebras have
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PBW bases just as does U>0
q (g) or u>0

q (g); a proof given by Kharchenko [60] uses
a combinatorial approach such as in Section 8.

10. Symplectic reflection algebras, rational Cherednik algebras,
and graded (Drinfeld) Hecke algebras

Drinfeld [29] and Lusztig [66, 67] originally defined the algebras now variously
called symplectic reflection algebras, rational Cherednik algebras, and graded
(Drinfeld) Hecke algebras, depending on context. These are PBW deformations
of group extensions of polynomial rings (skew group algebras) defined by rela-
tions that set commutators of vectors to elements of a group algebra. Lusztig
explored the representation theory of these algebras when the acting group is a
Weyl group. Crawley-Boevey and Holland [24] considered subgroups of SL2(C)
and studied subalgebras of these algebras in relation to corresponding orbifolds.
Initial work on these types of PBW deformations for arbitrary groups began with
Etingof and Ginzburg [33] and Ram and Shepler [80]. Gordon [40] used the rational
Cherednik algebra to prove a version of the n!-conjecture for Weyl groups and the
representation theory of these algebras remains an active area. (See [16], [41], [42],
and [84].) We briefly recall and compare these algebras. (See also [25] for a survey
of symplectic reflection algebras and rational Cherednik algebras in the context of
Hecke algebras and representation theory.)

Let G be a group acting by automorphisms on a k-algebra S. The skew group
algebra S#G (also written as a semidirect y product S oG) is the k-vector space
S ⊗ kG together with multiplication given by (r ⊗ g)(s⊗ h) = r( gs)⊗ gh for all
r, s in S and g, h in G, where gs is the image of s under the automorphism g.

Drinfeld’s “Hecke algebra”. Suppose G is a finite group acting linearly on
a finite dimensional vector space V over k = C with symmetric algebra S(V ).
Consider the quotient algebra

Hκ = T (V )#G
/

(v1 ⊗ v2 − v2 ⊗ v1 − κ(v1, v2) : v1, v2 ∈ V )

defined by a bilinear parameter function κ : V ×V → CG. We view Hκ as a filtered
algebra by assigning degree one to vectors in V and degree zero to group elements
in G. Then the algebra Hκ is a PBW deformation of S(V )#G if its associated
graded algebra is isomorphic to S(V )#G. Drinfeld [29] originally defined these
algebras for arbitrary groups, and he also counted the dimension of the parameter
space of such PBW deformations for Coxeter groups. For more information and a
complete characterization of parameters κ yeilding the PBW property for arbitrary
groups, see [33], [80], [85], [86], and [87].

Example 10.1. Let V be a vector space of dimension 3 with basis v1, v2, v3, and
let G be the symmetric group S3 acting on V by permuting the chosen basis
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elements. The following is a PBW deformation of S(V )#G, where (i j k) denotes
a 3-cycle in S3:

Hκ = T (V )#S3
/

(vi ⊗ vj − vj ⊗ vi − (i j k) + (j i k) : {i, j, k} = {1, 2, 3}) .

Lusztig’s graded affine Hecke algebra. While exploring the representation
theory of groups of Lie type, Lusztig [66, 67] defined a variant of the affine Hecke
algebra for Weyl groups which he called “graded” (as it was obtained from a
particular filtration of the affine Hecke algebra). He gave a presentation for this
algebra Hλ using the same generators as those for Drinfeld’s Hecke algebra Hκ,
but he gave relations preserving the structure of the polynomial ring and altering
the skew group algebra relation. (Drinfeld’s relations do the reverse.) The graded
affine Hecke algebra Hλ (or simply the “graded Hecke algebra”) for a finite Coxeter
group G acting on a finite dimensional complex vector space V (in its natural
reflection representation) is the C-algebra generated by the polynomial algebra
S(V ) together with the group algebra CG with relations

gv = gvg + λg(v)g

for all v in V and g in a set S of simple reflections (generating G) where λg in V ∗

defines the reflecting hyperplane (kerλg ⊆ V ) of g and λg = λhgh−1 for all h in G.
(Recall that a reflection on a finite dimensional vector space is just a nonidentity
linear transformation that fixes a hyperplane pointwise.)

Note that for g representing a fixed conjugacy class of reflections, the linear form
λg is only well-defined up to a nonzero scalar. Thus one often fixes once and for
all a choice of linear forms λ = {λg} defining the orbits of reflecting hyperplanes
(usually expressed using Demazure/BGG operators) and then introduces a formal
parameter by which to rescale. This highlights the degree of freedom arising from
each orbit; for example, one might replace

λg(v) by cg 〈v, α∨g 〉 = cg

(v − gv

αg

)
for some conjugation invariant formal parameter cg after fixing a G-invariant inner
product and root system {αg : g ∈ S} ⊂ V with coroot vectors α∨g . (Note that
for any reflection g, the vector (v − gv) is a nonzero scalar multiple of αg and so
the quotient of v − gv by αg is a scalar.) Each graded affine Hecke algebra Hλ is
filtered with vectors in degree one and group elements in degree zero and defines
a PBW deformation of S(V )#G.
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Finite Group Any G ≤ GL(V ) Coxeter G ≤ GL(V )

Algebra Hκ (Drinfeld) Hλ (Lusztig)

generated by V and CG V and CG

with relations gv = gvg, gv = gvg + λg(v)g,
vw = wv + κ(v, w) vw = wv
(∀v, w ∈ V, ∀g ∈ G) (∀v, w ∈ V, ∀g ∈ S)

Comparing algebras. Ram and Shepler [80] showed that Lusztig’s graded affine
Hecke algebras are a special case of Drinfeld’s construction: For each parameter
λ, there is a parameter κ so that the filtered algebras Hλ and Hκ are isomor-
phic (see [80]). Etingof and Ginzburg [33] rediscovered Drinfeld’s algebras with
focus on groups G acting symplectically (in the context of orbifold theory). They
called algebras Hκ satisfying the PBW property symplectic reflection algebras, giv-
ing necessary and sufficient conditions on κ. They used the theory of Beilinson,
Ginzburg, and Soergel [6] of Koszul rings to generalize Braverman and Gaitsgory’s
conditions to the setting where the ground field is replaced by the semisimple group
ring CG. (The skew group algebra S(V )#G is Koszul as a ring over the semisimple
subring CG.) Ram and Shepler [80] independently gave necessary and sufficient
PBW conditions on κ (for arbitrary groups acting linearly over C) and classified
all such quotient algebras for complex reflection groups. Their proof relies on the
Composition-Diamond Lemma. (See Sections 7 and 8 for a comparison of these
two techniques for showing PBW properties.) Both approaches depend on the
fact that the underlying field k = C has characteristic zero (or, more generally,
has characteristic that does not divide the order of the group G). See Section 11
for a discussion of PBW theorems in the modular setting when C is replaced by a
field whose characteristic divides |G|.

Rational Cherednik algebras. The rational Cherednik algebra is a special case
of a quotient algebra Hκ satisfying the PBW property (in fact, a special case of a
symplectic reflection algebra) for reflection groups acting diagonally on two copies
of their reflection representations (“doubled up”). These algebras are regarded
as “doubly degenerate” versions of the double affine Hecke algebra introduced by
Cherednik [23] to solve the Macdonald (constant term) conjectures in combina-
torics. We simply recall the definition here in terms of reflections and hyperplane
arrangements.

Suppose G is a finite group generated by reflections on a finite dimensional
complex vector space V . (If G is a Coxeter group, then extend the action to one
over the complex numbers.) Then the induced diagonal action of G on V ⊕ V ∗
is generated by bireflections (linear transformations that each fix a subspace of
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codimension 2 pointwise), i.e., by symplectic reflections with respect to a natural
symplectic form on V ⊕ V ∗.

Let R be the set of all reflections in G acting on V . For each reflection s in R,
let αs in V and α∗s in V ∗ be eigenvectors (“root vectors”) each with nonindentity
eigenvalue. We define an algebra generated by CG, V , and V ∗ in which vectors
in V commute with each other and vectors in V ∗ commute with each other, but
passing a vector from V over one from V ∗ gives a linear combination of reflections
(and the identity). As parameters, we take a scalar t and a set of scalars c =
{cs : s ∈ R} with cs = chsh−1 for all h in G. The rational Cherednik algebra Ht,c

with parameters t, c is then the C-algebra generated by the vectors in V and V ∗

together with the group algebra CG satisfying the relations

gu = gug, uu′ = u′u,

vv∗ = v∗v + t v∗(v)−
∑
s∈R

cs α
∗
s(v) v∗(αs) s

for any g in G, v in V , v∗ in V ∗, and any u, u′ both in V or both in V ∗. Note
that αs and α∗s are only well-defined up to a nonzero scalar, and we make some
conjugation invariant choice of normalization in this definition, say, by assuming
that α∗s(αs) = 1. One often replaces C by C[t, c] to work in a formal parameter
space.

The relations defining the rational Cherednik algebra are often given in terms
of the arrangement of reflecting hyperplanes A for G acting on V . For each
hyperplane H in A, choose a linear form α∗H in V ∗ defining H (so H = kerα∗H)
and let αH be a nonzero vector in V perpendicular to H with respect to some
fixed G-invariant inner product. Then the third defining relation of Ht,c can be
rewritten (without a choice of normalization) as

vv∗ − v∗v = tv∗(v)−
∑
H∈A

α∗H(v) v∗(αH)

α∗H(αH)

(
csHsH + cs2Hs

2
H + . . .+ csaHH

saHH
)

where sH is the reflection in G about the hyperplane H of maximal order aH + 1.
Again, this is usually expressed geometrically in terms of the inner product on V
and induced product on V ∗:

α∗H(v) v∗(αH)

α∗H(αH)
=
〈v, α∨H〉〈αH , v∗〉
〈αH , α∨〉

.

The PBW theorem then holds for the algebra Ht,c (see [33]):

PBW Theorem for Rational Cherednik Algebras. The rational Cherednik
algebra Ht,c is isomorphic to S(V ) ⊗ S(V ∗) ⊗ CG as a complex vector space for
any choices of parameters t and c, and its associated graded algebra is isomorphic
to (S(V )⊗ S(V ∗))#G.
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Connections between rational Cherednik algebras and other fields of mathe-
matics are growing stronger. For example, Gordon and Griffeth [43] link the
Fuss-Catalan numbers in combinatorics to the representation theory of rational
Cherednik algebras. These investigations also bring insight to the classical theory
of complex reflection groups, especially to the perplexing question of why some
reflection groups acting on n-dimensional space can be generated by n reflections
(called “well-generated” or “duality” groups) and others not. (See [26, 44, 89] for
other recent applications.)

11. Positive characteristic and nonsemisimple ground rings

Algebras displaying PBW properties are quite common over ground fields of
positive characteristic and nonsemisimple ground rings, but techniques for estab-
lishing PBW theorems are not all equally suited for work over arbitrary fields and
rings. We briefly mention a few results of ongoing efforts to establish and apply
PBW theorems in these settings.

The algebras of Section 10 make sense in the modular setting, that is, when the
characteristic of k is a prime dividing the order of the finite group G. In this case,
however, the group algebra kG is not semisimple, and one must take more care
in proofs. PBW conditions on κ were examined by Griffeth [46] by construction
of an explicit Hκ-module, as is done in one standard proof of the PBW Theo-
rem for universal enveloping algebras. (See also Bazlov and Berenstein [5] for a
generalization.) The Composition-Diamond Lemma, being characteristic free, ap-
plies in the modular setting; see our paper [86] for a proof of the PBW property
using this lemma that applies to graded (Drinfeld) Hecke algebras over fields of
arbitrary characteristic. (Gröbner bases are explicitly used in Levandovskyy and
Shepler [63].) Several authors consider representations of rational Cherednik al-
gebras in the modular setting, for example, Balagovic and Chen [4], Griffeth [46],
and Norton [75].

The theory of Beilinson, Ginzburg, and Soergel of Koszul rings over semisimple
subrings, used in Braverman-Gaitsgory style proofs of PBW theorems, does not
apply directly to the modular setting. However it may be adapted using a larger
complex replacing the Koszul complex: In [88], we used this approach to gener-
alize the Braverman-Gaitsgory argument to arbitrary Koszul algebras with finite
group actions. This replacement complex has an advantage over the Composition-
Diamond Lemma or Gröbner basis theory arguments in that it contains informa-
tion about potentially new types of deformations that do not occur in the non-
modular setting.

Other constructions generalize the algebras of Section 10 to algebras over ground
rings that are not necessarily semisimple. Etingof, Gan, and Ginzburg [32] con-
sidered deformations of algebras that are extensions of polynomial rings by acting
algebraic groups or Lie algebras. They used a Braverman-Gaitsgory approach to
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obtain a Jacobi condition by realizing the acting algebras as inverse limits of fi-
nite dimensional semsimple algebras. Gan and Khare [37] investigated actions of
Uq(sl2) on the quantum plane (a skew polynomial algebra), and Khare [61] looked
at actions of arbitrary cocommutative algebras on polynomial rings. In both cases
PBW theorems were proven using the Composition-Diamond Lemma. A general
result for actions of (not necessarily semisimple) Hopf algebras on Koszul alge-
bras is contained in Walton and Witherspoon [96] with a Braverman-Gaitsgory
style proof. See also He, Van Oystaeyen, and Zhang [50] for a PBW theorem
using a somewhat different complex in a general setting of Koszul rings over not
necessarily semisimple ground rings. One expects yet further generalizations and
applications of the ubiquitous and potent PBW Theorem.
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