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DEFORMATION COHOMOLOGY FOR CYCLIC GROUPS

ACTING ON POLYNOMIAL RINGS

COLIN M. LAWSON AND ANNE V. SHEPLER

Abstract. We examine the Hochschild cohomology governing graded deformations for finite cyclic
groups acting on polynomial rings. We classify the infinitesimal graded deformations of the skew
group algebra S ⋊ G for a cyclic group G acting on a polynomial ring S. This gives all graded
deformations of the first order. We are particularly interested in the case when the characteristic
of the underlying field divides the order of the acting group, which complicates the determination
of cohomology.

1. Introduction

Hochschild cohomology governs deformations of algebras: Every deformation arises from a
Hochschild 2-cocycle, but the converse is false, and obstructions to lifting a 2-cocycle to a de-
formation are witnessed by the Gerstenhaber bracket (a Lie bracket) on Hochschild cohomology.
The 2-cocycles are often called infinitesimal deformations or deformations of the first order. When
A is a graded algebra, the Hochschild cohomology HH

r(A) inherits the grading, and the graded de-
formations of A all arise from infinitesimal deformations of graded degree −1 (see [9]). Thus a first
step in determining the graded deformations of a given algebra A centers on describing the space
HH2

−1(A) of infinitesimal graded deformations, i.e., the space of first-order graded deformations of

A. The groups HHj
i(A) are more generally called graded Hochschild cohomology groups, see [10].

We consider a finite group G ⊂ GL(V ) acting on a finite-dimensional vector space V ≅ Fn over
a field F and take the induced action on the polynomial ring S(V ), the symmetric algebra of
V . Deformations of the natural semidirect product algebra S(V ) ⋊ G include Lusztig’s graded
Hecke algebras (see [14, 15]), rational Cherednik algebras and symplectic reflection algebras (see
[10] and [7]), and Drinfeld Hecke algebras more generally (see [6]). The Hochschild cohomology
of A = S(V ) ⋊G has been described in the nonmodular setting, when charF and the group order
∣G∣ are coprime, for F algebraically closed (see Proposition 3.1 below). Much less is known in the
modular setting, when charF divides ∣G∣, as the group ring FG is no longer semisimple and carries
its own nontrivial cohomology (e.g., see [5] and [33]). Here we investigate the case when the acting
group G is cyclic and we assume charF ≠ 2.
Theorem 1.1. Let G ⊂ GL(V ) be a finite cyclic group acting on V ≅ Fn. The space of infinitesimal
graded deformations of A = S(V ) ⋊G is isomorphic as an F-vector space to

HH2
−1(A) ≅ (V G/ ImT )∗ ⊕ (V ⊗ ⋀2V ∗)G ⊕ ⊕

h∈G
codimV h=1

(F⊕ (V /Vh ⊗ (V h)∗))χh ⊕ ⊕
h∈G

codimV h=2

(V /Vh)χh .
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2 COLIN M. LAWSON AND ANNE V. SHEPLER

Here, χh is an analogue of the Hochschild character, see Eq. (2.2), and T ∶ V → V is the transfer
map T = ∑h∈G h on V .

We recover the description of HH2
−1(A) in the nonmodular setting for F algebraically closed, see

[25] and Proposition 3.1 below. In that setting, bireflections (with fixed point spaces of codimension
2) along with the identity 1G contribute to this space of infinitesimals, but reflections in the group
do not. Over R or C, graded deformations like the symplectic reflection algebras and rational
Cherednik algebras (see [10] and [7]) have parameters only supported on bireflections and 1G for
this reason.

In the modular setting, we find reflections in the group G also contributing to the space of
infinitesimal graded deformations. We expect this given examples (see [12] and [29]) of graded
deformations like Drinfeld Hecke algebras with parameters supported on reflections in the group,
not just bireflections and 1G. In these graded deformations of A = S(V ) ⋊ G, the reflections
record some deforming of the semidirect product structure whereas the bireflections record some
deforming of the commutativity of S(V ). The key complication in the modular setting centers on
the frequent lack of a decomposition V = V h ⊕ (V h)⊥ preserved by the centralizer Z(h) of h in G,
even for G abelian (see Section 9). We obtain more information in the modular setting when a
Jordan canonical form is available, see Corollary 8.9.

Marcos, Mart́ınez-Villa, and Martins [17, 16] (see also Cibils and Redondo [4]) examine the
Hochschild cohomology of semidirect products S ⋊G for an F-algebra S upon which a finite group
G acts by automorphisms and describe actions under which

HHi(S ⋊G) ≅ (∐(g,h)∈G×G ExtiSe(Sg,Sh))
G×G

.

To describe the cohomology explicitly, we take a different approach here. For a cyclic group G, we
directly construct a twisted product resolution (see [30]) of A = S(V )⋊G that combines a convenient
periodic resolution of FG with the Koszul resolution of S(V ). This approach allows us to give a
concrete description of the cohomology, which can then be used to determine deformations that
simultaneously generalize graded Hecke algebras and universal enveloping algebras, see Section 9,
[21], and [26]. Also see Negron [20] and Briggs and Witherspoon [2] for related ideas.

Outline of paper. We recall some basic facts about skew group algebras and Hochschild coho-
mology in Section 2 and review a formulation of the cohomology HH

r(S(V )⋊G) in the nonmodular
setting in Section 3. In Section 4, we use a periodic resolution for a cyclic group G to construct
a twisted product resolution for A = S(V ) ⋊G using the Koszul resolution for S(V ). We decom-
pose the space HH2

−1(A) of infinitesimal graded deformations into contributions from each group
element in Section 5. We give cocycle conditions in Section 6 in terms of the dimension of fixed
point spaces. Unique cocycle representatives giving cohomology are identified in Section 7, and we
use these representatives in Section 8 to give the cohomology explicitly as a vector space. Lastly,
in Section 9, we demonstrate how these results may be used to find deformations by considering
the transvection groups acting on 2-dimensional vector spaces.

2. Hochschild cohomology and skew group algebras

We take a finite group G ⊂ GL(V ) acting on V ≅ Fn and consider the induced action of G on the
polynomial ring S(V ). We take all tensor products over the field F, ⊗ = ⊗F, and assume charF ≠ 2
throughout. We assume all algebras are associative F-algebras.
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Group actions. For any FG-module M , we write gm for the image of m in M under the action
of g in G to distinguish from the product of g and m in any algebra containing both. We take the

usual induced action on functions f ∶M →M ′ defined by ( gf)(m) = g(f( g−1m)) for g in G and m

in M , for any FG-module M ′, and we always take the trivial G action on F.

Transfer map. We use the classical transfer map in modular invariant theory (see [3]) for a group
G ⊂ GL(V ) restricted to the vector space V : Define

(2.1) T ∶ V Ð→ V, v z→ ∑
h∈G

hv .

Invariant subspaces and characters. We denote the G-invariants in any FG-module M by
MG = {m ∈M ∶ gm =m for all g ∈ G} and, more generally, denote the χ-invariants in M by

Mχ = {m ∈M ∶ gm = χ(g)m for all g ∈ G}
for any linear character χ ∶ G→ F

× of G. Specifically for M = V and h in G, we set

V h = Ker (1 − h) = {v ∈ V ∶ hv = v} and Vh = Im(1 − h) = {v − hv ∶ v ∈ V } .
When G is abelian, G fixes set-wise both V h and Vh for any h in G and we define a linear character
giving the determinant of G acting on V /V h, an analogue of the Hochschild character:

(2.2) χh ∶ GÐ→ F
×, χh(g) ∶= det [g]V /V h

.

Skew group algebras. Recall that the skew group algebra S(V )⋊G = S#G is the natural semidi-
rect product algebra: S(V ) ⋊G = S(V )⊗ FG as an F-vector space with multiplication given by

(s⊗ g) ⋅ (s′ ⊗ g′) = s( gs′)⊗ gg′ for all s, s′ ∈ S(V ) and g, g′ ∈ G.

Note that we identify 1G and 1F in FG and identify FG with 1F ⊗ FG and S(V ) with S(V )⊗ 1G,
subspaces of S(V )⊗ FG.

Identifications. For any FG-module M , we identify spaces under the FG-module isomorphism

(2.3) Hom F(⋀jV,M) ≅M ⊗⋀jV ∗ for each j ≥ 0

so that (Hom F(⋀jV,M))G = (M⊗⋀jV ∗)G. Any bimodule over an F-algebra A is a left Ae-module
for Ae = A ⊗ Aop the enveloping algebra of A with Aop the opposite algebra of A, and we also
identify the spaces HomAe(A⊗M ⊗A,A) and Hom F(M,A).

Gradings. The group G acts on S(V ) by graded automorphisms when we take the natural grading
on S(V ) by polynomial degree with generators forming a vector space basis of V in degree 1. This
grading induces a grading on A = S(V ) ⋊G after we set the degree of each group element to zero.

Hochschild cohomology. For an F-algebra A, the Hochschild cohomology of A is

HH
r(A) ∶= HH r(A,A) = Ext rAe(A,A) .

The cohomology HH
r(A) may be computed as the homology of the complex that arises from

applying HomAe(—,A) to the bar resolution of A with m-th term A⊗A⊗m ⊗A for m ≥ 0, see [37]
and [22] for example.
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Grading on cohomology. If A is a graded algebra, then HHm(A) inherits the induced grading
on the bar resolution [37], and we denote the homogeneous component of degree i by HHm

i (A).
Specifically, we identify HomAe(A⊗Am⊗A,A) and Hom F(A⊗m,A) and take the usual grading on
A⊗m with deg(a1⊗⋯⊗am) =∑j deg(aj) for aj homogeneous in A, so that γ in HomAe(A⊗Am⊗A,A)
has degree i when deg(γ(a′ ⊗ a⊗ a′′)) = i + deg(a) for all a ∈ A⊗m and a′, a′′ ∈ A.

Graded deformations. Recall that an F-algebra At is a graded deformation of a graded algebra
A if At is a graded algebra over F[t] for deg t = 1 with At ≅ A[t] as an F[t]-vector space and
At/tAt ≅ A as an F-algebra (see [9] and [1]). We may identify a graded deformation At with
F[t]⊗F A and the multiplication is given by

a ∗ b = ab + µ1(a⊗ b)t + µ2(a⊗ b)t2 + . . . for a, b ∈ A

extended to be linear over F[t] for F-linear maps µi ∶ A ⊗A → A homogeneous of degree −i. The
first multiplication map µ1 is then necessarily a Hochschild 2-cocycle of A of degree −1, called
the infinitesimal of At. Thus to classify all graded deformations of A, we are interested in first
determining the space

HH2
−1(A) = {infinitesimal graded deformations of A}.

If an infinitesimal µ in HH2
−1(A) is the first multiplication map µ1 for a graded deformation of A,

then we say µ lifts (or integrates) to a graded deformation of A.

Koszul sign convention. We use the Koszul sign convention throughout for the tensor product
of maps: If f ∶ A → B and f ′ ∶ A′ → B′ are homogeneous maps of graded vector spaces, then
f ⊗ f ′ ∶ A⊗A′ → B ⊗B′ is the map satisfying, for homogeneous a ∈ A and a′ ∈ A′,

(2.4) (f ⊗ f ′)(a⊗ a′) = (−1)deg(a)deg(f ′)f(a)⊗ f ′(a′) (Koszul sign convention) .

3. Cohomology in the nonmodular setting

We review a description of the Hochschild cohomology for A = S(V ) ⋊ G in the nonmodular
setting before investigating the modular case. Consider an arbitrary finite group G ⊂ GL(V ) with
charF and ∣G∣ coprime and F algebraically closed for V ≅ Fn. Let C be a set of representatives of
the conjugacy classes of G and let Z(h) be the centralizer of h in G. As ∣G∣ is invertible in F, there
is a G-invariant inner product on V (obtained by averaging any inner product over the group G).
Then for any h in G, Z(h) preserves set-wise both V h and (V h)⊥, the orthogonal complement to
V h, and we may define the Hochschild character

χh ∶ Z(h)→ F, z ↦ det(z∣(V h)⊥),
recording the determinant of Z(h) acting on (V h)⊥. Note that if G is abelian, we may identify
the Hochschild character χh with the linear character of Eq. (2.2) after identifying the FG-modules
(V h)⊥ and V /V h using the fact that V decomposes as V h ⊕ (V h)⊥ as an FG-module for h in G.
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Proposition 3.1. Consider a finite group G ⊂ GL(V ) acting on V ≅ Fn with ∣G∣ coprime to charF
and F algebraically closed. For A = S(V ) ⋊G,

HH
r(A) ≅ ⊕

h∈C

(S(V h)⊗⋀ r− codimV h(V h)∗)χh

and, in particular,

HH2(A) ≅ (S(V )⊗⋀2V ∗)G ⊕ ⊕
h∈C

codimV h=2
deth=1

(S(V h))χh

.

Proof. The arguments in [38, Section 6] and [25, Theorem 3.1] (see also [37, Example 3.5.7]) using
[36] give the first isomorphism (also see [8]). Note that each space of χh-invariants is {0} unless

det(h) = χh(h) = 1 since h itself acts trivially on S(V h) ⊗ ⋀ r− codimV h(V h)∗ (see [25, Equation
(3.7)]). Since any reflection in G is diagonalizable with determinant ≠ 1, we thus need only sum
over group elements whose fixed point spaces have codimension 0 or 2 to find HH2(A). �

Under the induced grading on HH
r(A), the graded component HHm

i (A) is the subspace of
HHm(A) consisting of elements whose first tensor component has polynomial degree i +m:

Proposition 3.2. Let G ⊂ GL(V ) be a finite group acting on V ≅ Fn with ∣G∣ coprime to charF
and F algebraically closed. The space of infinitesimal graded deformations of A = S(V ) ⋊ G is
isomorphic as an F-vector space to

HH2
−1(A) ≅ (V ⊗⋀2V ∗)G ⊕ ⊕

h∈G
codimV h=2

deth=1

(V h)χh

.

For G cyclic, our main finding Theorem 8.1 recovers Proposition 3.2 in this nonmodular setting,
see Remark 8.8. Note that the case where S(V ) is replaced by a quantum polynomial ring over fields
of characteristic 0 was explored by Naidu, Shakalli, Shroff, and Witherspoon see [18, 23, 19, 31].
For deformations in that setting, see also [13, 32].

4. Periodic-twisted-Koszul Resolution for cyclic groups

We consider a finite cyclic group G acting linearly on V ≅ F
n for F a field of arbitrary char-

acteristic. To compute the Hochschild cohomology of A = S(V ) ⋊ G, we use a twisted product
resolution for A: We twist together a periodic resolution for the group G and the Koszul resolution
for S(V ). See [27, 30] for the construction details (and requirements) of twisted product resolutions
for general skew group algebras. We fix a generator g of G.

A periodic resolution for cyclic groups. We may identify FG with F[x]/(x∣G∣ − 1) for some
indeterminate x and use a well-known resolution P r of FG given by (see [11])

P● ∶ ⋯ FG⊗ FG FG⊗ FG FG⊗ FG FG 0,
γ η γ m

where γ = g ⊗ 1 − 1⊗ g, η = g−1 ⊗ 1 + g−2 ⊗ g +⋯+ 1⊗ g−1 and m is multiplication.
To satisfy the compatibility requirements for constructing a twisted product resolution (see [30,

Defintion 2.17]), we use the following G-grading on FG ⊗ FG: For any h in G and Pi = FG ⊗ FG

for i ≥ 0, set

(Pi)h =
⎧⎪⎪⎨⎪⎪⎩
SpanF{a⊗ b ∶ ab = h} for i even

SpanF{a⊗ b ∶ ab = hg−1} for i odd .
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The Koszul complex. Recall the bimodule Koszul complex for the symmetric algebra S(V ):
K● ∶ ⋯Ð→ S(V )⊗⋀2V ⊗ S(V )Ð→ S(V )⊗ V ⊗ S(V )Ð→ S(V )⊗ S(V )Ð→ S(V )Ð→ 0 ,

with differentials defined, for all w1 ∧⋯ ∧wj in ⋀jV , by

∂K(1⊗w1 ∧⋯∧wj ⊗ 1) =
j

∑
ℓ=1

(−1)ℓ−1(wℓ ⊗w1 ∧⋯ ∧ ŵℓ ∧⋯∧wj ⊗ 1 − 1⊗w1 ∧⋯∧ ŵℓ ∧⋯ ∧wj ⊗wℓ) .

This resolution satisfies the compatibility requirements of [30] for a twisted product resolution.

Periodic-twisted-Koszul resolution. The periodic-twisted-Koszul resolution X r = P r⊗G K r of
A = S(V ) ⋊G is the total complex (see [27, 30])

Xm = ⊕
i+j=m

Xi,j for Xi,j = Pi ⊗Kj = (FG⊗ FG)i ⊗ (S(V )⊗⋀jV ⊗ S(V )) for i, j ≥ 0

with A-bimodule structure on each Pi ⊗Kj given by

s(y1 ⊗ y2)a = y1a⊗ (ha)−1s a−1y2 for y1 ∈ (Pi)h, y2 ∈Kj, a, h ∈ G, s ∈ S(V )
and differentials dm ∶ Xm →Xm−1 given by dm = ∑i+j=m dhori,j +d

vert
i,j for horizontal and vertical maps

dhori,j ∶= ∂P ⊗ 1K ∶ Xi,j →Xi−1,j and dverti,j ∶= 1P ⊗ ∂K ∶ Xi,j →Xi,j−1 .

Here, ∂P and ∂K are the differentials for P r and K r, respectively. The complex X r gives a free
A-bimodule resolution of A = S(V ) ⋊G:

X r ∶ ⋯ X2 X1 X0 A 0 .

We identify each Xi,j with A⊗⋀jV ⊗A using the A-bimodule isomorphism

Xi,j
≅
Ð→ A⊗⋀jV ⊗A

given by, for a′ ⊗ a ∈ (Pi)h, w1 ∧⋯ ∧wj ∈ ⋀jV , and s, r in S(V ),
(a′ ⊗ a)⊗ (s⊗w1 ∧⋯∧wj ⊗ r) = ( hs⊗ a′)⊗ a (w1 ∧⋯∧wj) ⊗ ( ar ⊗ a) .

Note that after the identifications, the differential encodes the group action although the group
algebra FG does not appear in Xi,j = A⊗⋀jV ⊗A as an overt tensor component.

The Hochschild cohomology HH
r(A) is thus the homology of the complex

⋯ HomAe(X2,A) HomAe(X1,A) HomAe(X0,A) 0 .

The grading on each HHm(A) induced by the grading on A coincides with the grading on ⋀V with

⋀jV in degree j so that γ ∈ HomAe(A⊗⋀jV ⊗A,A) has degree i when deg(γ(a⊗v1∧⋯∧vj⊗a′)) = i+j
for vi ∈ V and a, a′ ∈ A. We denote by Cm

i (A), Zm
i (A), and Bm

i (A) the spaces of m-cochains, m-
cocycles, and m-coboundaries, respectively, of graded degree i so that

(4.1) HH2
−1(A) = Z2

−1(A)/B2
−1(A) .



DEFORMATION COHOMOLOGY 7

Explicit differential. We give the differential in the resolution X r explicitly. We use the Koszul
sign convention (Eq. (2.4)) with respect to homological degree noting that ∂P and ∂K each have
degree −1 while the identity has degree 0: For y1 ∈ Pi = FG⊗ FG and y2 in S(V )⊗⋀jV ⊗ S(V ),

(1⊗ ∂K)(y1 ⊗ y2) = (−1)(deg y1)(deg ∂K)(y1 ⊗ ∂K(y2)) = (−1)i(y1 ⊗ ∂K(y2)) .
The horizontal differentials ∂P ⊗ 1K on Xi,j are defined by

dhori,j (w) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

g ⊗w1 ∧⋯∧wj ⊗ 1 − 1⊗ g(w1 ∧⋯∧wj)⊗ g if i is odd
∣G∣−1

∑
ℓ=0

g−1−ℓ ⊗ gℓ(w1 ∧⋯∧wj)⊗ gℓ if i is even

and the vertical differentials 1P ⊗ ∂K are defined by (correcting a misprint in [27, Example 4.6])

dverti,j (w) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

j

∑
ℓ=1

(−1)ℓ( gwℓ ⊗w1 ∧⋯∧ ŵℓ ∧⋯∧wj ⊗ 1 − 1⊗w1 ∧⋯∧ ŵℓ ∧⋯ ∧wj ⊗wℓ) i odd

j

∑
ℓ=1

(−1)ℓ−1(wℓ ⊗w1 ∧⋯∧ ŵℓ ∧⋯∧wj ⊗ 1 − 1⊗w1 ∧⋯∧ ŵℓ ∧⋯∧wj ⊗wℓ) i even,

for w = 1⊗w1 ∧w2 ∧⋯∧wj ⊗ 1 in A⊗⋀jV ⊗A.

5. Cocycle conditions and cohomology decomposition

We begin our analysis of the space of infinitesimal graded deformations with initial cocycle
conditions. These conditions allow us to decompose the Hochschild cohomology into contributions
from each group element. Again, we consider a finite cyclic group G ⊂ GL(V ) acting on V ≅ Fn

and fix a generator g of G with which to construct the periodic-twisted-Koszul resolution X r (see
Section 4) of A = S(V ) ⋊G giving the space HH2

−1(A) of infinitesimal graded deformations of A.
We examine the differential of the resolution X = PG ⊗GKS of A to determine preliminary cocycle
conditions.

Decomposing cochains. The space C2
−1(A) = (HomAe(X2,A))−1 of 2-cochains of degree −1

decomposes into a space of maps on V and a space of maps on ⋀2V :

(5.1) C2
−1(A) = Hom F(V,FG)⊕Hom F(⋀2V, V ⊗ FG) = (V ∗ ⊗ FG)⊕ (V ⊗⋀2V ∗ ⊗ FG) ,

since X2 = (A⊗A)⊕ (A⊗ V ⊗A)⊕ (A⊗⋀2V ⊗A) and FG is the degree 0 component of A, using
the usual identifications (see Eq. (2.3)). Note here that the only Ae-homomorphism A⊗A → A of
degree −1 is the zero map.

Cochains decomposed by group contribution. We decompose the vector space of cochains
according to group elements with an extra shift by the generator g of G. From Eq. (5.1),

C2
−1(A) =⊕

h∈G

(V ∗ ⊗ Fh)⊕ (V ⊗⋀2V ∗ ⊗ Fh) =⊕
h∈G

(V ∗ ⊗ Fhg)⊕⊕
h∈G

(V ⊗⋀2V ∗ ⊗ Fh) .
For each h ∈ G, we set

C2
−1(h) ∶= (V ∗ ⊗ Fhg)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
λ-part

⊕ (V ⊗⋀2V ∗ ⊗ Fh)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

α-part

so that C2
−1(A) =⊕

h∈G

C2
−1(h) .

Furthermore, we define the coboundaries and cocycles for h ∈ G by

B2
−1(h) ∶= C2

−1(h) ∩B2
−1(A) and Z2

−1(h) ∶= C2
−1(h) ∩ Z2

−1(A)
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and define the cohomology for h by

(5.2) HH2
−1(h) ∶= Z2

−1(h)/B2
−1(h) .

We justify this terminology (and notation) in Proposition 5.5 below by exhibiting HH2
−1(A) as the

direct sum of the HH2
−1(h). First, we establish two lemmas that will be useful here and later. We

consider cocycle conditions in the first lemma using the transfer map T (see Eq. (2.1)) and consider
coboundary conditions in the second. We write any cochain γ in C2

−1(h) as γ = (λ⊗ hg) ⊕ (α⊗ g)
for λ in Hom F(V,F) and α in Hom F(⋀2V,V ).
Lemma 5.3 (Cocycles). For any h in G, a cochain (λ ⊗ hg) ⊕ (α ⊗ h) in C2

−1(h) is a cocycle in
Z2
−1(h) if and only if

(1) 0 = λ(Im(T )) in F ,

(2) 0 = (α − g−1α)(u ∧ v) − λ(v)(u − hu) + λ(u)(v − hv) in V for all u, v ∈ V , and

(3) 0 = α(u ∧ v)(w − hw) + α(v ∧w)(u − hu) + α(w ∧ u)(v − hv) in S(V ) for all u, v,w ∈ V .

Proof. We first consider a cochain γ = λ⊕α in C2
−1(A) using Eq. (5.1) for λ in Hom F(V,FG) and α

in Hom F(⋀2V,V ⊗ FG). We examine dγ for the differential d on the resolution X r (see Section 4)
and conclude that γ lies in Z2

−1(A) if and only if

● 0 = λ(ImT ) ,
● 0 = gα(u ∧ v) −α( gu ∧ gv)g − guλ(v) + λ(v)u + gv λ(u) − λ(u)v for all u, v ∈ V, and

● 0 = [u,α(v ∧w)] + [v,α(w ∧ u)] + [w,α(u ∧ v)] for all u, v,w ∈ V ,

where the bracket is the commutator in A. Now decompose α and λ according to group elements,

λ(v) = ∑
h∈G

λh(v)h and α(v ∧w) = ∑
h∈G

αh(v ∧w)⊗ h for all v,w in V

where λh ∶ V → F and αh ∶ ⋀2V → V , so that γ = ∑h∈G γh for γh = (λhg ⊗ hg) ⊕ (αh ⊗ h). We
compare coefficients to see that γ satisfies the above three conditions if and only if each γh does
if and only if each γh satisfies the conditions in the lemma. Hence γ lies in Z2

−1(A) if and only if
each γh lies in Z2

−1(A) and thus in Z2
−1(h). �

Lemma 5.4 (Coboundaries). For any h in G, a cochain (λ⊗hg)⊕(α⊗h) in C2
−1(h) is a coboundary

in B2
−1(h) if and only if there is some map f ∶ V → F with

λ(u) = f(u − gu) and α(u ∧ v) = f(v)(u − hu) − f(u)(v − hv) for all u, v ∈ V .

Proof. We first write out conditions for a generic coboundary. Say f ′ is a 1-cochain in C1
−1(A) =

V ∗ ⊗ FG and write f ′ = ∑h∈G fh ⊗ h with each fh ⊗ h ∈ V ∗ ⊗ Fh ⊂ C1
−1(A). Then again using the

differential d on the resolution X r (see Section 4), we observe that

df ′ = ∑
h∈G

d(fh ⊗ h) with d(fh ⊗ h) = (λhg ⊗ hg)⊕ (αh ⊗ h) ,
for

λgh(u) = fh(u − gu) and αh(u ∧ v) = fh(v)(u − hu) − fh(u)(v − hv) for all u, v ∈ V .

Then each (λhg ⊗ hg) ⊕ (αh ⊗ h) is a coboundary in B2
−1(h) = C2

−1(h) ∩ B2
−1(A) and satisfies the

condition in the statement of the lemma. Thus for h in G, if a cochain (λ⊗hg)⊕ (α⊗h) in C2
−1(h)

is df ′ for some 1-cochain f ′ in C1
−1(A), then f ′ = f ⊗h for some f ∈ V ∗ satisfying the conclusion of
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the lemma. Conversely, if there is a function f as in the statement of the lemma, then f ⊗ h is a
cochain in C1

−1(A) with d(f ⊗ h) = (λ⊗ hg)⊕ (α⊗ h). �

Cohomology decomposed by group contribution. Now we may decompose cohomology
group element by group element:

Proposition 5.5. Let G ⊂ GL(V ) be a finite cyclic group acting on V ≅ Fn. Then

B2
−1(A) = ⊕

h∈G

B2
−1(h) and Z2

−1(A) = ⊕
h∈G

Z2
−1(h) .

Thus the space of infinitesimal graded deformations of A = S(V ) ⋊G is

HH2
−1(A) ≅ ⊕

h∈G

HH2
−1(h) .

Proof. To verify that B2
−1(A) ⊂⊕h∈GB2

−1(h), consider df in B2
−1(A) with f a 1-cochain in C1

−1(A) =
V ∗ ⊗ FG. We saw in the proof of Lemma 5.4 that df = ∑h∈G d(fh ⊗ h) where f = ∑h∈G fh ⊗ h with
each summand fh ⊗ h in V ∗ ⊗Fh ⊂ C1

−1(A) and d(fh ⊗Fh) in C2
−1(h) ∩B2

−1(A) = B2
−1(h). Thus df

lies in ⊕h∈GB2
−1(h). The reverse inclusion is clear.

To verify that Z2
−1(A) =⊕h∈G Z2

−1(h), we refer to the proof of Lemma 5.3: For any γ = ∑h∈G γh
in C2

−1(A) with each γh in C2
−1(h), γ lies in Z2

−1(A) if and only if each γh lies in Z2
−1(h). �

6. Cocycle conditions in terms of codimension

In this section, we detangle the cocycle conditions for the space HH2
−1(A) of infinitesimal graded

deformations of A = S(V ) ⋊G for G ⊂ GL(V ) a finite cyclic group acting on V ≅ Fn. We again fix
a generator g of G to define the resolution X r, see Section 4.

Vector space complements and projections. We describe HH2
−1(A) using a choice of coho-

mology representatives depending on projection maps. Recall that a G-invariant inner product on
V may not exist, but we use the notation of an orthogonal complement in any case in analogy with
the nonmodular setting. We choose a vector space complement (V h)⊥ to V h for each h in G so
V = V h ⊕ (V h)⊥. Note that V g = V G and so this gives a decomposition V = V G ⊕ (V G)⊥. We also
choose a vector space complement (Vh)⊥ to Vh with projection map πh ∶ V → Vh:

(6.1) V = Im(1 − h)⊕ Im(1 − h)⊥ = Vh ⊕ (Vh)⊥ .
Cocycle condition (1). We interpret the first cocycle condition of Lemma 5.3. Recall that h in G

is a reflection when the fixed-point space V h is a hyperplane, i.e., codimV h = 1. Note that if h is a
reflection, then either h is diagonalizable with order ∣h∣ coprime to charF or h is nondiagonalizable
with order ∣h∣ = charF (see [35]). Also note that the following lemma fails when charF = 2 = n = ∣G∣,
but we have excluded charF = 2 from consideration throughout.

Lemma 6.2. If G contains a nondiagonalizable reflection, then ImT = {0}.
Proof. Let h be a nondiagonalizable reflection with H = ⟨h⟩ ⊂ G and let p = charF = ∣h∣. We write
TG = ∑a∈G a and TH = ∑a∈H a as transformations on V and note that for a transversal g1, g2, . . . , gm
of H in G (coset representatives for G/H) with m = [G ∶ H] (see [34, Theorem 4.1] and [24]),

TG(v) = ∑
a∈G

av =
m

∑
i=1

∑
a∈H

giav =
m

∑
i=1

gi( ∑
a∈H

av) = m

∑
i=1

gi (TH(v)) for v ∈ V .
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We argue that ImTG is zero by showing ImTH is zero. There is a basis v1, . . . , vn of V with

hvi = vi for i < n and hvn = v1 + vn .
Then TH(vi) = ∣H ∣vi = 0 for i < n and

TH(vn) =
p−1

∑
i=0

hi

vn =
p−1

∑
i=0

(iv1 + vn) = p(p−1)
2

v1 = 0 as well.

�

Example 6.3. Note that ImT ≠ 0 for G ⊂ GL4(F3) generated by ( 1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 −1

) , but ImT = 0 for

G ⊂ GL3(F3) generated by g = ( 1 1 0
0 1 0
0 0 −1

) by Lemma 6.2 since g4 is a nondiagonalizable reflection.

Cocycle condition (3). We also interpret the third cocycle condition of Lemma 5.3 for cochains.
Recall that we write any γ in C2

−1(h) = (V ∗⊗Fhg)⊕ (V ⊗⋀2V ∗⊗Fh) as γ = (λ⊗hg)⊕ (α⊗ g) for
λ in Hom F(V,F) and α in Hom F(⋀2V,V ).
Lemma 6.4. For any h in G, if a cochain γ = (λ⊗hg)⊕(α⊗h) in C2

−1(h) satisfies Lemma 5.3(3),
then either

(a) h is the identity element of G, or
(b) codimV h = 1 and α(u ∧ v) = 0 for all u, v in V h, or
(c) codimV h = 2 and α(u ∧ v) lies in F-span{v − hv} for u ∈ V h and v ∈ V , or
(d) codimV h > 2 and α(u ∧ v) lies in F-span{u − hu, v − hv} for all u, v ∈ V .

Proof. For brevity, write û = u − hu for all u ∈ V so that Lemma 5.3(3) implies that

(6.5) 0 = α(u ∧ v)ŵ + α(v ∧w)û +α(w ∧ u)v̂ in S(V ) for all u, v,w ∈ V .

If u, v ∈ V h and codimV h ≥ 1, then α(u ∧ v) = 0 as we may choose w ∉ V h. If u ∈ V h and v ∈ (V h)⊥
and codimV h ≥ 2, then α(u ∧ v) ∈ Fv̂ as we may choose w with v̂ and ŵ independent. Lastly, if
u, v ∈ (V h)⊥ with codimV h > 2, then α(u ∧ v) ∈ Fû + Fv̂ as we may choose w with ŵ ∉ Fû + Fv̂. �

Lemma 6.6 (A partial converse to Lemma 6.4). For any h in G, suppose γ = (λ⊗ hg) ⊕ (α ⊗ h)
is a cochain in C2

−1(h) with either

(a) h is the identity element of G, or
(b) codimV h = 1 and α(u ∧ v) = 0 for all u, v in V h, or
(c) codimV h = 2 and α(u ∧ v) = 0 for u ∈ V h and v ∈ V , or
(d) codimV h > 2 and α(u ∧ v) = 0 for all u, v ∈ V .

Then γ satisfies Lemma 5.3(3).

Proof. We again write v̂ = v − hv for all v ∈ V and verify that

(6.7) 0 = α(u ∧ v)ŵ + α(v ∧w)û + α(w ∧ u)v̂ for all u, v,w ∈ V .

We assume codimV h is 1 or 2 else the statement is trivial and consider V = V h ⊕ (V h)⊥. Notice
that the right hand side of Eq. (6.7) vanishes automatically for u, v,w ∈ (V h)⊥ since it defines an
alternating linear function and ⋀3(V h)⊥ = {0}. If codimV h = 1, then the right hand side also
vanishes for u, v ∈ V h, w ∈ V by (b) and for u ∈ V h, v,w ∈ (V h)⊥ since it is alternating in v,w for
fixed u and ⋀2(V h)⊥ = {0}. Lastly, if codimV h = 2, then the right side of Eq. (6.7) vanishes for
u ∈ V h, v,w ∈ V as (c) implies that α(u ∧ v) = 0 = α(u ∧w). �
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7. Unique cohomology representatives

In this section, we identify unique representatives for the cohomology classes in the space
HH2

−1(A) of infinitesimal graded deformations of A = S(V )⋊G for a finite cyclic group G ⊂ GL(V )
generated by g acting on V ≅ Fn. By Proposition 5.5,

HH2
−1(A) = ⊕

h∈G

HH2
−1(h) with HH2

−1(h) = Z2
−1(h)/B2

−1(h) ,

and we describe coset representatives for each HH2
−1(h) using a choice of vector space complement

(Vh)⊥ to Vh and complement (V h)⊥ to V h (see Eq. (6.1)) with projection map πh ∶ V → Vh. Recall
that the space of cochains for each h in G is C2

−1(h) = (V ∗ ⊗ Fgh)⊕ (V ⊗⋀2V ∗ ⊗ Fh).
Proposition 7.1. Fix h ∈ G. Each coset in HH2

−1(h) has a unique representative γ = (λ ⊗ hg) ⊕
(α⊗ h) in Z2

−1(h) for λ ∈ V ∗ and α ∈ Hom F(⋀2V,V ) with πhα ≡ 0 and

(a) when codimV h = 0 (so h = 1G), λ ≡ 0 on (V G)⊥,
(b) when codimV h = 1, α(u ∧ v) = 0 for all u, v ∈ V h and χh nontrivial implies λ ≡ 0 on (V h)⊥,
(c) when codimV h = 2, α(u ∧ v) = 0 for all u ∈ V h, v ∈ V and λ ≡ 0 on V h, and
(d) when codimV h > 2, γ = 0.

Proof. Fix γ = (λ ⊗ hg) ⊕ (α ⊗ h) in Z2
−1(h). We show γ is in the same coset as a cocycle γ − df

satisfying the given conditions and then show this cocycle is unique. We construct the linear
function f ∶ V → F explicitly and write γ − df = γ′ = λ′ ⊕ α′. Recall that we identify λ with a
function λ ∶ V → F and α with a function α ∶ ⋀2V → V . Set v̂ = v − hv for any v in V .

Existence of representatives. Assume codimV h = 0, i.e., h = 1G. For v ∈ (V G)⊥, define
f(v − gv) = λ(v) and extend to a linear function f ∶ V → F. Note that f is well-defined: If
v − gv = w − gw then v −w ∈ V G, so v = w for v,w in (V G)⊥. Then df ∈ B2

−1(1G) and γ′ = γ − df
satisfies the conditions in the statement by Lemma 5.4 as λ′(v) = λ(v)−f(v− gv) = 0 for v ∈ (V G)⊥.

Now assume codimV h =m ≥ 2 with v1, . . . , vm a basis of (V h)⊥ and observe that v̂1, . . . , v̂m form
a basis of Vh. Define a map f ∶ (V h)⊥ → F by setting f(vi) and f(vj) to be the unique constants
such that

πhα(vi ∧ vj) = f(vj)v̂i − f(vi)v̂j for 1 ≤ i ≠ j ≤m
using Lemma 5.3 and Lemma 6.4(d) when codimV h > 2 and using the fact that Vh = F-span{v̂1, v̂2}
when codimV h = 2. Notice that f is well-defined: If πhα(vi∧vj) = av̂i+bv̂j and πhα(vi∧vk) = cv̂i+dv̂k
for a, b, c, d in F and i, j, k distinct, then (a−c)v̂i+bv̂j−dv̂k = πhα(vi∧(vj−vk)) is a linear combination
of v̂i and v̂j − v̂k by Lemma 6.4(d) so b = d. By Lemma 6.4, we may extend f to a map f ∶ V → F

satisfying

α(v ∧ u) = f(u)v̂ for u ∈ V h, v ∈ V .

Again, this is well-defined as α((v −w) ∧ u) lies in the span of v̂ − ŵ for all u ∈ V h, v,w in V .
We claim that γ − df = γ′ = λ′ ⊕α′ satisfies the conditions in the statement. By Lemma 5.4,

(7.2) α′(v ∧ u) = α(v ∧ u) − f(u)v̂ + f(v)û for u, v ∈ V .

Thus α′(v ∧ u) vanishes for u, v ∈ V h as α(v ∧ u) = 0 by Lemmas 5.3 and 6.4 and also vanishes for
u ∈ V h, v ∈ (V h)⊥ as α(v ∧ u) = f(u)v̂ by construction of f . For u, v ∈ (V h)⊥,

πhα
′(v ∧ u) = πhα(v ∧ u) − f(u)v̂ + f(v)û = πhα(v ∧ u) − πhα(v ∧ u) = 0
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as all functions involved are linear: For v = ∑i aivi and u = ∑j bjvi with ai, bj ∈ F
α(v ∧ u) =∑

i,j

aibj(f(vj)v̂i − f(vi)v̂j) = f(u)v̂ − f(v)û .

Hence πhα
′ ≡ 0. Note in particular that this implies that α′ ≡ 0 when codimV h > 2 by Lemma 6.4(d).

Since γ − df = γ′ is a cocycle, Lemma 5.3(2) implies that

(7.3) (α′ − g−1α′)(u ∧ v) = λ′(v)û − λ′(u)v̂ for u, v ∈ V .

Observe in particular that this implies λ′ ≡ 0 when codimV h > 2: In that case, α′ ≡ 0 so

0 = λ′(v)û − λ′(u)v̂ for all u, v ∈ V ;

to see that λ′(u) = 0, choose v ∉ V h when u ∈ V h and choose v ∉ V h with û and v̂ linearly
independent when u ∉ V h. Thus γ − df = γ′ ≡ 0 when codimV h > 2.

Now we argue that λ′ ≡ 0 on V h when codimV h = 2. Fix u ∈ V h. We saw above that Eq. (7.2)
implies that α′(u∧ v) = 0 for all v ∈ V and so α′( gu∧ gv) = 0 for all v as well since G preserves V h

set-wise. Thus by Eq. (7.3) above, λ′(u)v̂ = 0 for all v and λ′(u) = 0. Thus λ′ ≡ 0 on V h.
Lastly, suppose codimV h = 1. Fix nonzero x ∈ (V h)⊥ so x̂ spans Vh ⊃ Imπhα and set w = x− gx.

Let f ∶ V → F be the linear function with

f(u) x̂ = πhα(x ∧ u) for u ∈ V h,

f(x) x̂ = (1 − χh(g))−1(λ(x) x̂ − πhα(x ∧w)) for χh /≡ 1,
f(x) = 0 for χh ≡ 1 .

We verify that γ − df = γ′ = λ′ ⊕α′ satisfies the conditions in the statement. By Lemma 5.4,

α′(u ∧ v) = α(u ∧ v) − f(v)û + f(u)v̂ for u, v ∈ V .

Thus α′(u ∧ v) is zero for u, v ∈ V h as α(u ∧ v) = 0 by Lemmas 5.3 and 6.4. It also vanishes for
u, v ∈ (V h)⊥ as it defines an alternating function in u and v and ⋀2(V h)⊥ = {0} as codimV h = 1.
And for u ∈ V h,

α′(x ∧ u) = α(x ∧ u) − f(u)x̂ = α(x ∧ u) − πhα(x ∧ u) .
Hence πhα

′ ≡ 0.
Now assume χh is nontrivial so χh(g) ≠ 1. We argue that λ′ ≡ 0 on (V h)⊥. First note that

gx = u+χh(g)x for some u ∈ V h so that w = x− gx = u+ (1−χh(g))x. Then as α(x∧u) = α(x∧w),
f(w) x̂ = f(u) x̂ + (1 − χh(g)) f(x) x̂ = πhα(x ∧ u) + λ(x) x̂ − πhα(x ∧w) = λ(x) x̂

and Lemma 5.4 implies that

λ′(x) x̂ = (λ(x) − f(x − gx)) x̂ = λ(x) x̂ − f(w) x̂ = 0 .
Uniqueness of representatives. We argue these coset representatives are unique. Suppose
γ = (λ⊗hg)⊕(α⊗h) and γ′ = (λ′⊗hg)⊕(α′⊗h) lie in the same coset of HH2

−1(h) and both satisfy
the conditions in the statement. Then γ − γ′ = df for some f ∶ V → F and Lemma 5.4 implies that

(α − α′)(u ∧ v) = f(v)û − f(u)v̂ and (λ − λ′)(u) = f(u − gu) for all u, v ∈ V .

Then Im(α −α′) ⊂ Vh but πh(α − α′) ≡ 0 by assumption, so α ≡ α′ and

(7.4) 0 = f(v)û − f(u)v̂ for all u, v ∈ V .

To show that λ ≡ λ′, we argue that f(u − gu) = 0 for all u by considering the codimension of V h.
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Assume codimV h ≥ 2 and consider some nonzero w = u − gu in V . By Eq. (7.4),

0 = f(v)ŵ − f(w)v̂ for all v ∈ V .

To see that f(w) = 0, choose any v ∉ V h when w ∈ V h and choose v with v̂ and ŵ independent in
Vh when w ∉ V h. Thus (λ − λ′)(u) = f(w) = 0 and λ ≡ λ′.

Now assume that codimV h = 1 and let x span (V h)⊥. First notice that f is zero on V h since
Eq. (7.4) implies that 0 = f(u)x̂ for all u ∈ V h. Then f(u − gu) = 0 for all u in V h as G fixes V h

set-wise. We show f(x − gx) = 0 as well. As above, x − gx = (1 − χh(g))x modulo V h and thus
f(x− gx) = (1−χh(g))f(x). This is zero when χh is the trivial character of course, and when χh is
nontrivial, then λ and λ′ both vanish on (V h)⊥ by condition (b) so already 0 = (λ−λ′)(x) = f(x− gx).
Hence λ ≡ λ′.

Finally, assume h = 1G. By assumption, λ and λ′ are zero on (V G)⊥ and λ ≡ λ′ on V G since
(λ − λ′)(v) = f(v − gv) for all v. Hence λ ≡ λ′. �

8. The main result: Graded deformation cohomology

We are now ready to describe the space of infinitesimal graded deformations for a finite cyclic
group G ⊂ GL(V ) with V ≅ Fn acting on a polynomial ring S(V ) over an arbitrary field F with
charF ≠ 2. We describe the Hochschild cohomology HH2

−1(A) for A = S(V ) ⋊ G in terms of the
subspaces V h and Vh = Im(1−h) of V for h in G which are stabilized set-wise by G (see Eq. (2.2))
and the linear character χh ∶ G→ F

× defined by χh(g) ∶= det [g]V /V h
, for each h in G. In addition,

we take the trivial action of G on F so F
χh = {0} unless χh ≡ 1, the trivial character. We describe

the cohomology giving all graded deformations of first order in terms of these linear characters,
compare with Proposition 3.1, and establish the theorem in the introduction. Again we use the
transfer map on V given by T ∶ V → V , v ↦ ∑h∈G

hv, which is zero when G contains a diagonalizable
reflection by Lemma 6.2.

Theorem 8.1. Let G ⊂ GL(V ) be a finite cyclic group acting on V ≅ Fn. The space of infinitesimal
graded deformations of A = S(V ) ⋊G is isomorphic as an F-vector space to

HH2
−1(A) ≅ (V G/ ImT )∗ ⊕ (V ⊗ ⋀2V ∗)G ⊕ ⊕

h∈G
codimV h=1

(F⊕ (V /Vh ⊗ (V h)∗))χh ⊕ ⊕
h∈G

codimV h=2

(V /Vh)χh .

Proof. We choose a generator g of G and construct the periodic-twisted-Koszul resolution X r (see
Section 4) of A = S(V )⋊G to express HH

r(A). We then use Proposition 5.5 to decompose HH2
−1(A)

according to the contribution of each group element:

HH2
−1(A) ≅ ⊕

h∈G

HH2
−1(h) .

By Proposition 7.1, HH2
−1(h) = 0 when codimV h > 2 and we analyze the remaining cases to show

HH2
−1(h) ≅ (V G/ ImT )∗ ⊕ (V ⊗ ⋀2V ∗)G when codimV h = 0,

HH2
−1(h) ≅ (F⊕ (V /Vh ⊗ (V h)∗))χh

when codimV h = 1, and
HH2

−1(h) ≅ (V /Vh)χh when codimV h = 2 .
In each case, we establish the isomorphism by defining a map Φ from a set of distinguished (cocycle)
coset representatives

γ = (λ⊗ hg)⊕ (α⊗ h) in Z2
−1(h) for λ ∈ V ∗ and α ∈ Hom F(⋀2V,V )
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of HH2
−1(h) given in Proposition 7.1 to the indicated vector space and then construct a map Φ′ the

opposite direction with ΦΦ′ = 1. Note that this choice of representatives depends on a choice of
vector space complement (V h)⊥ to V h and complement (Vh)⊥ to Vh for each h in G, see Eq. (6.1).

Contribution of the identity: For h = 1G, define
Φ ∶ HH2

−1(1G)Ð→ (V G/ ImT )∗ ⊕ (V ⊗⋀2V ∗)G by (λ⊗ g)⊕ (α⊗ 1G) +B2
−1(1G)↦ λ′ ⊕ α

for λ′ ∶ V G/ ImT → F the extension of λ∣V G to V G/ ImT where (λ⊗ g)⊕ (α⊗1G) is a distinguished
coset representative of HH2

−1(1G) as in Proposition 7.1. Note here that λ∣Im(T ) ≡ 0 by Lemma 5.3(1)

so λ′ is well-defined. Also observe that Φ has the indicated codomain because α lies in (V ⊗⋀2V ∗)G
by Lemma 5.3(2):

0 = g (α(u ∧ v)) −α( gu ∧ gv) for all u, v ∈ V .

Now we construct an inverse map. Define

Φ′ ∶ HH2
−1(1G) ←Ð (V G/ ImT )∗ ⊕ (V ⊗⋀2V ∗)G by ((λ⊗ g)⊕ (α⊗ 1G)) +B2

−1(1G) ↤ λ′ ⊕α ,

where λ ∶ V → F is defined by λ(u) = λ′(u + ImT ) for u in V G and λ ≡ 0 on (V G)⊥. We verify
that (λ ⊗ g) ⊕ (α ⊗ 1G) lies in Z2

−1(1G) and thus Φ′ is well-defined by checking the three cocycle
conditions in Lemma 5.3: Condition (1) holds by construction of λ and Conditions (2) and (3)
hold since h = 1G and α is invariant. In fact, we observe that Φ′(λ′ ⊕ α) is a distinguished coset
representative as in Proposition 7.1 and ΦΦ′ = 1.
Codimension one contributions: Fix h in G with codimV h = 1 and consider V = V h ⊕ (V h)⊥
with fixed element x spanning (V h)⊥. Define

Φ ∶ HH2
−1(h)Ð→ (F⊕ (V /Vh ⊗ (V h)∗))χh

by (λ⊗ hg) ⊕ (α⊗ h) +B2
−1(h)↦ λ(x)⊕ α′ ,

for α′ in V /Vh ⊗ (V h)∗ the map V h → V /Vh defined by

α′(u) = α(x ∧ u) + Vh for u ∈ V h

where (λ⊗ hg)⊕ (α⊗ h) is a distinguished coset representative of HH2
−1(h) as in Proposition 7.1.

We verify that each λ(x) ⊕ α′ is χh-invariant and hence Φ has the indicated codomain. First
notice that λ(x) ∈ F is χh-invariant since G acts trivially on F and λ(x) = 0 when χh is not the
trivial character. Now we argue α′ is χh-invariant. Since α ≡ 0 on ⋀2V h and gx = χh(g)x modulo
V h (as dimF(V /V h) = 1),
(8.2) χh(g)α(x ∧ u) = α(χh(g)x ∧ u) = α( gx ∧ u) for all u ∈ V h ,

and, as G preserves Vh and V h set-wise,
(8.3)

(α′ − χh(g) g−1α′)(u) = α′(u) − χh(g) g−1(α′( gu)) = (α(x ∧ u) + Vh) − χh(g) g−1(α(x ∧ gu) + Vh)
= (α(x ∧ u) − g−1(α( gx ∧ gu))) + Vh = (α − g−1α)(x ∧ u) + Vh for u ∈ V h .

But Lemma 5.3(2) implies that (α − g−1α)(u ∧ v) lies in Vh for all u, v in V so this last expression
is zero and thus α′ is also χh-invariant.

Now we construct an inverse map to Φ,

Φ′ ∶ HH2
−1(h) ←Ð (F⊕ (V /Vh ⊗ (V h)∗))χh

, ((λ⊗ hg)⊕ (α⊗ h)) +B2
−1(h) ↤ λ′ ⊕ α′ .
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For a pair λ′ in F and α′ ∶ V h → V /Vh, define α ∶ ⋀V 2 → V and λ ∶ V → F as follows. Let α(x ∧ u)
be the unique coset representative in (Vh)⊥ of α′(u) for u ∈ V h and extend to a linear function on

⋀2V by setting α ≡ 0 on ⋀2V h. Then for u ∈ V h, πhα(x ∧ u) = 0 (for projection map πh ∶ V ↦ Vh)
and α′(u) = α(x∧u)+Vh, and as α vanishes on ⋀2V h, Eq. (8.2) and Eq. (8.3) hold and imply that

(8.4) (α − g−1α)(x ∧ u) + Vh = (α′ − χh(g) g−1α′)(u) = 0 ,
i.e., (α − g−1α)(x ∧ u) lies in Vh = F-span{x − hx}. Thus we can define λ ∶ V → F as the linear
function satisfying

λ(u)(x − hx) = (α − g−1α)(x ∧ u) for u in V h and λ(x) = λ′ .
We argue that (λ ⊗ hg) ⊕ (α ⊗ h) is a cocycle by checking the conditions in Lemma 5.3. For

Lemma 5.3(1), we verify that λ(ImT ) = 0. Since codimV h = 1, h is a reflection and either ∣h∣ = p
or ∣h∣ and p are coprime for p = charF (see Section 6). If ∣h∣ = p, then h is nondiagonalizable and
λ(ImT ) = 0 by Lemma 6.2. Assume now that p and ∣h∣ are coprime. Then h is diagonalizable
with V h ∩ Vh = {0}, and we may assume (Vh)⊥ is chosen as V h in the construction of coset

representatives from Proposition 7.1. We argue that (α − g−1α)(x ∧ u) = 0 for all u in V h. On one

hand, (α− g−1α)(x∧u) lies in Vh by Eq. (8.4). On the other hand, we claim that (α− g−1α)(x∧u)
lies in V h. By construction, πhα ≡ 0 and so V h = (Vh)⊥ contains both α(x ∧ u) and α( gx ∧ gu)
and also ( g−1α)(x∧u) = g−1(α( gx∧ gu)) as G preserves V h; hence the difference (α− g−1α)(x∧u)
lies in V h. Then, as V h ∩ Vh = {0}, we must have (α − g−1α)(x ∧ u) = 0. Hence λ(ImT ) = 0 as
ImT ⊂ V G ⊂ V h and Lemma 5.3(1) holds.

We now verify Lemma 5.3(2), i.e.,

(α − g−1α)(u ∧ v) = λ(v)(u − hu) − λ(u)(v − hv) for all u, v ∈ V .

The equality holds for u = x and v ∈ V h by definition of λ. For u, v ∈ V h, the right-hand-side is zero
and the left side is zero as well since α vanishes on ⋀2V h by construction and G fixes V h set-wise,
so α( gu∧ gv) = 0. For u, v ∈ (V h)⊥, both sides vanish as they are alternating in u and v and (V h)⊥
has dimension 1. Lastly, Lemma 6.6 implies Lemma 5.3(3) is satisfied. Therefore, (λ⊗hg)⊕(α⊗h)
is a cocycle by Lemma 5.3.

In fact, we observe that (λ⊗hg)⊕(α⊗h) is a distinguished coset representative as in Proposition 7.1:
πhα ≡ 0, α ≡ 0 on ⋀2V h, and, whenever χh is nontrivial, Fχh = {0} so λ(x) = λ′ = 0. It is straight-
forward to check that ΦΦ′ = 1.
Codimension two contributions: Fix h in G with codimV h = 2 and write V = V h⊕ (V h)⊥ with
fixed basis elements v1 and v2 of (V h)⊥. Then v̂1 and v̂2 form a basis for Vh. Define

Φ ∶ HH2
−1(h)Ð→ (V /Vh)χh by (λ⊗ hg)⊕ (α⊗ h) ↦ α(v1 ∧ v2) + Vh ,

where (λ⊗ hg)⊕ (α⊗h) is a distinguished coset representative for HH2
−1(h) as in Proposition 7.1.

We show that α(v1∧v2)+Vh is χh-invariant and hence Φ has the indicated codomain. First observe
that g acts on the 1-dimensional space ⋀2(V /V h) by the scalar χh(g) = det[g]V /V h and α(u∧v) = 0
for any u ∈ V h and v ∈ V , so

(8.5) α( gv1 ∧ gv2) = χh(g) ⋅ α(v1 ∧ v2)
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and

(8.6)
α(v1 ∧ v2) − χh(g) ⋅ g−1(α(v1 ∧ v2)) + Vh = α(v1 ∧ v2) − g−1(χh(g) ⋅ α(v1 ∧ v2)) + Vh

= α(v1 ∧ v2) − g−1(α( gv1 ∧ gv2)) + Vh = (α − g−1α)(v1 ∧ v2) + Vh .

Then by Lemma 5.3(2), (α − g−1α)(v1 ∧ v2) + Vh = 0, and the image of Φ is χh-invariant.
Now we construct an inverse to Φ,

Φ′ ∶ HH2
−1(h) ←Ð (V /Vh)χh , ((λ⊗ hg)⊕ (α⊗ h)) +B2

−1(h) ↤ v + Vh ,

as follows using the projection map π⊥h ∶ V → (Vh)⊥. For any coset v + Vh in (V /Vh)χh , define the

map α ∶ ⋀2V → V by setting

(8.7) α(u ∧w) = 0 for all u ∈ V h, w ∈ V and α(v1 ∧ v2) = π⊥h(v) ∈ (Vh)⊥ .
Note that this is independent of choice of coset representative v. Before defining λ, we observe that

(α − g−1α)(v1 ∧ v2) lies in Vh: Eq. (8.7) implies that Eqs. (8.5) and (8.6) hold and thus

(α − g−1α)(v1 ∧ v2) + Vh = α(v1 ∧ v2) − χh(g) g−1(α(v1 ∧ v2)) + Vh

= π⊥h(v) − χh(g) g−1(π⊥h(v)) + Vh = 0

as v + Vh = π⊥h(v) + Vh is χh-invariant and G preserves Vh set-wise. Thus we may write

(α − g−1α)(v1 ∧ v2) = a (v1 − hv1) − b (v2 − hv2) for some a, b ∈ F .

Define a linear function λ ∶ V → F by setting λ ≡ 0 on V h, λ(v2) = a, and λ(v1) = b. We argue that
(λ ⊗ hg) ⊕ (α ⊗ h) is a cocycle in Z2

−1(h) by checking the three conditions of Lemma 5.3. Since
λ ≡ 0 on V h and ImT ⊂ V G ⊂ V h, Lemma 5.3(1) holds. We next verify Lemma 5.3(2), i.e.,

(α − g−1α)(u ∧w) = λ(w)(u − hu) − λ(u)(w − hw) for all u,w ∈ V .

This holds for u = v1 and w = v2 by construction of λ. It also holds when u ∈ V h and w ∈ V : The
right-hand side vanishes since u− hu = 0 and λ(u) = 0 and the left-hand side vanishes as well since
α(u∧w) = 0 = α( gu∧ gw) by the construction of α as both u and gu lie in V h. Thus Lemma 5.3(2)
is satisfied. Lemma 5.3(3) is satisfied by Lemma 6.6. So (λ⊗ hg)⊕ (α⊗ h) is a cocycle.

Notice that this cocycle is a distinguished coset representative as in Proposition 7.1. It is then
straightforward to check that ΦΦ′ = 1. �

Remark 8.8. We recover from the last theorem the description of the graded deformation co-
homology HH2

−1(A) for A = S(V ) ⋊ G in the nonmodular setting. Indeed, for G cyclic with ∣G∣
and charF coprime and F algebraically closed, Theorem 8.1 gives Proposition 3.2. In this setting,
ImT = V G and V /Vh ≅ V h as an FG-module. In addition, if h is a reflection, then h is diagonal-
izable with χh(h) ≠ 1 (see Eq. (2.2)) so F

χh = 0. Finally, as h acts on V /Vh and on (V h)∗ as the
identity and χh(h) ≠ 1, no element of V /Vh ⊗ (V h)∗ can be χh-invariant so the middle summand
of Theorem 8.1 vanishes. We give a generalization of this phenomenon in the next result.
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Corollary 8.9. Suppose G ⊂ GL(V ) is a cyclic group acting on V = Fn. Let ∣G∣ = pkr for some k

with r and charF coprime and suppose F contains a primitive r-th root of unity. Then the space
of infinitesimal graded deformations of A = S(V ) ⋊G is isomorphic as an F-vector space to

HH2
−1(A) ≅ (V G)∗ ⊕ (V ⊗ ⋀2V ∗)G ⊕ ⊕

h∈G
codimV h=1
det(h)=1

(F⊕ (V /Vh ⊗ (V h)∗))χh ⊕ ⊕
h∈G

codimV h=2
det(h)=1

(V /Vh)χh .

Proof. As F has a primitive r-th root-of-unity, we may choose a Jordan canonical form for the
generator g of G. Say codimV h = 1 for some h = gi in G with deth ≠ 1. Then h is diagonalizable
with a single non-1 eigenvalue. Since a single Jordan block B of g has only one eigenvalue ξ with
multiplicity the size of the block and Bi has only one eigenvalue ξi with the same multiplicity, there
must be a 1 × 1 Jordan block of G corresponding to an eigenvector g and h share not in V h. Thus
G preserves set-wise both V h and the choice of vector space complement (V h)⊥ = Vh = Im(1 − h).
We identify V /Vh with V h as an FG-module and observe as in Remark 8.8 that χh(h) ≠ 1 yet h

fixes F⊕ (V /Vh ⊗ (V h)∗) point-wise, so 0 is the only χh-invariant element of this space. We use a

similar argument when codimV h = 2 with deth ≠ 1: h must have two non-1 eigenvalues and thus
there must be one or two Jordan blocks of g corresponding to Vh, a vector space complement to
V h; we again identify V /Vh with V h as an FG-module and note that χh(h) = deth to conclude
that the space of χh-invariants is the zero space. �

9. Applications to deformation theory

Here we demonstrate how to use the description of infinitesimal graded deformations in Theorem 8.1
to obtain explicit graded deformations in a particular setting. We use three resolutions of A =
S(V ) ⋊G for a cyclic group G acting on V ≅ Fn using the twisted product resolutions of [30]:

● Resolution X r is a twisting of a periodic resolution for FG with the Koszul resolution for
S(V ) (see Section 4),
● Resolution Y r is a twisting of the bar resolution for FG and the Koszul resolution for S(V )
(see [28, 30] for the differentials),
● Resolution Z r is the bar resolution of A.

Each is an Ae-free resolution of A, and we make a choice of chain maps between the three resolutions:

X r ∶ ⋯→ X3 X2 → ⋯ (for finding cohomology representatives)

Y r ∶ ⋯→ Y3 Y2 → ⋯ (for computing Gerstenhaber brackets)

Z r ∶ ⋯→ Z3 Z2 → ⋯ (for describing deformations)

Resolutions Y r and Z r here may be used for any finite group G. Resolution X r is reserved for a
finite cyclic group G.

Cyclic transvection groups. We now turn to the unipotent cyclic groups acting on V = F
2,

i.e., the cyclic transvection groups. Consider G = ⟨g⟩ ⊂ GL(V ) with charF = p > 0 and g a
nondiagonalizable reflection. Then ∣G∣ = p and there is a basis v1, v2 of V so that

g(v1) = v1 and g(v2) = v1 + v2, i.e., g = ( 1 1
0 1 ) and G = {( 1 ∗0 1 ) } ⊂ GLn(F) .
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Here S(V ) = F[v1, v2] and ImT = {0} by Lemma 6.2 as g itself is a nondiagonalizable reflection.
For each h in G, codimV h ≤ 1 and V h = Vh = V G = Fv1 whereas V /Vh ≅ Fv2. Note that χh ∶ G→ F

×

is the trivial character in this setting as each h′ in G acts trivially on each V /Vh. For A = S(V )⋊G,
Theorem 8.1 thus implies that

(9.1)

HH2
−1(A) ≅ (V G)∗ ⊕ (V ⊗⋀2V ∗)G´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

contribution of 1G

⊕ ⊕
h∈G
h≠1G

(F⊕ (V /V G ⊗ (V G)∗))G
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

contribution of reflections

= (Fv1)∗ ⊕ (Fv1 ⊗ Fv1 ∧ v2) ⊕ ⊕
h∈G
h≠1G

(F⊕ (V /Fv1 ⊗ (Fv1)∗)) ≅ F
2p .

Lifting a Hochschild cocycle to a deformation. Consider 1+ (v2 +Fv1)⊗ v∗1 in the summand
F⊕ (V /Fv1 ⊗ (Fv1)∗) of HH2

−1(A) in Eq. (9.1) corresponding to h = g where v∗1 is the map v1 ↦ 1.
Using the isomorphism in the proof of Theorem 8.1, we identify this element with the cocycle γX
on X r in C2

−1(A) = (V ∗ ⊗ FG)⊕ (V ⊗⋀2V ∗ ⊗ FG) given by

γX(v1) = g2, γX(v2) = g2, and γX(v2 ∧ v1) = v2 ⊗ g .

We lift γX to a specific 2-cocycle γ = γY on the bar-twisted-Koszul resolution,

γ ∶ Y2 = (FG⊗ FG)⊕ (FG⊗ V )⊕ (⋀2V )→ S(V )⊗ FG,

by applying a choice of chain map X r→ Y r: For 0 ≤ i, j < ∣G∣, calculations give

(9.2) γ(gi ⊗ gj) = 0 , γ(gi ⊗ v1) = i gi+1 , γ(gi ⊗ v2) = (i+12 ) gi+1 , and γ(v2 ∧ v1) = v2 ⊗ g .

We argue that γ lifts to a graded deformation of F[v1, v2]⋊G. We consider the lifting conditions
for γ on Y r ([29, Theorem 5.3]): As dimV = 2, γ lifts to a deformation if and only if

[γ, γ] = 0 as a cochain on Y3.

Here, [ , ] is the Gerstenhaber bracket on Hochschild cohomology lifted to the resolution Y r. Since
γ has degree −1, the square bracket [γ, γ] is a 3-cochain of degree −2. Then as dimV = 2, we need
only check the value of the square bracket on h ⊗ v1 ∧ v2 in FG ⊗ ⋀2V for h in G. We use the
formula on the right-hand side of [29, Theorem 6.1(2)]:

[γ, γ](gi ⊗ v1 ∧ v2) = γ(γ(gi ⊗ v2)⊗ v1) − γ(γ(gi ⊗ v1)⊗ v2) + γ(gi ⊗ v2)g
= (i+1

2
)γ(gi+1 ⊗ v1) − i γ(gi+1 ⊗ v2) + (i+12 ) gi+2

= (i+1
2
)(i + 1)gi+2 − i(i+2

2
)gi+2 + (i+1

2
)gi+2 .

A computation shows that the right-hand side is zero and thus [γ, γ] = 0 as a cochain. Hence γ in
HH2(A) is not just an infinitesimal graded deformation, but the infinitesimal (first multiplication
map) of a (formal) graded deformation of A = S(V ) ⋊G.

Graded deformation as an explicit Drinfeld orbifold algebra. We now give that graded
deformation explicitly. For a pair of linear parameter functions

λ ∶ FG⊗ V → FG and κ ∶ ⋀2V → V ⊗ FG,

let Hλ,κ be the F-algebra (see [29], for example) generated by FG and V with defining relations

hu − huh = λ(h⊗ u) and uv − vu = κ(u ∧ v) for all h ∈ G and u, v ∈ V .
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For γ defined in Eq. (9.2), now consider the algebra Hλ,α defined with specific parameters

λ = γ∣
FG⊗V

and α = γ∣⋀2
V
, so γ = λ⊕ α .

We identify α with κL and set κC to zero in [29, Theorem 6.1] and check the six conditions of that
theorem to conclude that Hλ,α satisfies the PBW property and is isomorphic to F[v1, v2] ⋊G as a
vector space. Thus the F-algebra Hλ,α generated by FG and V with relations

gv1 − v1g = g2, gv2 − v1g − v2g = 0, and v2v1 − v1v2 = v2g
is a PBW deformation of F[v1, v2] ⋊G. This analog of a universal enveloping algebra is called a
Drinfeld orbifold algebra.
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