
GENERALIZED EXPONENTS AND FORMS

ANNE V. SHEPLER

Abstract. We consider generalized exponents of a finite reflection group act-
ing on a real or complex vector space V . These integers are the degrees in which
an irreducible representation of the group occurs in the coinvariant algebra.
A basis for each isotypic component arises in a natural way from a basis of
invariant generalized forms. We investigate twisted reflection representations
(V tensor a linear character) using the theory of semi-invariant differential
forms. Springer’s theory of regular numbers gives a formula when the group is
generated by dim V reflections. Although our arguments are case-free, we also
include explicit data and give a method (using differential operators) for com-
puting semi-invariants and basic derivations. The data give bases for certain
isotypic components of the coinvariant algebra.

1. Introduction

Real and complex finite reflection groups exhibit fascinating numerology. The
exponents and coexponents of the group arise in numerous ways, for example, as
the degrees of the reflection representation and its dual in the coinvariant algebra
and also as the degrees of generating invariant differential forms and derivations.
We investigate the numerology of twisted reflection representations here.

Let V := C� and recall that a reflection is an element of GL(V ) whose fixed point
set is a hyperplane in V . Let G be a reflection group, i.e., a finite subgroup of GL(V )
generated by reflections. Such groups are often called pseudo-reflection groups and
include the Weyl and Coxeter groups. (See Orlik and Terao [12], Kane [5], or
Smith [15] for basic notions.) We assume all G-modules are CG-modules. For any
G-module U and irreducible G-module M , let UM be the isotypic component of
U of type M , i.e., the direct sum of those G-submodules of U isomorphic to M .
Let UG := {u ∈ U : gu = u for all g ∈ G} denote the set of G-invariants. For
any linear character χ : G → C∗, let Cχ be a one-dimensional G-module affording
χ and let Uχ := UCχ = {u ∈ U : gu = χ(g)u for all g ∈ G} be the set of χ-
invariants in U . The reflection group G acts contragradiently on V ∗ and thus on
the symmetric algebra S := S(V ∗), which we identify with the algebra of polynomial
functions on V . The algebra S is naturally graded by polynomial degree. Let I ⊂ S
be the Hilbert ideal generated by the invariant polynomials of positive degree.
Chevalley [4] and Shephard and Todd [13] show that SG = C[f1, . . . , f�] for some
homogeneous polynomials f1, . . . , f� called basic invariants. The algebra S/I is
called the coinvariant algebra. Chevalley also proved that S/I is isomorphic to
the regular representation and that S � SG ⊗ S/I as G-modules.

The coinvariant algebra S/I inherits the grading on S. For any irreducible
G-module M , the isotypic component (S/I)M decomposes as M1 ⊕ M2 ⊕ · · · ⊕
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MdimM for some homogeneous subspaces Mi � M of degree ei(M). We call
e1(M), e2(M), . . . , edim M (M) the M-exponents. For any linear character χ of
G, the χ-exponent is the Cχ-exponent, denoted e(χ). Let m1, . . . , m� be the V -
exponents, called the exponents of the group, and assume that m1 ≤ . . . ≤ m�.
Similarly, let m∗

1, . . . , m
∗
� be the V ∗-exponents, called the coexponents of the

group, and assume that m∗
1 ≥ . . . ≥ m∗

� . The exponents and coexponents of the
group indicate the invariant theory of differential forms and derivations (see Sec-
tion 3). The coexponents also express the cohomology of the complement of the
hyperplane arrangement (see Orlik and Solomon [11, Cor. 6.62]).

Springer [18] studies generalized exponents, and Stembridge [22] gives a combi-
natorial interpretation for the infinite family G(r, p, �) and other wreath products.
The associated generating function is called the “fake degree” (see Broué, Malle,
Michel [3], for example). Ariki, Terasoma, and Yamada [1] give a basis for the
coinvariant algebra for the monomial groups G(r, 1, �) consisting of higher Specht
polynomials associated to Young diagrams. Morita and Yamada [9] develop a theory
of higher Specht polynomials for the groups G(r, p, �). The exceptional reflection
groups do not lend themselves to the same kind of combinatorial analysis.

We relate the isotypic component (S/I)M with the space S⊗M∗. The reflection
group G acts naturally on S ⊗M∗ and the rank of (S ⊗M∗)G as an SG-module is
dimC M (see [17, Lemma 2]). The module S ⊗ M∗ also inherits a grading from S:
let q1, . . . , qr be a fixed basis of M∗ and suppose ω =

∑
i wi ⊗ qi ∈ S ⊗ M∗; if the

polynomial coefficients wi are all homogeneous of degree p in S, then we say that
ω is homogeneous of polynomial degree p.

In Section 2, we remark that the polynomial coefficients of any SG-basis of
(S ⊗ M∗)G form a linear basis of the isotypic component (S/I)M . Thus, the M -
exponents are just the degrees of a homogeneous basis of (S ⊗ M∗)G over SG.
We begin our investigation of twisted reflection representations in Section 3 with
some background and results on semi-invariant differential forms. In Section 4,
we use information about semi-invariant polynomials, forms, and derivations to
describe generalized exponents for χV := V ⊗ Cχ, where χ is a linear character
of G. The main result of this section is Corollary 13 relating χ, χ , χV , and
χV ∗-exponents. We apply Springer’s Theory of regular numbers in Section 4 to
reflection groups generated by dimV reflections. In Section 5, we discuss a method
for computing derivations and semi-invariants. Computational results are given in
tables at the end, although previous results are obtained case-free. We include the
explicit χV -exponents for all of the linear characters χ and exceptional irreducible
reflection groups. Previous research has centered on Coxeter groups and the infinite
family G(r, p, �). We hope the approach here will be helpful in understanding the
coinvariant algebra of exceptional reflection groups.

2. Bases for Isotypic Components of the Coinvariant Algebra

Suppose M is an irreducible representation of the reflection group G. Solomon [17,
Lemma 2] shows that the M -exponents are the degrees of a homogeneous basis of
(S ⊗ M∗)G over SG. We point out a slightly stronger result:

Proposition 1. Let M be an irreducible G-module. Then a natural G-isomorphism

M ⊗ (S ⊗ M∗)G � SG ⊗ (S/I)M
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provides an injective map

SG-bases of (S ⊗ M∗)G −→ C-bases of (S/I)M :

The polynomial coefficients of an SG-basis of (S⊗M∗)G form a C-basis of (S/I)M

modulo I. Hence, the M -exponents are the degrees of a homogeneous basis of (S ⊗
M∗)G over SG.

Proof: Note that (S ⊗ M∗)G � (SG ⊗ S/I ⊗ M∗)G � SG ⊗ (S/I ⊗ M∗)G by
Chevalley’s Theorem and (S/I ⊗ M∗)G � HomG(M, S/I) � HomG(M, (S/I)M ).
But M ⊗ HomG(M, (S/I)M ) � (S/I)M as M is irreducible. Suppose ω1, . . . , ωr

form an SG-basis for (S ⊗ M∗)G and write each ωk as ωk =
∑

j=1,...r sjk ⊗ mj for
some fixed basis m1, . . . , mr of M∗. Then under a composition

M ⊗ (S ⊗ M∗)G � SG ⊗ (S/I)M → (S/I)M

(where a ⊗ (b + I) 
→ ab + I),

{mj ⊗ ωk : 1 ≤ k, j ≤ r} 
→ {sjk + I : 1 ≤ k, j ≤ r}.
One may verify that this last set spans (S/I)M over C and thus forms a basis. �

3. Twisted Reflection Representations and Differential Forms

We consider twisted reflection representations of the group G and relate compo-
nents of the coinvariant algebra to differential forms. Identify Ωp := S⊗∧p

V ∗ with
the space of differential p-forms on V and set Ω :=

⊕�
p=0 Ωp. Let d : Ωp → Ωp+1

be the usual exterior derivative and let vol be the volume form on V (defined up
to a nonzero scalar). Note that dx = 1⊗ x under the identification Ω0 = S for any
x in V ∗.

Semi-invariant differential forms are related to certain isotypic components of
the coinvariant algebra. Consider a linear character of the reflection group, χ :
G → C∗. We call χV := V ⊗ Cχ (or χV ∗ := V ∗ ⊗ Cχ) a twisted reflection
representation. If G is irreducible, the last proposition implies that an SG-basis
of (Ω1)χ � (S ⊗ V ∗ ⊗ Cχ )G yields a linear basis for the isotypic component of
the coinvariant algebra whose type is χV .

We recall some facts about invariant differential forms and derivations. Let
f1, . . . , f� be a set of basic invariants. The exterior derivative d commutes with
the group action on Ω and df1, . . . , df� are invariant 1-forms. These forms generate
(S ⊗ V ∗)G as a free SG-module. The exponents of the group are thus the integers
m1 = deg f1−1, . . . , m� = deg f�−1. Similarly, we regard S⊗V as the S-module of
derivations (or vector fields) on V . Generators of (S⊗V )G over SG are called basic
derivations (see [12, Def. 6.50]). The (polynomial) degrees of a set of homogeneous
basic derivations are the coexponents of the group.

Solomon [16] shows that df1, . . . , df� generate the SG-module of invariant differ-
ent forms as an exterior algebra: for each p,

(Ωp)G =
⊕

i1≤···≤ip

SG dfi1 ∧ · · · ∧ dfip

and thus ΩG =
∧

SG (Ω1)G. We recall a related result for Ωχ, the SG-module of
χ-invariant forms. The space of χ-invariant polynomials, Sχ, has rank 1 as an
SG-module. Let Qχ ∈ S be a (homogeneous) generator:

Sχ = Qχ SG.
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(Note that Qχ is only defined up to a nonzero scalar.) The degree of Qχ is the
χ-exponent, eχ (see Lemma 5). The polynomial Qχ divides the exterior product of
any two χ-invariant forms (see Shepler [14]) and we define a multiplication on Ωχ

called χ-wedging:

(1) ω � η :=
ω ∧ η

Qχ
.

Define �p
SG M := Q1−p

χ

∧p
SG M for any SG-module M of χ-invariant forms; then

χ-wedging endows �SG M :=
⊕�

p=0 �p
SG M with the structure of an exterior

algebra. Let det : G → C
∗ be the determinant character of G on V . We recall a

criterion from Shepler [14] for a set of forms to generate Ωχ as an algebra:

Theorem 2. Let χ be a linear character of G and let ω1, . . . , ω� be homogeneous
χ-invariant 1-forms. Then the following are equivalent:

(1) Up to a nonzero scalar, ω1 � · · · � ω� = Qχ det vol.
(2) The forms ωi generate Ωχ:

(Ωp)χ =
⊕

i1<...<ip

SG ωi1 � · · · � ωip for p = 1, . . . , �.

Furthermore, there exist forms satisfying (1) and (2), and Ωχ is an exterior algebra:

Ωχ = �SG (Ω1)χ.

We say that ω1, . . . , ω� generate Ωχ if they generate Ωχ as an SG-module via
χ-wedging in the sense of Theorem 2. We assume such generators are homogeneous.
Although the ωi are not unique, their degrees are unique. Proposition 1 then implies

Corollary 3. Suppose that G is irreducible and χ is a linear character of G. Let
ω1, . . . , ω� generate Ωχ and write each ωk as

∑�
i=1 wik dxi, where the xi form a

basis of V ∗. Then
{wik + I : i, k = 1, . . . , �}

is a C-basis for the isotypic component (S/I)χV . The degrees of a generating set of
Ωχ are the χV -exponents.

Corollary 4. Let χ be a linear character of G. Suppose generators of Ωχ have
degrees e1, . . . , e�. Then a (homogeneous) basis of the SG-module (S ⊗ V )χ det has
degrees deg Qχ det + deg Qχ − ei for i = 1, . . . , �.

Proof: Let Υp := S ⊗ ∧p
V . The G-equivariant perfect pairing

∧p
V ⊗ ∧�−p

V →
Cdet gives a degree-preserving duality between semi-invariant differential forms
and vector field forms:

(Υp)χ·det � (Ω�−p)χ

as SG-modules. Hence, by Theorem 2, (S ⊗ V )χ det = (Υ1)χ det � (Ω�−1)χ =
��−1(Ω1)χ. Theorem 2 also implies that e1 + . . .+ e� = (�− 1) degQχ +deg Qχ det.
Hence, generators of (S ⊗ V )χ det have degrees

(2 − �) deg Qχ + (e1 + . . . + êi + . . . + e�) = deg Qχ + deg Qχ det − ei

for i = 1, . . . , �. �
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4. Exponents of twisted reflection representations

We collect some observations about χ-invariant forms, where χ is any linear
character of the reflection group G. These observations in turn provide various
combinatorial relations among χ-exponents and χV -exponents. The main result of
this section is Corollary 13.

Let A denote the collection of reflecting hyperplanes in V for the group G. For
each hyperplane H in A, let sH be a reflection of maximal order fixing H pointwise.
Let lH in V ∗ be a linear form with H = ker lH . Stanley [19] gives a formula for Qχ:

(2) Qχ =
∏

H∈A
l
aH(χ)
H ,

where aH(χ) is the unique integer satisfying 0 ≤ aH(χ) < order(sH) and χ(sH) =
det(g)−aH(χ). Define

Q := Qdet =
∏

H∈A
lH ,

the polynomial which defines the hyperplane arrangement A. Steinberg [20] gave a
proof that the determinant of the Jacobian derivative of a set of basic invariants is
Qdet up to a nonzero scalar. The image of this Jacobian determinant is nonzero in
the coinvariant algebra (for example, see [10, Lemma 6] or [15, Cor. 6.5.2]). Hence
e(det) = deg Q, the number of reflecting hyperplanes. Similarly, e(det) = deg Qdet,
the number of reflections in G. In fact, since each Qχ divides Qdet, we have the
following well-known generalization:

Lemma 5. For any linear character χ of G, the image of the polynomial Qχ is
nonzero in the coinvariant algebra and the χ-exponent is e(χ) = deg Qχ.

The next lemma follows directly from Stanley’s formula. The lemma after gives
generators of Ωχ in terms of generators of Ωχ. Corollary 8 is a result of Terao [23]
(see [12, 6.61]). Proposition 9 relates the χV -exponents to the exponents mi and
the coexponents m∗

i of the reflection group G.

Lemma 6. Let χ be a linear character of G. Up to a complex scalar,

Qχ Qχ ·det = Qdet.

Lemma 7. Let χ be a linear character of G. Suppose ω1, . . . , ω� generate Ωχ and
let ηi := (Qχ /Qχ) ωi. Then η1, . . . , η� generate Ωχ .

Proof: We first observe that Qχ divides each Qχ ωk. Choose H in A with a :=
aH(χ) �= 0. Fix a basis x1, . . . , x� of V ∗ so that lH = x1 and the matrix of the
reflection sH is diagonal. Let ω be some generator ωk =

∑
i widxi. Since ω is

invariant, xa
1 divides wi whenever i �= 1 and xa−1

1 divides w1. Stanley’s formula
for Qχ (Equation 2) implies that x1 divides Qχ , and hence laH divides Qχ ω. As
H was arbitrary, Qχ divides Qχ ω, and each ηi is χ -invariant. By Lemma 6 and
Theorem 2,

η1 ∧ · · · ∧ η� = Q�
χ Q−�

χ ω1 ∧ · · · ∧ ω� = Q�
χ Q−�

χ Q�−1
χ Qχ·det vol

= Q�−1
χ Q−1

χ Qdet vol = Q�−1
χ Qχ ·det vol

up to a nonzero scalar. Hence, by Theorem 2, η1, . . . , η� generate Ωχ . �
Corollary 8. Generators of Ωdet have degrees deg Qdet − m∗

i for 1 ≤ i ≤ �. Gen-
erators of Ωdet have degrees deg Qdet − m∗

i for 1 ≤ i ≤ �.
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Proof: Apply Corollary 4 to the case χ = det−1 = det and recall that invariant
derivations have degrees m∗

1, . . . , m
∗
� . Lemma 7 then implies the first claim. �

Proposition 9. Let χ be a linear character of G and let ω1, . . . , ω� generate Ωχ

with deg ωi ≤ deg ωi+1. Then for each i,

deg Qχ − m∗
i ≤ deg ωi ≤ deg Qχ + mi.

Proof: If f1, . . . , f� are basic invariants, then the forms Qχdf1, . . . , Qχdf� are inde-
pendent over SG, and hence deg ωi ≤ deg Qχ + mi for each i. Let μ1, . . . , μ� be
generators of Ωdet with deg μk = deg Qdet − m∗

k (using Corollary 8). Note that
Qχ ·det ω1, . . . , Qχ ·det ω� are det-invariant forms independent over SG, and hence
(by Lemma 6)

deg Qdet − m∗
i = deg μi ≤ deg Qχ ·det ωi = deg Qdet − deg Qχ + deg ωi.

�

Proposition 10. Let χ �= 1 be a linear character of G. Suppose ω1, . . . , ω� generate
Ωχ. Then deg ωi = deg Qχ − 1 for some i.

Proof: Since the 1-form dQχ is χ-invariant, dQχ =
∑

i hiωi for some homogeneous
polynomials hi in SG. Suppose none of the hi lie in C∗. Fix a basis x1, . . . , x�

of V ∗. Then each ∂/∂xj(Qχ) lies in I. By Euler’s formula, (deg Qχ) Qχ =
(deg Qχ)

∑
i xi

∂
∂xi

(Qχ) also lies in I, contradicting Lemma 5. Hence, some hi is
a nonzero scalar, and thus {ω1, . . . , ωi−1, dQχ, ωi+1, . . . , ω�} also generates Ωχ. �

We say that the character χ is wholly non-trivial (borrowing terminology
from Victor Reiner) when χ(sH) �= 1 for each H in A. Thus χ is wholly non-trivial
exactly when Q divides Qχ. Stanley’s formula (Equation 2) for Qχ directly implies

Lemma 11. Let χ be a linear character of G. Then χ is wholly nontrivial if and
only if (up to a nonzero scalar)

Qχ det Qχ det = Qdet2 .

Proposition 12. Let χ be a linear character of G. Then χ is wholly nontrivial if
and only if generators of Ωχ have degrees deg Qχ−m∗

i for i = 1, . . . , �. Furthermore,
χ is trivial if and only if generators of Ωχ have degrees deg Qχ +mi for i = 1, . . . , �.

Proof: Recall that generators of Ωdet have degrees deg Qdet − m∗
i for i = 1, . . . , �

(Corollary 8). Let ω1, . . . , ω� generate Ωχ with deg ωi ≤ deg ωi+1. Then

ω1 ∧ · · · ∧ ω� = Q�−1
χ Qχ det vol

by Theorem 2, and hence

Qχ det ω1 ∧ · · · ∧ Qχ det ω� = Qχ det Q�−1
det Qχ det vol

by Lemma 6. On the other hand, the SG-module of det-invariant �-forms is gener-
ated by Qdet2 vol, and thus

Qχ det ω1 ∧ · · · ∧ Qχ det ω� = f Q�−1
det Qdet2 vol

for some f in SG (see Equation 1). Hence, Qχ det Qχ det = f Qdet2 . But χ is wholly
nontrivial exactly when f is a nonzero constant (by Lemma 11), exactly when the
Qχ det ωi generate Ωdet (by Theorem 2), exactly when the degree of each Qχ det ωi
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is deg Qdet − m∗
i , and thus exactly when the degree of each ωi is deg Qχ − m∗

i (by
Lemma 6). Also note that if each deg ωi = deg Qχ + mi, then

deg Q�−1
χ + deg Qχ det = deg ω1 ∧ · · · ∧ ω�

= deg Q�
χ + m1 + . . . + m� = deg Q�

χ + deg Qdet,

and deg Qχ det = deg Qχ + deg Qdet. But Stanley’s formula for Qχ (Equation 2)
implies that deg Qχ det < deg Qχ + deg Qdet unless χ is trivial. Conversely, if χ is
trivial, then Qχ = 1 and we may take ωi := dfi. �

We obtain some combinatorial identities by applying Lemmas 5 and 6 and Corol-
lary 3 to Theorem 2, Propositions 9, 10, and 12, Lemma 7, and Corollary 4. Note
that the coexponents are m∗

i = e�−i(V ∗) in the corollary below, and recall that
e(det) is the number of reflections in G.

Corollary 13. Assume G is irreducible. For any irreducible G-module M , label
the M -exponents in increasing order: e1(M) ≤ . . . ≤ edim M (M). Let χ be any
linear character of G. Then:
(a) e(χ det) = e(det) − e(χ ).
(b) e1(χV ) + . . . + e�(χV ) = (� − 1)e(χ) + e(χ det).
(c) e(χ) − e�−i(V ∗) ≤ ei(χV ) ≤ e(χ) + ei(V ) for i = 1, . . . , �.
(d) if χ �= 1, then some ei(χV ) = e(χ) − 1.
(e) χ is wholly nontrivial if and only if ei(χV ) = e(χ)− e�−i(V ∗) for i = 1, . . . , �.
(f) χ is trivial if and only if ei(χV ) = e(χ) + ei(V ) for i = 1, . . . , �.
(g) ei(χ V ) = e(χ ) − e(χ) + ei(χV ) for i = 1, . . . , �.
(h) ei(χV ∗) = e(det) − ei(χ detV ) for i = 1, . . . , �.

5. Springer’s Theory of Regular Elements

The invariant theory of reflection groups generated by � = dimV reflections is
particularly appealing. We recall Springer’s theory of regular elements. A vector
v in V is regular if its isotropy group in G is trivial. Steinberg [21, Theorem
1.5] shows that v is regular if and only if v does not lie on any of the reflecting
hyperplanes for G. When g in G has a regular eigenvector, then g is a regular
element and the order of g is a regular number for G. Springer [18, Prop. 4.5]
shows

Theorem 14. Let g be a regular element of G with order d. Let ξ = e
2πi

d . Let M
be any irreducible representation of G. Then the eigenvalues of the action of g on
M are ξ−e1 , . . . , ξ−edeg M where e1, . . . , edeg M are the M -exponents.

Corollary 15. Let G be an irreducible reflection group and let χ be a linear char-
acter of G. Let d be a regular number for G. The exponents of the twisted reflection
representation χV are deg Qχ + m1, deg Qχ + m2, . . . , deg Qχ + m� modulo d.

Proof: Suppose ξ = e
2πi

d where d is the order of a regular element g. By Lemma 5,
e(χ) = deg Qχ. Apply Theorem 14 to M = Cχ, M = V , and M = χV : χ(g) =
ξ− deg Qχ and the eigenvalues of g on V are ξmi ; hence the eigenvalues of g on χV
are χ(g)ξmi = ξ−mi−deg Qχ for i = 1, . . . , �. �

If if d is regular, then by Corollary 15, there is a permutation π of 1, . . . , � such
that the exponents and coexponents of G satisfy mi +m∗

π(i) ≡ 0 modulo d (also see
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[8, Cor. 4.6]). Set d� := m� + 1. The group G is a duality group if d� = mi + m∗
i

for each i. Examples include Coxeter groups and Shephard groups. Theorem 16
below implies that if G is a duality group, then d� is a regular number. The converse
is false, e.g., d� is regular for the group G31, but G31 is not a duality group.

Orlik and Solomon [11, Theorem 5.5] observe (among other equivalences) that G
is a duality group if and only if G can be generated by � = dimV reflections. They
examine the irreducible groups case-by-case. Bessis [2] gives a proof of this result
which avoids case-by-case analysis using an observation by Lehrer and Springer [8].
Lehrer and Michel [7] give a case-free proof of this observation, which is the next
theorem. The degrees of G are the degrees of the basic invariants mi + 1 for
i = 1, . . . �. The codegrees of G are the integers m∗

i − 1 for i = 1, . . . �.

Theorem 16. An integer d is a regular number for G if and only if d divides as
many degrees as codegrees.

The following result is false for many non-duality groups.

Corollary 17. Let G be a duality group and let χ be a linear character of G. Let
e1(χV ) ≤ . . . ≤ e�(χV ) be the χV -exponents. Then each ei(χV ) is e(χ) + mi or
e(χ) − m∗

i for i = 1, . . . , �.

Proof: Since G is a duality group, d� is a regular number by Theorem 16 and
ei(χV ) ≡ deg Qχ + mi ≡ deg Qχ −m∗

i modulo d� by Corollary 15. The result then
follows from Proposition 9 (see Corollary 13c). �

6. Constructing semi-invariant forms

We show how to construct generators for semi-invariant forms using differential
operators. (This method produces an explicit C-basis for the isotypic component
of the coinvariant algebra whose type is any twisted reflection representation.) We
list the explicit χV -exponents and χ-invariant forms for the irreducible reflection
groups (except the infinite family) in tables at the end.

We may assume that the reflection group G preserves a Hermitian inner product,
V × V → C. The inner product induces a natural map from S(V ) to S = S(V ∗),
say p 
→ ∂p. Identify S(V ) with the algebra of differential operators to obtain a
map

S × S −→ S

(p, f) 
→ (∂p)f
(where (∂p)f is the result of applying the differential operator ∂p to f). This map
preserves the group action: (g∂p)(gf) = g(∂p(f)) for every g in G and polynomials
p, f in S. This implies that the induced “star and bar” map from the product
space of derivations and polynomials to the space of differential forms preserves
semi-invariance:

Proposition 18. Let χ and τ be linear characters of G. The natural map
(S ⊗ V ) × S −→ (S ⊗ V ∗)

given by (p ⊗ v, f) 
→ (∂p)f ⊗ ∂v

induces a map (S ⊗ V )τ × Sχ −→ (S ⊗ V ∗)χ τ .

Denote the image of a derivation θ and a polynomial f ∈ S under this map by θ̃f (a
differential form). Let ω̃f (a derivation) denote the image of a differential form ω
and a polynomial f ∈ S under the analogous map (S ⊗V ∗)τ ×Sχ −→ (S ⊗V )χ τ .
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Corollary 19. If fi and fj are basic invariants, then d̃fifj is an invariant deriva-
tion. If θ is a basic derivation, then θ̃Qχ is a χ-invariant 1-form.

We use the above corollary to construct basic derivations and generators for
Ωχ. These techniques are suggested by the numerology of Corollaries 13 and
17. Shephard and Todd [13] classify the irreducible reflection groups into an
infinite family G(r, p, �) and thirty-three exceptional groups labeled G4 through
G37. Let θ1, . . . , θ� be a set of basic derivations with deg θi ≥ deg θi+1. Let
f1, . . . , f� be a set of basic invariants with deg fi ≤ deg fi+1. When G is a du-
ality group, deg(d̃fif�) = deg f� − deg dfi = deg θi. Hence, d̃f1f�, . . . , d̃f�f� form a
set of invariant derivations with the same (polynomial) degrees as θ1, . . . , θ�. Do
they form a set of basic derivations? Similarly, does the set of χ-invariant forms
{θ̃1Qχ, . . . , θ̃�Qχ, Qχdf1, . . . , Qχdf�} include generators of Ωχ? Corollary 17 sug-
gests that a generating set of Ωχ may be chosen from this set when G is a duality
group. We verify this suggestion in the observation below using basic invariants
from Shephard and Todd [13]. The observation after suggests a pattern for nondu-
ality groups as well. Both observations seem likely for the family G(r, p, �) although
we have not checked details.

Observation 20. Let G be an irreducible duality group, G �= G(r, p, �). The basic
invariants, f1, . . . , f�, may be chosen so that {d̃f1f�, . . . , d̃f�f�} is a set of basic
derivations. Let θi := d̃fif� and let χ be a linear character of G. A generating set
of Ωχ may be chosen from {θ̃1Qχ, . . . , θ̃�Qχ, Qχdf1, . . . , Qχdf�}.
Observation 21. Let G be an irreducible reflection group, G �= G(r, p, �), and let χ
be a linear character of G. There are basic invariants fi and invariant polynomials
Fi so that {d̃f1F1, . . . , d̃f�F�} is a set of basic derivations.

We give the explicit χ and χV -exponents and some illustrative examples in tables
below. Klein’s invariants [6] appear in Table 1. Table 2 gives basic derivations in
terms of differential operators for the exceptional groups. (The Coxeter groups are
omitted since the coefficients of each θi are just the coefficients of df�−i.) Tables
3 and 4 list the exceptional groups and give the polynomial Qχ, its degree (the
χ-exponent e(χ)), and generators of Ωχ and their degrees (the χV -exponents) for
each linear character χ of G. We omit those duality groups whose only linear char-
acters are det and the trivial character, since these two cases are well understood.
The symbol � indicates a nonduality group throughout. The χV -exponents were
first computed from character tables using a version of Molien’s theorem and the
software GAP and Mathematica. It may be interesting to note that for a fixed
two-dimensional exceptional group, one may compute all the semi-invariant forms
and derivations from just one polynomial.

Acknowledgments. The author thanks Gus Lehrer for pointing out a shorter
version of the proof of Proposition 1 and Hiroaki Terao for helpful discussions.
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Table 1. Klein’s Invariants for 2-dim. Groups

Φ = x4
1 + 2i

√
3 x2

1x2
2 + x4

2

Ψ = x4
1 − 2i

√
3 x2

1x2
2 + x4

2

t = x1x2(x4
1 − x4

2)

W = x8
1 + 14x4

1x4
2 + x8

2

X = x12
1 − 33x8

1x4
2 − 33x4

1x8
2 + x12

2

f = x1x2(x10
1 + 11x5

1x5
2 − x10

2 )

H = x20
1 − 228x15

1 x5
2 + 494x10

2 x10
2 + 228x5

1x15
2 + x20

2

T = x30
1 + 522x25

1 x5
2 − 10005x20

1 x10
2 − 10005x10

1 x20
2 − 522x5

1x25
2 + x30

2

Table 2. Basic Invariants and Basic Derivations

Group Basic Inv. Basic Der.
f1 f2 θ1 θ2

4 Φ t ˜df1f2 ˜df2f2

5 t Φ3
˜df1f2 ˜df2f2

6 t2 Φ ˜df1f2 ˜df2f2

��� 7 Φ3 t2 ˜df1f2
2

˜df2f2

8 W X ˜df1f2 ˜df2f2

9 W X2
˜df1f2 ˜df2f2

10 X W3
˜df1f2 ˜df2f2

��� 11 W3 X2
˜df1f2

2
˜df2f2

��� 12 t W ˜df1f2
2

˜df2f2

��� 13 W t2 ˜df1f2
2

˜df2f2

14 t X2
˜df1f2 ˜df2f2

��� 15 t2 X2
˜df1(f1f2) ˜df2f2

Group Basic Inv. Basic Der.
f1 f2 θ1 θ2

16 H T ˜df1f2 ˜df2f2

17 H T2
˜df1f2 ˜df2f2

18 T H3
˜df1f2 ˜df2f2

��� 19 H3 T2
˜df1f2

2
˜df2f2

20 f T ˜df1f2 ˜df2f2

21 f T2
˜df1f2 ˜df2f2

��� 22 f H ˜df1f2
2
˜df2f2

Group Basic Der. θi

24–27, 29, 32–24 ˜df1f�
˜df2f� . . . ˜df�f�

���31 ˜df3f2
4
˜df1f4 ˜df2f4 ˜df4f4



GENERALIZED EXPONENTS AND FORMS 11

Table 3. Semi-invariants and χV -Exponents.
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Table 4. More Semi-invariants and χV -Exponents
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