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Abstract. Lewis, Reiner, and Stanton conjectured a Hilbert series for a space of
invariants under an action of finite general linear groups using (q, t)-binomial coeffi-
cients. This work gives an analog in positive characteristic of theorems relating various
Catalan numbers to the representation theory of rational Cherednik algebras. They
consider a finite general linear group as a reflection group acting on the quotient of a
polynomial ring by iterated powers of the irrelevant ideal under the Frobenius map.
We prove a variant of their conjecture in the local case, when the group acting fixes a
reflecting hyperplane.

1. Introduction

In 2017, Lewis, Reiner and Stanton [9] conjectured a combinatorial formula for the
Hilbert series of a space of invariants under the action of the general linear group GLn(Fq)
over a finite field Fq in terms of (q, t)-binomial coefficients. This formula provides an
analogue for the q-Catalan and q-Fuss Catalan numbers which connect Hilbert series for
certain invariant spaces with the representation theory of rational Cherednik algebras
for Coxeter and complex reflection groups. Results in the theory of reflection groups
often follow from a local argument after considering the subgroup fixing one reflecting
hyperplane. We prove here a version of the conjecture in the local case. We expect this
local theory will extend to one for any modular reflection group, including GLn(Fq).

Lewis, Reiner, and Stanton consider GLn(Fq) acting on V = (Fq)n and the polynomial
ring S = S(V ∗) = Fq[x1, . . . , xn] by transformation of variables x1, . . . , xn in V ∗. They
consider the quotient of S by the m-th iterated Frobenius power of the irrelevant ideal,

m[qm] := (xq
m

1 , . . . , xq
m

n ) ,

which we call the Frobenius irrelevant ideal. Their conjecture gives the Hilbert series for

the GLn(Fq)-invariants in Fq[x1, . . . , xn]/(xq
m

1 , . . . , xq
m

n ) using (q, t)-binomial coefficients.
We consider subgroups of reflections about a single hyperplane H in V . These groups

are not cyclic in general, in contrast to groups over fields of characteristic zero. We first
take the case when q is a prime p and then generalize some of our ideas to arbitrary
q. We explicitly describe the space of G-invariants in S/m[pm] for any subgroup G ⊂
GLn(Fp) fixing a hyperplane H in V pointwise. We give the Hilbert series in terms of
the dimension of the transvection root space. We then describe the invariants under the
full pointwise stabilizer GLn(Fq)H in GLn(Fq) of any hyperplane H for q a prime power:
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Theorem 1.1. For any hyperplane H in V = Fnq ,

Hilb
((S�m[qm]

)GLn(Fq)H , t
)

= ([qm−1]tq)n−1
[
m

1

]
q,t

+ tq
m−1([qm]t)

n−1
[
m

0

]
q,t

.

Recall the q-integer [m]q = 1+q+q2+ . . .+qm−1 and (q, t)-binomial coefficient (see [11])[
m

k

]
q,t

:=
k−1∏
i=0

1− tqm−qi

1− tqk−qi
.

We compare with the Lewis, Reiner, Stanton conjecture in Section 2 and give this Hilbert
series in terms of q-Fuss Catalan numbers. The conjecture implies that the dimension
over Fq of the GLn(Fq)-invariants in S/m[qm] counts the number of orbits in (Fqm)n under

the action of GLn(Fq) and that this dimension is
∑min(n,m)

k=0

[
m
k

]
q

(see [9, Section 7.1 and

Theorem 6.16]). We prove an analogous statement in Section 9:

Corollary 1.2. For any hyperplane H in V = (Fq)n, the number of orbits in (Fqm)n

under the action of GLn(Fq)H is

dimFq
(S�m[qm]

)GLn(Fq)H = q(m−1)(n−1)
[
m

1

]
q

+ qm(n−1)
[
m

0

]
q

.

Example 1.3. Consider G acting on V = (F5)3 with dimF5(RootSpace(G) ∩ H) = 2.
Then G is generated by two transvections and possibly a diagonalizable reflection. We
may assume (after a change-of-basis) that

G =
〈(

1 0 0
0 1 0
0 0 ω

)
,
(

1 0 1
0 1 0
0 0 1

)
,
(

1 0 0
0 1 1
0 0 1

)〉
for some primitive e-th root-of-unity ω in F5. The m-th iterated irrelevant ideal in
F5[x1, x2, x3] is (x5

m

1 , x5
m

2 , x5
m

3 ) for m ≥ 1. We will see in Section 7 that

Hilb
((S�m[5m]

)G
, t
)

=
(1− t5m)2

(1− t5)2(1− te)

(
1− t5m−1 + t5

m−1(1− te)
(1− t5

1− t
)2)

.

Outline. In Section 2, we give motivation from the theory of rational Catalan combina-
torics, which relates rational Cherednik algebras with various kinds of Catalan numbers.
We recall some facts on modular reflection groups in Section 3. In Sections 4 to 7, we
mainly consider a subgroup G of GLn(Fp) fixing a hyperplane H with maximal transvec-
tion root space; more general results in Sections 6 and 8 will follow from this special
case. We give a Groebner basis for SG ∩ m[pm] in Section 4 and compute the Hilbert
series for SG/(SG ∩m[pm]) in Section 5. In Section 6, we decompose (S/m[pm])G as the

direct sum of SG/(SG ∩ m[pm]) and a complement. We give the Hilbert series for the

G-invariants in S/m[pm] when G has maximal root space in Section 7 and for general
groups fixing a hyperplane over Fp in Section 8. We consider the full pointwise stabi-
lizer of a hyperplane in GLn(Fq) in Section 9: We establish Theorem 1.1 and show the
Hilbert series counts orbits. We give a bound on the Hilbert series for GLn(Fq) in the
conjecture of Lewis, Reiner, and Stanton in Section 10. Lastly, in Section 11, we give a
resolution directly for SG ∩m[pm] in the 2-dimensional case.
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2. Motivation

We recall some motivation for studying the invariants of S/m[qm] from the theory
of Catalan combinatorics for Coxeter and complex reflection groups; see Armstrong,
Reiner, and Rhoades [1]; Berest, Etingof and Ginzburg [2]; Bessis and Reiner [3]; Gor-
don [5]; Gordon and Griffeth [6]; Krattenthaler and Müller [8]; and Stump [13].

Graded Parking Spaces and Rational Cherednik Algebras. The parking space
of an irreducible Weyl group gives an irreducible representation of the associated rational
Cherednik algebra. The q-Catalan number for the group records the Hilbert series for
the invariants in this space in terms of the degrees d1, . . . , dn and Coxeter number h
(see [6]) of the reflection group. More generally, for an irreducible Coxeter group W
acting on V = Cn, the graded parking space representation (see [1]) is isomorphic to
S/(θ1, . . . , θn) for some homogeneous polynomials θ1, . . . , θn in S of degree h + 1 with
C-span{θ1, . . . , θn} isomorphic to the reflection representation V ∗. The W -invariants in
the parking space has Hilbert series given by the q-Catalan number for W :

Hilb
((S�(θ1, . . . , θn)

)W
, q
)

= Cat(W, q) =
n∏
i=1

1− qh+di
1− qdi

.

For a complex reflection group W , Gordon and Griffeth [6] connect the representation
theory of the associated rational Cherednik algebra to the m-th q-Fuss Catalan numbers,

Cat(m)(W, q) =
n∏
i=1

[di +mh]q
[di]q

=
n∏
i=1

1− qdi+mh

1− qdi
,

giving the Hilbert series of W -invariants in a space S/(θ̃1, . . . , θ̃n) with deg(θ̃i) = mh+1.

Lewis, Reiner, and Stanton Conjecture. The ideal (θ1, . . . , θn) takes a particularly

nice form for some Coxeter groups with θi = xh+1
i ; the graded parking space in this

case is just C[x1, ..., xn]/(xh+1
1 , . . . , xh+1

n ). Lewis, Reiner, and Stanton [9] ask what
ideal can play the role of (θ1, . . . , θn) for the modular reflection group GLn(Fq). They

consider the ideal (θ1, . . . , θn) = (xq
m

1 , . . . , xq
m

n ) = m[qm] for m ≥ 0 since θ1, . . . , θn span a

GLn(Fq)-stable subspace over Fq with the map xi 7→ xq
m

i defining a GLn(Fq)-equivariant

isomorphism (see [9]). The quotient S/m[qm] is (qm)n-dimensional, and Lewis, Reiner,
and Stanton give a conjecture for the Hilbert series of its GLn(Fq)-fixed subspace:

Conjecture 2.1 ([9]). The space of GLn(Fq)-invariants in S�m[qm] has Hilbert series

Hilb
((S�m[qm]

)GLn(Fq), t
)

=

min(n,m)∑
k=0

t(n−k)(q
m−qk)

[
m

k

]
q,t

=

min(n,m)∑
k=0

t(n−k)(q
m−qk) Hilb(SPk , t)

Hilb(SGLm(Fq), t)

for Pk the maximal parabolic subgroup of GLm(Fq) stabilizing any Fq-subspace of (Fq)m
isomorphic to (Fq)k.
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Compare with our Theorem 1.1, which is equivalent to the statement that

Hilb
((S�m[qm]

)GLn(Fq)H , t
)

=
Hilb(SGLn(Fq)H , t)

Hilb(SGLn(Fqm )H , t)
+

(tq
m−1 − tqm)

(1− tqm−1)
Hilb(S, t)

Hilb(SGLn(Fqm )H , t)
.

A curious reformulation. We mention a version of Theorem 1.1 in terms of q-Fuss
Catalan numbers that connects with Conjecture 2.1; we wonder if a version of this
reformulation holds for other reflection groups. For modular reflection groups, the above
definition of Coxeter number does not always give an integer, so we use an alternate
definition that agrees with the traditional one over R or C. For any reflection group G
acting on V with a polynomial ring of invariants SG = F[f1, . . . , fn], define the

Coxeter number of G :=
deg J + degQ

n

for J = det{∂fi/∂xj}i,j=1,...,n in S, the determinant of the Jacobian derivative ma-
trix, and Q =

∏
H∈A lH , the polynomial in S defining the arrangement A of reflecting

hyperplanes for G. Note that deg J is not the number of reflections in G in general.
For any hyperplane H in V = Fnq and G = GLn(Fq)H , Theorem 1.1 implies that

(2.2) Hilb
((S�m[qm]

)G
, t
)

=
∑
k=0,1

t(n−dimGk)(q
m−qk) Cat(ck)(Gk, t)

where ck = (qm − qk)/hk and Gk =
(
StabG(Vk)

)
|Vk (setwise stabilizer) with Coxeter

number hk for V0 = H and V1 = V . Here, G0 is the identity subgroup of GLn−1(Fq)
regarded as the direct sum of trivial reflection groups with degrees 1, . . . , 1 and Coxeter
number 1 while G1 = G has Coxeter number q − 1. Each Fuss parameter ck lies in N
although Gk is reducible.

Although reformulation Eq. (2.2) is somewhat artificial, it agrees with a version of
the Lewis, Reiner, and Stanton conjecture if we allow for non-integer Fuss parameters.
For G = GLn(Fq), Conjecture 2.1 implies that

Hilb
((S�m[qm]

)G
, t
)

=

min{n,m}∑
k=0

t(n−dimGk)(q
m−qk) Catck(Gk, t)

where again ck = (qm − qk)/hk and Gk =
(
StabG(Vk)

)
|Vk = GLk(Fq) with Coxeter

number hk = qk−1 for Vk = (Fq)k ⊂ (Fq)n. Here, at least the groups Gk are irreducible.

3. Reflection groups and transvections

Recall that a reflection on V = Fn for any field F is a transformation s in GL(V )
whose fixed point space is a hyperplane H in V . A reflection group is a subgroup of
GL(V ) generated by reflections; we assume all reflection groups are finite. Suppose G
is a reflection group fixing a hyperplane H in V and choose some linear form l in V ∗

defining H, i.e., with Ker l = H. Every g in G defines a root vector αg in V satisfying

g(v) = v + l(v)αg for all v in V .

We denote the collection of all root vectors by RootSpace(G). In the nonmodular setting,
when the characteristic p is relatively prime to |G|, the group G is cyclic. In this case,
every group element is semisimple, and one can choose a G-invariant inner product
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so that any root vector for H is perpendicular to H. In the modular setting, when
p = char(F) divides |G|, the root vector of a reflection g may lie in H itself; this occurs
exactly when g is not semisimple. Such reflections are called transvections and they have
order p = char(F).

The transvections in G form a normal subgroup K, the kernel of the determinant
character det : G→ F×. The group G is generated by K and some semisimple element
gn of maximal order e = |G/K|, and G is isomorphic to the semi-direct product of K
and the cyclic subgroup 〈gn〉 of semisimple reflections:

G ∼= K o Z/eZ .

Now assume F = Fp for a prime p. The corresponding transvection root space
RootSpace(G) ∩H is an Fp-vector space (see [7]), and its dimension,

` = dimFp
(
RootSpace(G) ∩H

)
,

is the minimal number of transvections needed to generate G: there are transvections
g1, . . . , g` with G = 〈g1, . . . , g`, gn〉 and |G| = e · p`.

After conjugation. We may choose a basis v1, . . . , vn of V with dual basis x1, . . . , xn
of V ∗ so that v1, . . . , vn−1 span the hyperplane H = Ker (xn), gn fixes x1, . . . , xn−1, and
gn(xn) = ω−1xn for ω a primitive e-th root-of-unity in Fp. We furthermore refine the
basis so that each transvection gk fixes x1, . . . , xk−1, xk+1, . . . , xn and gk(xk) = xk − xn:

gn =

( 1 ... 0 0
...

. . .
...

0 ... 1 0
0 ... 0 ω

)
and, for 1 ≤ k ≤ `, gk :=


1 ··· ··· 0
...

. . .
...

0 ··· 1 0 0 ··· 0
0 ··· 0 1 0 ··· 1 ←kth row
0 ··· 0 0 1 ··· 0
...

. . .
...

0 ··· ··· 1

 .

Example 3.1. When n = 3, p = 5, and ` = 1, G acting on V = (F5)3 is generated
by one transvection and possibly an additional semisimple reflection. We may assume
(after a change-of-basis) that for some e-th root-of-unity ω in F5

G =
〈
g3 =

(
1 0 0
0 1 0
0 0 ω

)
, g1 =

(
1 0 1
0 1 0
0 0 1

)〉
.

Basic Invariants. The ring of invariant polynomials SG is itself a polynomial ring,
SG = Fp[f1, . . . , fn] with homogeneous generators

f1 = xp1 − x1x
p−1
n , . . . , f` = xp` − x`x

p−1
n , f`+1 = x`+1, . . . , fn−1 = xn−1, fn = xen

and

Hilb(SG, t) =
1

(1− tp)` (1− t)n−`−1 (1− te)
.

Example 3.2. For G =
〈(

1 0 0
0 1 0
0 0 ω

)
,
(

1 0 1
0 1 0
0 0 1

)
,
(

1 0 0
0 1 1
0 0 1

)〉
⊂ GL3(F5), the ring SG is gener-

ated by f1 = x51 − x1x43, f2 = x52 − x2x43 and f3 = xe3 as an F5-algebra for e = order(ω).
The Hilbert series of SG is

Hilb(F5[x1, x2, x3]G, t) =
1

(1− t5)2 (1− te)
.
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4. Describing the invariants in the Frobenius irrelevant ideal

We begin by finding the invariants in the Frobenius irrelevant ideal itself, describing
SG ∩ m[pm]. Throughout this section, we assume G is a subgroup of GLn(Fp) fixing a
hyperplane H of V = Fp. The general case will follow from the special case when G has
maximal transvection root space, so we assume ` = n − 1. Without loss of generality,
we may take a basis x1, . . . , xn for V ∗ so that H = Kerxn and G acts as in Section 3.

Monomial orderings. We consider S as a graded ring with respect to the usual poly-
nomial degree with deg xi = 1 for all i. The Frobenius irrelevant ideal m[pm] is then
a homogeneous ideal giving a graded quotient S/m[pm]. We use compatible monomial
orderings on the two polynomial rings S and SG. On S = Fp[x1, . . . , xn], we take the
graded lexicographical ordering with x1 > x2 > · · · > xn. On SG = Fp[f1, . . . , fn], we
take the inherited graded lexicographical ordering with deg(fn) = e < p, deg(fi) = p for
i < n, and f1 > f2 > · · · > fn. Then for any polynomials f and f ′ in SG, f < f ′ in the
monomial ordering on SG if and only if f < f ′ in the monomial ordering on S. We use
the notation LMS(f) and LMSG(f) for the leading monomials of a polynomial f with
respect to the ordering on S and SG, respectively. Then

(4.1) LMS

(
LMSG(f)

)
= LMS(f).

We will frequently use the fact that for any nonnegative exponents ai and i < n,

(4.2) fi x
a1
1 . . . x

an−1

n−1 x
pm−1
n ≡ xa11 . . . x

ai−1

i−1 x
p+ai
i x

ai+1

i+1 . . . x
an−1

n−1 x
pm−1
n mod m[pm] .

Generators for invariants in the Frobenius irrelevant ideal. We will show that
the following polynomials give a Groebner basis for SG ∩m[pm].

Definition 4.3. Define polynomials in SG = Fp[f1, . . . , fn] for 1 ≤ a ≤ b < n by

h0 = f1+e
−1(pm−1)

n , h1,a =
m−1∑
k=0

f1+e
−1(pm−pm−k)

n fp
m−k−1

a , and h2,a,b = fp
m−1

a fp
m−1

b .

Example 4.4. For our archetype example G =
〈(

1 0 0
0 1 0
0 0 ω

)
,
(

1 0 1
0 1 0
0 0 1

)
,
(

1 0 0
0 1 1
0 0 1

)〉
⊂ GL3(F5),

h0 = f
1+e−1(5m−1)
3 ,

h1,1 =

m−1∑
k=0

f
1+e−1(5m−5m−k)
3 f5

m−k−1

1 , h1,2 =

m−1∑
k=0

f
1+e−1(5m−5m−k)
3 f5

m−k−1

2 ,

h2,1,1 = f
2(5m−1)
1 , h2,1,2 = f5

m−1

1 f5
m−1

2 , and h2,2,2 = f
2(5m−1)
2 .

The next lemma verifies that these polynomials lie in the Frobenius irrelevant ideal.

Lemma 4.5. For G with maximal transvection root space, the polynomials h0, h1,a, h2,a,b
for 1 ≤ a ≤ b < n lie in SG ∩m[pm].

Proof. Straight-forward computation confirms that

h0 = xp
m+e−1
n , h1,a = xp

m

a xen − xaxp
m+e−1
n , and

h2,a,b = xp
m

a xp
m

b − x
pm−1

a xp
m

b x(p−1)p
m−1

n − xpma xp
m−1

b x(p−1)p
m−1

n + xp
m−1

a xp
m−1

b x2(p−1)p
m−1

n .
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�

The next key lemma describes elements of SG ∩ m[pm]; it relies on an inductive argu-
ment using Lucas’ Theorem on binomial coefficients (see [10] or [12, Exercise 1.6(a)]).

Lemma 4.6. If G has maximal transvection root space and f ∈ SG ∩m[pm] is homoge-
neous in f1, . . . , fn, then LMSG(f) is divisible by fn or some h2,a,b with 1 ≤ a ≤ b < n.

Proof. Suppose no h2,a,b divides LMSG(f) nor fn. Then

LMSG(f) = f c11 f
c2
2 · · · f

cn−1

n−1

for some ci < 2pm−1 (as no h2,a,a divides) with all but possibly one exponent satisfying
ci < pm−1 (as no h2,a,b divides for a 6= b). Observe first that not all ci < pm−1.
Otherwise, by the binomial theorem and Eq. (4.1),

LMS(f) = LMS(LMSG(f)) = xc1p1 xc2p2 · · ·x
cn−1p
n−1

would not lie in the monomial ideal m[pm], contradicting the fact that f does. Hence
there is a unique index j with pm−1 ≤ cj < 2pm−1. Without loss of generality, say j = 1,
so that pm−1 ≤ c1 < 2pm−1 and ci < pm−1 for 1 < i < n. Define h by

h = f · f2p
m−1−c1−1

1 fp
m−1−c2−1

2 fp
m−1−c3−1

3 · · · fp
m−1−cn−1−1
n−1 .

We will produce a monomial

xα = xp
m−p+1

1 xp
m−p

2 xp
m−p

3 · · ·xp
m−p
n−1 xp

m−1
n

of h in the variables x1, . . . , xn which does not lie in m[pm]. This will imply that h itself
does not lie in m[pm], contradicting the fact that h is a multiple of f .

To this end, set L = LMSG(h), so that, by construction,

L = LMSG(h) = f2p
m−1−1

1 fp
m−1−1

2 · · · fp
m−1−1
n−1 .

We write L as a polynomial in the variables x1, . . . , xn using the binomial theorem.
Direct calculation in S/m[pm] confirms that

L+ m[pm] = ± xα + m[pm]

as Lucas’ Theorem implies that(
2pm−1 − 1∑m−1

i=0 pi

)
=

{
1 for m = 1, 2,∏m−2
i=0

(
p−1
1

)
= (−1)m−1 for m > 2 .

Thus, the monomial xα appears with nonzero coefficient in L and does not lie in m[pm].
We now argue that xα appears with nonzero coefficient in h itself (i.e., does not cancel

with other terms). Consider the coefficient cα(M) of xα in some other monomial

M = f
c′1
1 f

c′2
2 · · · f

c′n
n < L

of h after expanding M in the variables x1, . . . , xn and suppose cα(M) 6= 0.
We first establish that M has smaller degree in f1 than L but larger degree in fn.

Indeed, note that pm−1 ≤ c′1, else degx1(M) < degx1(xα) and cα(M) = 0. Now fix

1 < i < n and consider c′i. Note that c′i ≥ pm−1 − 1 else cα(M) = 0 as fk ∈ Fp[xk, xn]

for all k. And c′i ≤ pm−1 − 1 else h2,1,i divides M and cα(M) = 0 as M ∈ m[pm]. Thus
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c′i = pm−1 − 1 and degfi(M) = degfi(L) for 1 < i < n. But degSM = degS L, with
M < L. Thus M has smaller degree in f1 but larger degree in fn than L, i.e.,

• pm−1 ≤ c′1 < 2pm−1 − 1, and
• c′i = pm−1 − 1 for 1 < i < n, and
• c′n > 0.

We assume m ≥ 2 since if m = 1, then c′1 = 0 and degx1(M) = 0, forcing cα(M) = 0.
We examine the contribution to M from f1. Set d = c′1. Then as cα 6= 0 and

fd1 = (xp1 − x1x
p−1
n )d =

d∑
i=0

(
d

i

)
x
dp−(p−1)i
1 x(p−1)in ,

there is some index i with
(
d
i

)
6= 0 and dp− (p− 1)i = pm − p+ 1. Hence i ≡ 1 mod p.

Since d < 2pm−1 − 1 by assumption,

(4.7) d = pm−1 + (p− 1)a and i = 1 + pa for some 0 ≤ a <
m−2∑
k=0

pk .

We show instead that
∑m−2

k=0 p
k ≤ a by considering the base p expansions of a and d:

a =
m−2∑
k=0

ak p
k and d =

m−1∑
k=0

dk p
k for some 0 ≤ ak, dk < p.

We compare the base p coefficients dk and ak using the key point that
(
d
i

)
is nonzero:

Lucas’ Theorem implies that

0 6=
(
d

i

)
=

(
d0
1

)m−1∏
k=1

(
dk
ak−1

)
as i = 1 +

m−1∑
k=1

ak−1 p
k ;

since no factor in the product vanishes, we conclude that d0 ≥ 1 and each ak−1 ≤ dk.
Eq. (4.7) then provides direct comparison of dk and ak,

(4.8)

m−1∑
k=0

dk p
k = d = pm−1 − a0 +

m−2∑
k=1

(ak−1 − ak)pk+1 + am−2p
m−1.

We now regroup base p as needed and show inductively that 0 < a0 ≤ a1 ≤ . . . ≤ am−2.
We first consider a0. Since 1 ≤ d0, Eq. (4.8) implies that d0 = p− a0 and a0 6= 0. For

m > 2, next observe that a0 ≤ a1 since a0 ≤ d1 and Eq. (4.8) implies that

d1 = p+ a0 − a1 − 1 for a0 ≤ a1 whereas d1 = a0 − a1 − 1 for a1 < a0.

Similarly, a1 ≤ a2 since a1 ≤ d2 and Eq. (4.8) implies that

d2 = p+ a1 − a2 − 1 for a1 ≤ a2 whereas d2 = a1 − a2 − 1 for a2 < a1.

We iterate this argument and conclude that 0 < a0 ≤ a1 ≤ . . . ≤ am−2. But this

contradicts Eq. (4.7), so
(
d
i

)
= 0 and thus cα(M) = 0. �

We now show that the collection of h0, h1,a, h2,a,b is a Groebner basis.

Proposition 4.9. If G has maximal transvection root space, then the ideal SG ∩m[pm]

of SG has as a Groebner basis G = {h0, h1,a, h2,a,b : 1 ≤ a ≤ b < n} .
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Proof. Suppose f in SG ∩m[pm] is homogeneous in the variables f1, . . . , fn. Say neither
h0 = LMSG(h0) nor any h2,a,b = LMSG(h2,a,b) for 1 ≤ a ≤ b < n divide LMSG(f). We
show LMSG(h1,j) divides LMSG(f) for some 1 ≤ j < n. We write

LMSG(f) = f c11 f
c2
2 · · · f

cn
n

for some cn < degfn(h0) = 1 + (pm − 1)/e and some c1, . . . , cn−1. But f and hence

LMS(f) lies in m[pm], so pm−1 ≤ cj for some index j < n since

LMS(f) = LMS

(
LMSG(f)

)
= xpc11 xpc22 . . . x

pcn−1

n−1 xecnn .

Then fp
m−1

j divides LMSG(f). Lemma 4.6 implies that LMSG(f) is also divisible by fn,

hence by LMSG(h1,j) = fp
m−1

j fn as well. As G ⊂ SG ∩ m[pm] by Lemma 4.5, G is a

Groebner basis for SG ∩m[pm].
�

Example 4.10. For G =
〈(

1 0 0
0 1 0
0 0 ω

)
,
(

1 0 1
0 1 0
0 0 1

)
,
(

1 0 0
0 1 1
0 0 1

)〉
⊂ GL3(F5), the polynomials

h0 = f
1+e−1(5m−1)
3 , h1,1 =

m−1∑
k=0

f
1+e−1(5m−5m−k)
3 f5

m−k−1

1 , h2,2,2 = f
2(5m−1)
2 ,

h1,2 =

m−1∑
k=0

f
1+e−1(5m−5m−k)
3 f5

m−k−1

2 , h2,1,1 = f
2(5m−1)
1 , and h2,1,2 = f5

m−1

1 f5
m−1

2

form a Groebner basis for SG ∩m[5m] as an ideal of SG.

5. Hilbert Series of invariants in the Frobenius Irrelevant Ideal

Again, we assume G is a subgroup of GLn(Fp) fixing a hyperplane H and set e to
be the maximal order of a semisimple element of G. We consider the case when G has
maximal transvection root space, i.e., the case when G is generated by n−1 transvections
together possibly with a semisimple reflection of order e. For any graded module M , we
write M [i] for the graded module with degrees shifted down by i so that M [i]d = Mi+d.

Proposition 5.1. Suppose G has maximal transvection root space. Then

Hilb
(
SG + m[pm]

�m[pm], t
)

=
(

1− tpm

1− tp
)n−1 (1− tpm+e−1 + (n− 1) tp

m
(1− te)

1− te
)
.

Proof. We replace the ideal SG ∩ m[pm] by its initial ideal with respect to the graded
lexicographical order on Fp[x1, . . . , xn] with x1 > · · · > xn, since (see, for example, [4])

Hilb
(
SG + m[pm]

�m[pm], t
)

= Hilb
(
SG�(SG ∩m[pm]) , t

)
= Hilb

(
SG�in(SG ∩m[pm]) , t

)
.

We compute the Hilbert series recursively using short exact sequences. By Proposi-
tion 4.9, G is a Groebner basis for SG ∩ m[pm], and we enumerate the various elements
h0, h1,a, and h2,a,b in G as h1, h2, h3, . . . , hn−1+(n2)

by setting

hk = h1,k for 1 ≤ k < n and hna+b−(a+1
2 ) = h2,a,b for 1 ≤ a ≤ b < n .
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Set Mn+(n2)
= 1 (for ease with notation), I0 =

(
M0

)
, Mi = LMSG(hi) and

Ji =
(
Mj/ gcd(Mj ,Mi+1) : 0 ≤ j ≤ i

)
for 0 ≤ i ≤ n− 1 +

(
n
2

)
.

Note that In−1+(n2)
= in(SG ∩m[pm]). This gives the short exact sequence (for each i)

(5.2) 0 −→
(SG�Ji)[− deg(Mi+1)

]
−→ SG�Ii −→

SG�Ii+1
−→ 0 .

Each ideal Ii is uniquely determined by some polynomial hi of the form h0, h1,a, or
h2,a,b, and we revert to more suggestive notation for the next computations, defining

I0 = I0, I1,k = Ik, I
2,a,b = Ina+b−(a+1

2 ) for 1 ≤ k < n, 1 ≤ a ≤ b < n ;

J0 = J0, J1,k = Jk, J
2,a,b = Jna+b−(a+1

2 ) for 1 ≤ k < n, 1 ≤ a ≤ b < n ,

so that the ideals I1, I2, . . . , In−1+(n2)
merely enumerate the ideals I0, I1,a, I2,a,b for ease

with induction, with the last ideal in our sequence just

I2,n−1,n−1 = In−1+(n2)
= in(SG ∩m[pm]) .

To find the Hilbert series for SG/Ji, we first give minimal generating sets for each Ji,

J0 =
(
fe
−1(pm−1)
n

)
,

J1,a =
(
fe
−1(pm−1)
n , fp

m−1

j : 1 ≤ j ≤ a
)

for 1 ≤ a ≤ n− 2,

J1,n−1 = (fn),

J2,a,b =
(
fn, f

pm−1

j : 1 ≤ j ≤ b
)

for 1 ≤ a ≤ b ≤ n− 2,

J2,a,n−1 =
(
fn, f

pm−1

j : 1 ≤ j ≤ a
)

for 1 ≤ a ≤ n− 2 ,

and then use the additivity of Hilbert series over short exact sequences of the form

0−→ (fdn)−→ SG−→ SG
�(fdn)−→ 0 and

0−→ SG
�
(fdn, f

pm−1

i : 1 ≤ i < c)
[−pm]−→ SG

�
(fdn, f

pm−1

i : 1 ≤ i < c)
−→ SG

�
(fdn, f

pm−1

i : 1 ≤ i ≤ c)−→ 0

(for d = 1 or d = e−1(pm − 1) and 1 ≤ c ≤ n− 1). We conclude that
(5.3)

Hilb
(
SG�J0, t

)
=

1− tpm−1

(1− te)(1− tp)n−1
,

Hilb
(
SG�J1,a, t

)
=

(1− tpm)a(1− tpm−1)
(1− te)(1− tp)n−1

for 1 ≤ a ≤ n− 2 ,

Hilb
(
SG�J1,n−1, t

)
=

1− te

(1− te)(1− tp)n−1
,

Hilb
(
SG�J2,a,b, t

)
=

(1− tpm)b(1− te)
(1− te)(1− tp)n−1

for 1 ≤ a ≤ b ≤ n− 2 and,

Hilb
(
SG�J2,a,n−1, t

)
=

(1− tpm)a(1− te)
(1− te)(1− tp)n−1

for 1 ≤ a ≤ n− 2 .
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Then as

(5.4) Hilb
(
SG�I0, t

)
=

1− tpm+e−1

(1− te)(1− tp)n−1
,

Equations (5.2) to (5.4) imply that Hilb
(
SG/in(SG ∩m[pm]) , t

)
is

1− tpm+e−1

(1− te)(1− tp)n−1︸ ︷︷ ︸
I0

− tpm+e 1− tpm−1

(1− te)(1− tp)n−1︸ ︷︷ ︸
J0

− tpm+e
n−2∑
a=1

(1− tpm)a(1− tpm−1)
(1− te)(1− tp)n−1︸ ︷︷ ︸
J1,a

− t2pm 1− te

(1− te)(1− tp)n−1︸ ︷︷ ︸
J1,n−1

− t2pm
n−2∑
b=1

b∑
a=1

(1− tpm)b(1− te)
(1− te)(1− tp)n−1︸ ︷︷ ︸
J2,a,b

− t2pm
n−2∑
a=1

(1− tpm)a(1− te)
(1− te)(1− tp)n−1︸ ︷︷ ︸
J2,a,n−1

.

We combine summations to express Hilb
(
SG/in(SG ∩m[pm]) , t

)
as

1− tpm+e−1

(1− te)(1− tp)n−1
− tpm+e

n−2∑
a=0

(1− tpm)a(1− tpm−1)
(1− te)(1− tp)n−1

− t2pm(1− te)
n−2∑
b=1

b∑
a=1

(1− tpm)b

(1− te)(1− tp)n−1
− t2pm

n−2∑
a=0

(1− tpm)a(1− te)
(1− te)(1− tp)n−1

,

which simplifies (using elementary series formulas) to

1− tpm+e−1

(1− te)(1− tp)n−1
− tpm+e

(
1− (1− tpm)n−1

)
(1− tpm−1)

tpm(1− te)(1− tp)n−1

− t2pm(1− te)
n−2∑
b=1

b(1− tpm)b

(1− te)(1− tp)n−1
− t2pm

(
1− (1− tpm)n−1

)
(1− te)

tpm(1− te)(1− tp)n−1
.

We use the fact that

n−2∑
b=1

b (1− tpm)b =
−(1− tpm)((n− 1)(1− tpm)n−2 tp

m
+ 1− (1− tpm)n−1)

t2pm

to rewrite this last expression as

Hilb
(
SG�in(SG ∩m[pm]) , t

)
=

(1− tpm)n−1
(
1− tpm+e−1 + (n− 1)tp

m
(1− te)

)
(1− te)(1− tp)n−1

.

�

Example 5.5. For G =
〈(

1 0 0
0 1 0
0 0 ω

)
,
(

1 0 1
0 1 0
0 0 1

)
,
(

1 0 0
0 1 1
0 0 1

)〉
⊂ GL3(F5), Proposition 5.1 gives

Hilb
(

(SG + m[5m])�m[5m], t
)

=
(1− t5m)2

(
1− t5m+e−1 + 2t5

m
(1− te)

)
(1− te)(1− t5)2

.
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6. Decomposition of the invariant space

We now use the description of SG ∩ m[pm] from the last two sections to give a direct
sum decomposition of (S/m[pm])G. Again, we consider a subgroup G of GLn(Fp) fixing
a hyperplane and use the basis x1, . . . , xn of V ∗ and basic invariants f1, . . . , fn as in
Section 3. We show that (S/m[pm])G is the direct sum of subspaces

AG = (SG + m[pm])�m[pm] and

BG = Fp[f1, . . . , fn−1]-span
{
xa11 . . . xa`` x

pm−1
n + m[pm] : 0 ≤ ai < p,

∑̀
i=1

ai ≥ 2
}
.

Note that BG is the Fp[f1, . . . , fn−1]-submodule of S/m[pm] spanned by the monomial
cosets indicated. Recall that ` is the minimal number of transvections generating G
together with a semisimple element of order e; if no group elements are semisimple,
e = 1.

Remark 6.1. In defining the subspace BG, we require
∑`

i=1 ai ≥ 2 to avoid nontrivial

intersection with AG; see Proposition 6.5. Otherwise BG would contain xp
m−1
n + m[pm]

and xix
pm−1
n + m[pm], for example, which lie in AG for i < `.

We first describe the leading monomial in (S/m[pm])G using the standard graded
lexicographical order on S = Fp[x1, . . . , xn] with x1 > · · · > xn.

Lemma 6.2. Assume G has maximal transvection root space. Suppose f +m[pm] lies in
(S/m[pm])G with f homogeneous in x1, . . . , xn. Then LMS(f) lies in

m[pm] or Fp[x1, . . . , xn−1, fe
−1(pm−1)
n ] or Fp[xp1, . . . , x

p
n−1, fn] .

Proof. Say M = LMS(f) does not lie in m[pm] or in Fp[x1, . . . , xn−1, f
e−1(pm−1)
n ]. Then

M = xb11 · · ·x
bk
k · · ·x

bn−1

n−1 x
bn
n for some b1, . . . , bn−1 < pm and bn < pm − 1 .

We use the generators g1, . . . , gn of G from Section 3. Since f is G-invariant modulo
m[pm], the difference gnf − f lies in m[pm] and the low degree of each xi forces f itself to
be invariant under gn; hence bn is divisible by e.

Suppose there is some exponent bk which is not divisible by p with k < n. Consider
g = g−1k acting on M = LMS(f). Then g ·M −M is

xb11 · · ·x
bk−1

k−1
(
(xk + xn)bk − xbkk

)
x
bk+1

k+1 · · ·x
bn
n

with leading monomial

(6.3) LMS(gM −M) = xb11 · · ·x
bk−1

k−1 (bk x
bk−1
k )x

bk+1

k+1 x
bk+2

k+2 · · ·x
bn−1

n−1 x
bn+1
n

as bk 6= 0 in Fp. Notice that the leading monomial of gM −M is the leading monomial
of gf − f as M is the leading monomial of f and g fixes x1, . . . , xk−1, xk+1, . . . , xn.

Since f is invariant modulo m[pm], the difference gf−f and thus its leading monomial
(6.3) lie in m[pm]. But this is impossible as bn < pm − 1 and b1, . . . , bn−1 < pm by our
assumptions. Thus p must divide every exponent bk for k < n. �

We use Lemma 6.2 to decompose the invariants of the quotient space.
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Proposition 6.4. For G with maximal transvection root space,
(S�m[pm]

)G
= AG+BG.

Proof. By construction, AG ⊆ (S/m[pm])G. To show BG ⊆ (S/m[pm])G, consider

M = xa11 . . . x
an−1

n−1 x
pm−1
n with M + m[pm] ∈ BG.

We consider the generators g1, . . . , gn of G from Section 3; for k < n,

g−1k (M) + m[pm] = xa11 . . . x
ak−1

k−1 (xk + xn)akx
ak+1

k+1 . . . x
an−1

n−1 x
pm−1
n + m[pm]

= xa11 . . . x
an−1

n−1 x
pm−1
n + m[pm] = M + m[pm],

since the binomial theorem implies that all but the initial term lies in m[pm]. In addition,
e divides pm−1, so gn fixes M . Hence BG is G-invariant and thus AG+BG ⊆ (S/m[pm])G.

To show the reverse containment, we first argue that any monomial M in the variables
x1, . . . , xn with degxn(M) = pm − 1 represents a coset of m[pm] either in AG or in BG.
Both AG and BG are closed under multiplication by f1, . . . , fn−1, so we assume without
loss of generality that degxi(M) < p for i < n by Eq. (4.2). Let k =

∑n−1
i=1 degxi(M) . If

k ≥ 2, then M + m[pm] lies in BG by definition. If k = 0, then M = xp
m−1
n = f

e−1(pm−1)
n

and M + m[pm] lies in AG. If k = 1, then M + m[pm] lies in AG as well since

−xi xp
m−1
n ≡

m−1∑
j=0

fe
−1(pm−pj)
n fp

m−1−j

i mod m[pm] for i < n.

If the reverse containment fails, we may choose some f + m[pm] in (S/m[pm])G but
not in AG + BG with f homogeneous in x1, . . . , xn and LMS(f) minimal. Note that

degxi(LMS(f)) < pm for all i. By the minimality assumption, LMS(f) +m[pm] does not
lie in AG or BG, so by the argument in the last paragraph, degxn(LMS(f)) < pm − 1.
By Lemma 6.2, the monomial LMS(f) lies in Fp[xp1, . . . , x

p
n−1, fn], so

LMS(f) = xpc11 xpc22 · · ·x
pc2
n−1 x

ecn
n for some ci .

Define h by

h = αf c11 f
c2
2 · · · f

cn−1

n−1 f cnn , for α the leading coefficient of f.

Then f − h+ m[pm] lies in (S/m[pm])G since h+ m[pm] lies in AG, and, by construction,
LMS(h) = LMS(f) , implying that LMS(f − h) < LMS(f). The minimality assumption
then implies that f − h must lie in AG +BG. However, AG +BG contains h already, so
must contain f as well, contradicting our choice of f . Thus (S/m[pm])G = AG +BG. �

Proposition 6.5. Suppose the transvection root space of G is maximal. Then(S�m[pm]
)G

= AG ⊕BG .

Proof. By Proposition 6.4, we need only show AG ∩ BG is trivial. If m ≤ 1, a simple
degree comparison shows AG ∩ BG = {0}, hence we assume m ≥ 2. Suppose AG ∩ BG
is non-trivial, say some f in SG and h+ m[pm] in BG satisfy

0 6= f + m[pm] = h+ m[pm] ∈ AG ∩BG .
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We multiply f − h by fn = xen so that (f − h)fn lies in m[pm] fn. We will show that ffn
and hfn have no monomials in the variables x1, . . . , xn in common; this will force hfn
to lie in m[pm]fn, contradicting the fact that h does not lie in m[pm].

Fix some M in Xf ∩Xh for

Xf the set of monomials in x1, . . . , xn of ffn, and

Xh the set of monomials in x1, . . . , xn of hfn .

Since h lies in the ideal (xp
m−1
n ) and e ≥ 1, the ideal m[pm] contains hfn and thus

also ffn = (f − h)fn + hfn. However, ffn also lies in SG, so ffn lies in SG ∩ m[pm].
Proposition 4.9 then implies that M is a monomial of some SG-multiple of h0, h1,a, or
h2,a,b for some 1 ≤ a ≤ b < n (see Definition 4.3) and we use Lemma 4.5 to expand in

the variables x1, . . . , xn. Since h is not in m[pm] and M lies in Xh, Eq. (4.2) implies that

degxn(M) = pm + e− 1 and(6.6)

degxi(M) = bi p+ ai for some bi < pm−1, ai < p, with
∑n−1

i=1 ai ≥ 2 .(6.7)

First, say M is a monomial of some polynomial in SG h0. By Lemma 4.5, for i < n,

degxn(M) = x
pm+e−1+cn+(p−1)

∑n−1
i=1 ji

n and

degxi(M) = pci − (p− 1)ji = (ci − ji)p+ ji for some ci ∈ N and 0 ≤ ji ≤ ci .
But Eq. (6.6) implies that ji = 0 for all i < n and cn = 0. Then p must divide degxi(M)
for each 1 ≤ i ≤ n, contradicting Eq. (6.7).

Second, say that M is a monomial of some polynomial in SG h1,a for some a < n.
Without loss of generality, say a = 1. Then, for 1 < i < n,

degxi(M) = pci − (p− 1)ji for some ci ∈ N and 0 ≤ ji ≤ ci .
Furthermore, by Lemma 4.5,

degx1(M) = pm + pc1 − (p− 1)j1 or degx1(M) = 1 + pc1 − (p− 1)j1

for some c1 ∈ N and 1 ≤ j1 ≤ c1. But Eq. (6.7) implies the latter case holds, and thus

degxn(M) = pm + e− 1 + cn + (p− 1)
∑n−1

i=1 ji for some cn ∈ N .
Again, Eq. (6.6) implies ji = 0 for all 1 ≤ i < n and cn = 0. However, this forces p to
divide degxi(M) for 2 ≤ i < n and degx1(M) to be 1 + pc1, contradicting Eq. (6.7).

Third, say that M is a monomial of some polynomial in SG h2,a,b for some pair a, b
with 1 ≤ a ≤ b < n. Eq. (6.7) implies that the degree of xa or of xb in each monomial

of h2,a,b is too high except the last monomial N = xp
m−1

a xp
m−1

b x
2(p−1)pm−1

n . But for any

monomial M ′ appearing in an SG-multiple of N , p divides degxi(M
′) for all i < n or

degxn(M ′) > pm + e− 1, contradicting Eq. (6.7) and Eq. (6.6). (One can check the case
p = 2 separately.) �

Example 6.8. For G =
〈(

1 0 0
0 1 0
0 0 ω

)
,
(

1 0 1
0 1 0
0 0 1

)
,
(

1 0 0
0 1 1
0 0 1

)〉
⊂ GL3(F5), Proposition 6.5 implies

that the space (S/m[5m])G decomposes as

(SG + m[5m])�m[5m] ⊕ F5[f1, f2]-span{xa11 x
a2
2 x

5m−1
3 + m[5m] : ai < 5, a1 + a2 ≥ 2} .
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In the next result, we do not assume the transvection root space is maximal.

Corollary 6.9. For any group G ⊂ GLn(Fp) fixing a hyperplane,(S�m[pm]
)G

= AG ⊕BG .

Proof. We decompose the vector space V to separate out the trivial action: set

V1 = C-span{v1, . . . , v`, vn} and V2 = C-span{v`+1, . . . , vn−1} ,
and set S1 = S(V ∗1 ) = Fp[x1, . . . , x`, xn] and S2 = S(V ∗2 ) = Fp[x`+1, . . . , xn−1]. Like-

wise, set m
[pm]
1 = (xp

m

1 , . . . , xp
m

` , xp
m

n ) and m
[pm]
2 = (xp

m

`+1, . . . , x
pm

n−1) . Then G is the

direct sum G = G1 ⊕ G2 for Gi = G|Vi and m[pm] = (m
[pm]
1 ,m

[pm]
2 ). By Propo-

sition 6.5, (S1/m
[pm]
1 )G1 = AG1 ⊕ BG1 . Since G2 acts trivially on V2, we may set

AG2 = (Fp[vl+1, . . . , vn−1] + m
[pm]
2 )/m

[pm]
2 and BG2 = {0}. The graded isomorphism

S ∼= S1 ⊗Fp S2 induces a graded isomorphism

S�m[pm] ∼= S1�
m

[pm]
1

⊗Fp S2�
m

[pm]
2

and induces graded vector space isomorphisms(
S�m[pm]

)G ∼= (
S1�

m
[pm]
1

)G1

⊗Fp
(
S2�

m
[pm]
2

)G2 ∼= (AG1 ⊕BG1)⊗Fp AG2
∼= AG ⊕BG .

The result follows since AG +BG ⊂ (S/m[pm])G (see the proof of Proposition 6.4). �

7. Hilbert Series for maximal transvection root spaces

Again, we assume throughout this section that G is a subgroup of GLn(Fp) fixing a
hyperplane H and e is the maximal order of a semisimple element of G. We assume
the root space of G is maximal to avoid excessive notation arising from a trivial action
of G on extra variables. By Proposition 6.5, (S/m[pm])G is a direct sum AG ⊕ BG with
invariant subspace AG described in Sections 4 and 5. For ease with notation, we fix a
basis of V as in Section 3 and describe here

BG = Fp[f1, . . . , fn−1]-span
{
xa11 . . . x

an−1

n−1 x
pm−1
n + m[pm] : 0 ≤ ai < p,

n−1∑
i=1

ai ≥ 2
}
.

Lemma 7.1. Suppose the transvection root space of G is maximal. Then

Hilb(BG, t) = tp
m−1

((
1− tp

1− t

)n−1
− (n− 1)t− 1

)(
1− tpm

1− tp
)n−1

.

Proof. Observe that BG = Fp[f1, . . . , fn−1]-span C ∼= Fp[f1, . . . , fn−1]⊗Fp C as a graded
vector space by Eq. (4.2), where

C = Fp-span{xa11 . . . x
an−1

n−1 x
pm−1
n + m[pm] : 0 ≤ ai < p, a1 + . . .+ an−1 ≥ 2} .

Since deg fi = p for i < n,

Hilb(BG, t) =
(

1− tpm

1− tp
)n−1

· Hilb(C, t)

=
(

1− tpm

1− tp
)n−1

tp
m−1

((
1− tp

1− t

)n−1
− (n− 1)t− 1

)
,
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with subtracted terms arising from the restriction a1 + . . .+ an−1 ≥ 2. �

Theorem 7.2. Suppose the transvection root space of G is maximal. Then

Hilb
((S�m[pm]

)G
, t
)

=
(

1− tpm

1− tp
)n−1(1− tpm−1

1− te
)

+ tp
m−1

(
1− tpm

1− t

)n−1
.

Proof. By Proposition 6.5, (S/m[pm])G = AG⊕BG, and the theorem follows from adding
the Hilbert series forAG andBG given in Proposition 5.1 and Lemma 7.1 and simplifying.

�

Example 7.3. For our archetype example, G =
〈(

1 0 0
0 1 0
0 0 ω

)
,
(

1 0 1
0 1 0
0 0 1

)
,
(

1 0 0
0 1 1
0 0 1

)〉
⊂ GL3(F5),

Lemma 7.1 implies that

Hilb(BG, t) = t5
m−1

((
1− t5

1− t

)2
− 2t− 1

)(
1− t5m

1− t5
)2
.

By Theorem 7.2 (recall e = order(ω)), the Hilbert series of (S/m[5m])G is(
1− t5m

1− t5
)2(1− t5m−1

1− te
)

+ t5
m−1

(
1− t5m

1− t

)2
.

We record an alternate expression for the Hilbert series in Theorem 7.2:

Corollary 7.4. Suppose the transvection root space of G is maximal. Then

Hilb
((S�m[pm]

)G
, t
)

= Hilb(SG, t)(1− tpm)n−1
(

1− tpm−1+ (1− te)tpm−1
(

1− tp

1− t

)n−1)
=
(

1− tpm

1− tp
)n−1((1− tpm−1

1− te
)

+ tp
m−1

(
1− tp

1− t

)n−1)
.

8. Hilbert Series for arbitrary group fixing a hyperplane

Again, we assume G is a subgroup of GLn(Fp) fixing a hyperplane H and set ` =
dimFp(RootSpace(G))∩H, the dimension of the (not necessarily maximal) transvection
root space of G, with e the maximal order of a semisimple element of G.

Theorem 8.1. Suppose G is a subgroup of GLn(Fp) fixing a hyperplane. Then

Hilb
((S�m[pm]

)G
, t
)

=
(

1− tpm

1− t

)n−`−1 (1− tpm

1− tp
)` ((1− tpm−1

1− te
)

+ tp
m−1

(
1− tp

1− t

)`)
=
(

1− tpm

1− t

)n−`−1(1− tpm

1− tp
)`(1− tpm−1

1− te
)

+ tp
m−1

(
1− tpm

1− t

)n−1
= Hilb(SG, t) (1− tpm)n−1

(
(1− tpm−1) + tp

m−1(1− te)
(

1− tp

1− t

)`)
.

Proof. We write G = G1⊕G2, S = S1⊗Fp S2, and m[pm] = (m
[pm]
1 ,m

[pm]
2 ) as in the proof

of Corollary 6.9 and use the graded isomorphism(
S�m[pm]

)G ∼=
(
S1�

m
[pm]
1

)G1

⊗Fp
(
S2�

m
[pm]
2

)G2

.

Since G2 acts trivially on V2 of dimension n− `− 1,

Hilb
((S�

m
[pm]
2

)G2 , t
)

=
(

1− tpm

1− t

)n−`−1
.
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Since G1 has maximal transvection root space in V1, Corollary 7.4 implies that

Hilb
((S�

m
[pm]
2

)G1 , t
)

=
(

1− tpm

1− t

)n−`−1 (1− tpm

1− tp
)` ((1− tpm−1

1− te
)

+ tp
m−1

(
1− tp

1− t

)`)
.

The theorem then follows from taking the product of the two Hilbert series above. �

Example 8.2. Say G =
〈(

1 0 0
0 1 0
0 0 ω

)
,
(

1 0 1
0 1 0
0 0 1

)〉
, a group without maximal transvection

root space, acting on V = F35 with e = order(ω). Theorem 8.1 implies

Hilb
((S�m[5m]

)G
, t
)

=
(

1− t5m

1− t

) (
1− t5m

1− t5
) ((

1− t5m−1

1− te
)

+ t5
m−1

(
1− t5

1− t

))
.

We take the limit as t approaches 1 in Theorem 8.1 to obtain the dimension:

Corollary 8.3. Suppose G is a subgroup of GLn(Fp) fixing a hyperplane. The dimension

of (S/m[pm])G as an Fp-vector space is

dimFp
(S�m[pm]

)G
= pm(n−1) + pm(n−1)−`

(
pm − 1

e

)
.

Remark 8.4. Note that the Hilbert series in Theorem 8.1 agrees with the series we
expect in the nonmodular case, as then all the reflections are semisimple and ` = 0:

Hilb
((S�m[pm]

)G
, t
)

=
(1− tpm)n−1(1− tpm+e−1)

(1− t)n−1(1− te)
.

The basic invariants have degrees 1, . . . , 1, e in this case and the series above describes(S�m[pm]
)G

= Fp[x1, x2, . . . , xn−1, xen]�(xp
m

1 , . . . , xp
m

n ) .

Compare with [9, Example 1.4].

Remark 8.5. When G contains no semisimple elements (in the modular case), e = 1
and ` is just the minimum number of generators of G. Theorem 8.1 implies that

Hilb
((S�m[pm]

)G
, t
)

=
(1− tpm)n−1(1− tpm−1)

(1− tp)`(1− t)n−`
+ tp

m−1
(

1− tpm

1− t

)n−1
.

9. Full Pointwise Stabilizers over Fq and Orbits

The story is more complicated when generalizing to arbitrary finite fields Fq for q
a prime power. The basic invariants for an arbitrary subgroup of GLn(Fq) fixing a
hyperplane H in V = Fnq pointwise can be described inductively (see [7]). However,
some of the previous ideas apply to give the Hilbert series for full pointwise stabilizer
subgroups. Throughout this section, fix a hyperplane H in V = Fnq and consider the

pointwise stabilizer group G = GLn(Fq)H = {g ∈ GLn(Fq) : g|H = 1}. In this case, SG

is again a polynomial ring: After change-of-basis, we may assume SG = Fq[f̃1, . . . f̃n] for

f̃1 = xq1 − x1x
q−1
n , . . . , f̃n−1 = xqn−1 − xn−1x

q−1
n , f̃n = xq−1n .

Many results from our previous sections hold for these full stabilizer subgroups; for
brevity, we highlight below only the more subtle changes in the arguments.
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Define polynomials in Fq[f̃1, . . . , f̃n] for 1 ≤ a ≤ b < n by

h̃0 = f̃ 1+(q−1)−1(qm−1)
n , h̃1,a =

m−1∑
k=0

f̃ 1+(q−1)−1(qm−qm−k)
n f̃ q

m−k−1

a , h̃2,a,b = f̃ q
m−1

a f̃ q
m−1

b .

The next observation is an analog of Lemma 4.5; the proof is straight-forward.

Lemma 9.1. For G = GLn(Fq)H , h̃0, h̃1,a, h̃2,a,b lie in SG ∩m[qm] for 1 ≤ a ≤ b < n.

The next result, analogous to Lemma 4.6, uses a monomial ordering as in Section 4.

Lemma 9.2. Say G = GLn(Fq)H and f in SG ∩m[qm] is homogeneous in the variables

f̃1, . . . , f̃n. Then LMSG(f) is divisible by f̃n or some h̃2,a,b with 1 ≤ a ≤ b < n.

Proof. The argument follows the proof of Lemma 4.6 with p changed to q and e to q− 1
until Eq. (4.7), which, in our setting, becomes

(9.3) d = qm−1 + (q − 1)a and i = 1 + qa for some 0 ≤ a <
m−2∑
k=0

qk .

We use the base p expansions of a and d to show instead that
∑m−2

k=0 q
k ≤ a, writing

a =

(m−2)r∑
k=0

ak p
k and d =

(m−1)r∑
k=0

dk p
k for some 0 ≤ ak, dk < p .

We compare the base p coefficients dk and ak. Lucas’ Theorem implies that

0 6=
(
d

i

)
=

(
d0
1

) r−1∏
k=1

(
dk
0

) (m−1)r∏
k=r

(
dk
ak−r

)
as i = 1 +

(m−1)r∑
k=r

ak−r p
k ;

since no factor in the product vanishes, we conclude that d0 ≥ 1 and each ak−r ≤ dk for
r ≤ k ≤ (m− 1)r. Eq. (9.3) then provides direct comparison of dk and ak,

(9.4)

(m−1)r∑
k=0

dk p
k = d = qm−1 −

r−1∑
k=0

akp
k +

(m−2)r∑
k=r

(ak−r − ak)pk +

(m−1)r∑
k=(m−2)r

ak−rp
k.

We now regroup base p as needed and show inductively that 0 < a0 ≤ ar ≤ . . . ≤ a(m−2)r.
More generally, we will show ak ≤ ak+r for 0 ≤ k ≤ (m− 3)r when m > 2.

First consider a0. Since 1 ≤ d0, Eq. (9.4) implies that d0 = p− a0 and a0 6= 0. Thus
di = p − ai − 1 for 1 ≤ i ≤ r − 1 since di ≥ 0. For m > 2, next observe that a0 ≤ ar
since a0 ≤ dr and Eq. (9.4) implies that dr = p + a0 − ar − 1 for a0 ≤ ar whereas
dr = a0 − ar − 1 for ar < a0. Similarly, a1 ≤ ar+1 since a1 ≤ dr+1 and Eq. (9.4) implies
that dr+1 = p+a1−ar+1−1 for a1 ≤ ar+1 whereas dr+1 = a1−ar+1−1 for ar+1 < a1. We
iterate this argument and conclude that ak ≤ ak+r for 0 ≤ k ≤ (m− 3)r. In particular,
0 < a0 ≤ ar ≤ . . . ≤ ar(m−2). The result follows as in the proof of Lemma 4.6. �

We adapt the proofs of Propositions 4.9 and 5.1 using Lemmas 9.1 and 9.2 to obtain

Proposition 9.5. For G = GLn(Fq)H ,

• {h̃0, h̃1,a, h̃2,a,b : 1 ≤ a ≤ b < n} is a Groebner basis of SG ∩m[qm],
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• Hilb
(
SG + m[qm]

�m[qm], t
)

=
(

1− tqm

1− tq
)n−1 (1− tqm+q−2 + (n− 1) tq

m
(1− tq−1)

1− tq−1
)
.

The next result is an analog of Lemma 6.2; we have only found case-by-case arguments
for generalizing this key lemma to arbitrary subgroups G fixing a single hyperplane.

Lemma 9.6. Say G = GLn(Fq)H . Suppose f + m[qm] lies in (S/m[qm])G with f homo-
geneous in x1, . . . , xn. Then LMS(f) lies in

m[qm] or Fq[x1, . . . , xn−1, f̃ (qm−1)/(q−1)
n ] or Fq[xq1, . . . , x

q
n−1, f̃n] .

Proof. Say M = LMS(f) does not lie in m[qm] or in Fq[x1, . . . , xn−1, f̃
(qm−1)/(q−1)
n ]. Then

M = xb11 · · ·x
bk
k · · ·x

bn−1

n−1 x
bn
n for some b1, . . . , bn−1 < qm and bn < qm − 1 .

Invariance under the generator gn of the semisimple elements in G implies that bn is
divisible by q − 1 as in the proof of Lemma 6.2 and so bn ≤ qm − q.

Say q does not divide some bk with k < n. Let g in GLn(Fq)H be the element
mapping xk to xk+xn and fixing xi for i 6= k as in Section 4. Arguments as in the proof
of Lemma 6.2 show that p divides bk and thus

bk = ptck for t < r = dimFp(Fq) and gcd(p, ck) = 1.

We argue that the monomial xβ = M · (xn/xk)p
t

lies outside m[qm] but appears with

nonzero coefficient in gf − f , contradicting the fact that gf − f ∈ m[qm]. The leading

term of gM −M in Fq[x1, . . . , xn] is ckxβ 6= 0 as
(ptck
pt

)
=
(
ck
1

)
by Lucas’ Theorem. We

claim that for any other monomial N of f , the coefficient of xβ in gN −N is zero. Since
g fixes xi with i 6= k, we may assume degxi(N) = degxi(M) for i 6= k, i < n. Since
LMS(f) = M , degxk(N) < bk and degxn(N) > bn. But q − 1 divides degxn(N) as f is

invariant under the diagonal reflection sending xn to xq−1n and thus degxn(N) ≥ bn+q−1
and degxk(gN −N) ≤ degxk(N) ≤ bk− q+ 1 < bk−pt = degxk xβ, and the coefficient of

xβ in gN −N is zero. Note that gf − f /∈ m[qm] since bn + pt < qm as bn ≤ qm − q. �

We obtain a direct sum decomposition analogous to Proposition 6.5.

Proposition 9.7. For G = GLn(Fq)H , the invariants are
(S�m[qm]

)G
= AG ⊕BG for

AG = (SG + m[qm])/m[qm] and

BG = Fq[f̃1, . . . , f̃n−1]-span
{
xa11 . . . x

an−1

n−1 x
qm−1
n + m[qm], for 0 ≤ ai < q,

n−1∑
i=1

ai ≥ 2
}
.

Proof. One may easily adapt the proofs of Proposition 6.4 and Proposition 6.5 to the
case of Fq using Proposition 9.5 and Lemma 9.6. �

The proof of Lemma 7.1 can be modified to give the Hilbert series of BG:

Lemma 9.8. For any hyperplane H in V = Fnq and G = GLn(Fq)H ,

Hilb(BG, t) = tq
m−1

((
1− tq

1− t

)n−1
− (n− 1)t− 1

)(
1− tqm

1− tq
)n−1

.

Finally, Propositions 9.5 and 9.7 and Lemma 9.8 give Theorem 1.1 of the Introduction:
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Corollary 9.9. For any hyperplane H in V = Fnq and G = GLn(Fq)H ,

Hilb
((S�m[qm]

)G
, t
)

=
(

1− tqm

1− tq
)n−1(( 1− tqm−1

1− tq−1
)

+ tq
m−1

(
1− tq

1− t

)n−1)
= Hilb(SG, t)(1− tqm)n−1

(
1− tqm−1+ (1− tq−1)tqm−1

(
1− tq

1− t

)n−1)
= [qm−1]n−1tq

[
m

1

]
q,t

+ tq
m−1[qm]n−1t

[
m

0

]
q,t

.

We take the limit t 7→ 1 for the following corollary.

Corollary 9.10. For any hyperplane H in V = Fnq and G = GLn(Fq)H ,

dimFq
(S�m[qm]

)G
= qm(n−1) + q(m−1)(n−1)

(
qm − 1

q − 1

)
.

Orbits and the dimension of the invariant space. The conjecture of Lewis, Reiner,
and Stanton [9] giving the Hilbert series for the GLn(Fq)-invariants in S/m[qm] specializes
to a conjecture for the dimension of the invariants as an Fq-vector space. They show
this specialization gives the number of orbits for GLn(Fq) acting on the vector space
V ′ = (Fqm)n, see [9, Section 7.1 and Theorem 6.16].

Corollary 8.3 gives the dimension of the G-invariants in S/m[pm] over Fp for any
group G fixing a hyperplane. Below we prove that this integer gives the number of
orbits for G as a subgroup of GLn(Fp) acting on the vector space V ′ = (Fpm)n (with
canonical coordinate-wise action induced from the embedding Fp ⊂ Fpm). This result
thus proves a special case of the conjecture of Lewis, Staton, and Reiner. Here again,
` = dimFp(RootSpace(G)) ∩H with e the maximal order of a semisimple element in G.

Corollary 9.11. Suppose G ≤ GLn(Fp) is a reflection group fixing a hyperplane H in
V = Fnp . The number of orbits of points in V ′ = (Fpm)n under the action of G is equal

to the dimension over Fp of the G-invariants in S/m[pm]:

dimFp
(S�m[pm]

)G
= pm(n−1) + pm(n−1)−`

(
pm − 1

e

)
= # orbits of G on (Fpm)n .

Proof. Corollary 8.3 records the dimension; we count orbits here. Let H ′ be the image of
H under the coordinate-wise embedding V ↪→ V ′. Choose a basis x1, . . . , xn of (V ′)∗ dual
to the standard coordinate basis as in Section 3 with H ′ = Kerxn in V ′. The number of
points with orbit size 1 is the number of points on the hyperplane H ′, namely, (pm)n−1.
Two points v and u lying in the complement (H ′)c of H ′ in V ′ lie in the same G-orbit if
and only if xi(v) = xi(u) for i ≤ ` and xn(u) lies in Fpx1(v) + · · ·+ Fpx`(v) + 〈ω〉xn(v)

for ω a primitive e-th root-of-unity in Fp. Thus a fixed v in (H ′)c has orbit size p`e
whereas |(H ′)c| = (pm)n−1(pm − 1) and

# of orbits in (H ′)c =
|(H ′)c|

size of an orbit in (H ′)c
= pm(n−1)−` (pm − 1

e

)
.

The total number of orbits for GLn(Fp)H acting on Fpm is then

# of orbits = (# orbits on H ′) + (# orbits on (H ′)c)

= pm(n−1) + pm(n−1)−` (pm − 1

e

)
.

�
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A similar proof with q for p and q − 1 for e using Corollary 9.10 gives Corollary 1.2
from the Introduction; we suspect a similar statement holds for any reflection group:

Corollary 9.12. For any hyperplane H in V = Fnq , the number of orbits in (Fqm)n

under the action of G = GLn(Fq)H is

dimFq
(S�m[qm]

)G
= qm(n−1)+q(m−1)(n−1)

(
qm − 1

q − 1

)
= qm(n−1)

[
m

0

]
q

+q(m−1)(n−1)
[
m

1

]
q

.

10. Lewis, Reiner, and Stanton conjecture

We use our results in previous sections to bound the exponents of x1, . . . , xn in any
invariant of S/m[qm] under the full general linear group GLn(Fq) for a prime power q.

Proposition 10.1. Say f +m[qm] ∈ (S/m[qm])GLn(Fq). For any monomial M /∈ m[qm] in

x1, . . . , xn of f , either M = xq
m−1

1 xq
m−1

2 · · ·xq
m−1
n or degxi(M) ≤ qm − q for all i.

Proof. We may assume f is homogeneous in x1, . . . , xn with no monomials lying in m[qm].
By Lemma 9.6 with hyperplane H = Kerxn and ordering x1 > · · · > xn,

LM(f) ∈ Fq[x1, . . . , xn−1, xq
m−1
n ] or LM(f) ∈ Fq[xq1, . . . , x

q
n−1, x

q−1
n ] .

First suppose degxn(LM(f)) = qm − 1. The element f + m[qm], and hence f itself, is
invariant under the action of the symmetric group Sn permuting the variables as a

subgroup of GLn(Fq). This forces LM(f) = xq
m−1

1 · · ·xq
m−1
n = f , as f is homogeneous.

Now assume degxn(LM(f)) 6= qm − 1, so that q divides degx1(LM(f)). Since f is
invariant under the diagonal reflection with x1 7→ ωx1 for ω a primitive (q− 1)-th root-
of-unity, (q − 1) also divides degx1(LM(f)). Therefore, q(q − 1) divides degx1(LM(f))
and degx1(LM(f)) ≤ qm− q. Then degx1(M) ≤ qm− q for any monomial M of f . As f
is Sn-invariant, degxi(M) ≤ qm − q for all i as well. �

The previous proposition gives a bound on coefficients of the Hilbert series. Let HF
be the Hilbert function, HF(M, i) = dimFMi, for any Z-graded vector space M =

⊕
Mi.

Corollary 10.2. We give a bound on the Hilbert function of GLn(Fq)-invariants:

HF
((S�m[qm]

)GLn(Fq), n(qm − 1)
)

= 1 and

HF
((S�m[qm]

)GLn(Fq), i
)
≤ HF

(
S�(xq

m−q+1
1 , . . . , xq

m−q+1
n ), i

)
for i 6= n(qm − 1) .

11. Two dimensional vector spaces

We now consider the 2-dimensional case and take a group G of GL2(Fp) fixing a hy-

perplane (line) of V = (Fp)2 pointwise. Here, m[pm] := (xp
m

1 , xp
m

2 ). We give a resolution

of SG ∩m[pm] directly using syzygies, providing an alternate direct computation for the
Hilbert series of AG = (SG + m[pm])/m[pm].
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Nonmodular Setting. If G contains no transvections, then SG ∩ m[pm] is generated

by h = fp
m

1 and h′ = f
1+e−1(pm−1)
2 and we obtain an easy resolution for SG ∩m[pm],

0 −→ F1
[τ ]−−−→ F0

[h h′]−−−−→ SG ∩m[pm] −→ 0 ,

where F1 = SG[−(2pm + e − 1)] and F0 = SG[−pm] ⊕ SG[−(pm + e − 1)] with relation

τ = f
1+e−1(pm−1)
2 h− fp

m

1 h′. This gives Hilbert series

Hilb(SG ∩m[pm], t) =
tp

m
+ tp

m+e−1 − t2pm+e−1

(1− te)(1− t)
= Hilb(SG, t)(tp

m
+ tp

m+e−1 − t2pm+e−1) .

Modular setting. Suppose now that G contains a transvection. After conjugation,
G = 〈( 1 0

0 ω ), ( 1 1
0 1 )〉 for some root-of-unity ω ∈ Fp of order e ≥ 1. Here,

SG = Fp[x1, x2]G = Fp[f1, f2] for f1 = xp1 − x1x
p−1
2 and f2 = xe2 .

The Groebner basis

h0 = f
1+e−1(pm−1)
2 , h1 =

m−1∑
k=0

f
1+e−1(pm−pm−k)
2 fp

m−k−1

1 , h2 = f2p
m−1

1

(see Definition 4.3) of the ideal SG ∩ m[pm] in the polynomial ring SG is small enough

to directly provide a manageable resolution of SG/SG ∩m[pm], which we record below.

Proposition 11.1. For G a subgroup of GL2(Fp) containing a transvection, a graded

free resolution of the SG-module SG ∩m[pm] is

0 −→ F1
[τ0,1 τ1,2]−−−−−−−→ F0

[h0 h1 h2]−−−−−−−−→ SG ∩m[pm] −→ 0

for

F0 = SG
[
− (pm + e− 1)

]
⊕ SG

[
− (pm + e)

]
⊕ SG[−2pm], and

F1 = SG
[
− (2pm + e)

]
⊕ SG

[
− (2pm + e− 1)

]
.

Proof. Buchberger’s algorithm gives generators for the first syzygy-module in (SG)3 for

SG ∩m[pm] = (h0, h1, h2), namely,

τ0,1 = (−fp
m−1

1 −
m−1∑
k=1

fp
m−k−1

1 f
e−1(pm−pk)
2 , f

e−1(pm−1)
2 , 0)

τ0,2 = (f2p
m−1

1 , 0, −f1+e
−1(pm−1)

2 ), and

τ1,2 = (−
m−1∑
j,k=1

fp
m−j−1+pm−k−1

1 f
e−1(pm−pk−pj+1)
2 , −fp

m−1

1 +
m−1∑
k=1

fp
m−k−1

1 f
e−1(pm−pk)
2 , f2) .

But τ0,2 is redundant as

τ0,2 =
(m−1∑
k=1

fp
m−k−1

1 f
e−1(pm−pk)
2 τ0,1 − fp

m−1

1

)
τ0,1 − fe

−1(pm−pk)
2 τ1,2 ,
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and the first syzygy-module is generated over SG by just τ1,2 and τ0,1. As these are
linearly independent over SG, the second syzygy-module is trivial, and the result follows.

�

This gives an easy proof of Proposition 5.1 in the modular 2-dimensional setting:

Corollary 11.2. For G a subgroup of GL2(Fp) fixing a hyperplane in V = (Fp)2 and
containing a transvection,

Hilb
(

(SG + m[pm])�m[pm], t
)

= Hilb(SG, t)(1− tpm)(1 + tp
m − tpm+e−1 − tpm+e) .

Proof. By Proposition 11.1, the Hilbert series for SG ∩ m[pm] is just the series for F1

subtracted from that for F0. The proposition then follows from using the exact sequence

0 −→ SG ∩m[pm] −→ SG −→ SG�(SG ∩m[pm])
∼= (SG + m[pm])�m[pm] −→ 0.

�
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