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Abstract. We define group-twisted Alexander-Whitney and Eilenberg-Zilber maps
for converting between bimodule resolutions of skew group algebras. These algebras are
the natural semidirect products recording actions of finite groups by automorphisms.
The group-twisted chain maps allow us to transfer information between resolutions
for use in homology theories, for example, in those governing deformation theory. We
show how to translate in particular from the default (but often cumbersome) reduced
bar resolution to a more convenient twisted product resolution. This provides a more
universal approach to some known results classifying PBW deformations.

1. Introduction

Skew group algebras encode actions of groups on other algebras by automorphisms.
Deformations of skew group algebras include, for example, symplectic reflection algebras,
rational Cherednik algebras, graded Hecke algebras, and Drinfeld orbifold algebras; e.g.,
see [7, 8, 15, 18]. These are all PBW deformations of S(V ) o G for the action of a
finite group G on a finite dimensional vector space V with symmetric algebra S(V ).
The Hochschild cohomology of S(V )oG in turn captures important information about
its deformations. In positive characteristic, the situation is more complicated than
over fields of characteristic 0, as the group algebra kG itself is not always semisimple.
There are a number of recent papers on the representation theory of such deformations
in positive characteristic; see, e.g., [1, 2, 3, 6, 17]. In this short note, we show how
some prior results on PBW deformations, in positive characteristic particularly, can
be understood more conceptually in terms of Alexander-Whitney and Eilenberg-Zilber
maps twisted by group actions.

We begin in Section 2 by recalling a construction of twisted product resolutions for
skew group algebras. In Section 3, we define the group-twisted Alexander-Whitney
and Eilenberg-Zilber maps informing deformation theory. We prove in Section 4 our
main Theorem 4.1 and show that composing with these maps provides a way to embed
convenient resolutions into bar resolutions as direct summand subcomplexes, generaliz-
ing results from earlier papers. In Section 5, we explain how some previous results in
deformation theory follow from our main theorem in a more conceptual way.

Throughout, k will be a field of arbitrary characteristic, and ⊗ = ⊗k.
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2. Resolutions for skew group algebras

Consider a finite group G acting on a k-algebra S by automorphisms. The resulting
skew group algebra S oG is the free S-module with basis G and multiplication

(sg) · (s′g′) = s(gs′) gg′ for all s, s′ ∈ S and g, g′ ∈ G

where gs′ denotes the action of g on s′. We recall a construction from [21, 23].

The twisted product resolution. Consider projective resolutions

(i) C q : . . .→ C2 → C1 → C0 → 0 of kG as a kG-bimodule, and

(ii) D q : . . .→ D2 → D1 → D0 → 0 of S as an S-bimodule.

We take C q to be G-graded, with group action compatible with the grading, that is,

g1
(
(Ci)g2

)
g3 = (Ci)g1g2g3 for all g1, g2, g3 ∈ G and all degrees i ,

and choose a resolution D q upon which G acts: Each Di should be a left kG-module
with g · (s ·d) = gs · (g ·d) for g in G, s in S, and d in D and with differentials kG-module
homomorphisms. Then D q is said to be compatible with the twisting map given by the
group action (see [23, Definition 2.17]). For example, these conditions all hold when C q
is the bar resolution or reduced bar resolution of kG and D q is the Koszul resolution of
a Koszul algebra S with action of G by automorphisms (see [23, Prop 2.20(ii)]).

We combine the above resolutions of kG and S to construct a resolution of S o G:
The twisted product resolution C ⊗G D of the algebra S o G is given as a complex of
vector spaces by the total complex of the double complex C q⊗D q :
(2.1) (C ⊗G D)n =

⊕
i+j=n

Ci ⊗Dj .

We imbue C ⊗G D with an (S o G)-bimodule structure on its components by defining
an action of S on the left and an action of kG on the right given by

s · (c⊗ d) · h = ch⊗ (gh)−1
s · h−1

d for g, h ∈ G, c ∈ Cg, d ∈ D, s ∈ S .

Then the complex C⊗GD, augmented by SoG, is indeed an exact sequence of (SoG)-
bimodules (see [23] or [20, §4]). It is a projective resolution of SoG when each (C⊗GD)n
is projective as a (S oG)-bimodule. This is the case, for example, when D is a Koszul
resolution of a Koszul algebra and C is the bar resolution of kG. In this case, each Dj

is a free S-module and each Ci is a free kG-module, and it can be shown directly that
Ci ⊗Dj is a free (S oG)-bimodule (with basis given by tensoring the basis elements of
Ci with those of Dj).

Reduced bar resolutions. We now consider a special case of the twisted product
resolution. Fix C = BG and D = BS , the reduced bar resolutions for G and S,
respectively:

(BG)n = kG⊗ kG⊗n ⊗ kG and (BS)n = S ⊗ S ⊗n ⊗ S

where kG = kG/(k · 1G) as a vector space, and similarly S = S/(k · 1S). We fix some
choice of section S ↪→ S and choose the embedding G − {1} ↪→ G to define a section
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kG ↪→ kG. There is a twisted product resolution (see [23, Proposition 2.20(ii) and
Corollary 3.12]) of S oG formed by these reduced bar complexes:

C ⊗G D = BG ⊗G BS .

It is given as a vector space in degree n by

(BG ⊗G BS)n =
n⊕
`=0

kG⊗ (kG)⊗(n−`) ⊗ kG⊗ S ⊗ S ` ⊗ S.

We compare this twisted product resolution of S oG with its reduced bar resolution
BSoG. Here, (S oG) = (S oG)/(k · 1SoG) with 1SoG = 1S · 1G and

(BSoG)n = (S oG)⊗ (S oG)
n ⊗ (S oG) .

3. Group-twisted Alexander-Whitney and Eilenberg-Zilber maps

We now define analogs of the Alexander-Whitney and Eilenberg-Zilber maps in the
environment of group actions. (Compare with [12, 13] for the case of tensor products of
algebras and [11] for twisted tensor products defined by bicharacters on grading groups.)

Recall that the traditional Alexander-Whitney and Eilenberg-Zilber maps convert
between the reduced bar resolution of a tensor product and the tensor product of the
individual reduced bar resolutions:

AWn : (BS⊗kG)n −→ (BG ⊗ BS)n,

EZn : (BS ⊗ BG)n −→ (BS⊗kG)n.

We define analogs of these maps for the skew group algebra SoG. This algebra is S⊗kG
as a vector space but with multiplication given by a twisting map kG ⊗ S → S ⊗ kG.
Consequently, we switch the order of kG and S when taking the tensor products of the
individual bar resolutions. We define maps, for each n,

AWG
n : (BSoG)n −→ (BG ⊗G BS)n,

EZGn : (BG ⊗G BS)n −→ (BSoG)n.

For ease of notation, we write elements of kG and S just as if they were in kG and S,
respectively, invoking our choices of section maps, and no confusion should arise.

Group-twisted Alexander-Whitney map. Define the first map by

AWG
n (1⊗ s1g1 ⊗ · · · ⊗ sngn ⊗ 1)

=
n∑
`=0

(−1)`(n−`)(g1 · · · g`)⊗ g`+1 ⊗ · · · ⊗ gn ⊗ 1⊗

1⊗ (g1···gn)−1
s1 ⊗ · · · ⊗ (g`···gn)−1

s` ⊗ (g`+1···gn)−1
(s`+1 · · · sn)

for g1, . . . , gn in G and s1, . . . , sn in S. Here, any tensor component in k ·1G (respectively,
k ·1S or k ·1SoG) is understood to be zero as an element of kG (respectively, S or S oG).
For each n, this defines the group-twisted Alexander-Whitney map AWG

n as an (S oG)-
bimodule homomorphism, since it is defined on a free basis.
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Group-twisted Eilenberg-Zilber map. We shuffle the elements of G with the ele-
ments of S to define the second map. Let Sn−`,` be the set of (n− `, `)-shuffles in the
symmetric group Sn, i.e., permutations σ of 1, . . . , n with

σ(1) < σ(2) < · · · < σ(n− `) and σ(n− `+ 1) < σ(n− `+ 2) < · · · < σ(n).

We also count the number of inversions of a permutation σ in Sn: Set

|σ| = |{(i, j) | 1 ≤ i < j ≤ n and σ(i) > σ(j)}| .

For each shuffle σ−1 ∈ Sn−`,` and tuple (g1, . . . , gn−`, s1, . . . , s`) = (x1, . . . , xn), define

Fσ(x1 ⊗ · · · ⊗ xn) = hσ(1)(xσ(1))⊗ · · · ⊗ hσ(n)(xσ(n))

where hi = 1G for 1 ≤ i ≤ n− ` (so hixi = xi for xi ∈ G) and

hi =
∏

σ−1(i)+1≤ j≤n
σ(j)≤n−`

gσ(j) in G for n− `+ 1 ≤ i ≤ n (when xi ∈ S).

We define the group-twisted Eilenberg-Zilber map by

EZGn (1⊗ g1 ⊗ · · · ⊗ gn−` ⊗ 1⊗ 1⊗ s1 ⊗ · · · ⊗ s` ⊗ 1)

=
∑

σ−1∈Sn−`,`

(−1)|σ| ⊗ Fσ(g1 ⊗ · · · ⊗ gn−` ⊗ s1 ⊗ · · · ⊗ s`)⊗ 1

for all g1, . . . , gn−` in G − {1} and s1, . . . , s` in S. For each n, this defines EZGn as an
(S oG)-bimodule homomorphism, since it is defined on a free basis.

Group-twisted maps are chain maps. These group-twisted maps convert between
two resolutions of the algebra SoG: the reduced bar resolution BSoG on one hand and
the twisted product resolution BG ⊗G BS on the other hand.

Lemma 3.1. The group-twisted maps AWG
n and EZGn are chain maps:

(BSoG)n+1
dn+1 //

AWG

��

(BSoG)n

AWG

��
(BG ⊗G BS)n+1

dn+1 //

EZG

OO

(BG ⊗G BS)n

EZG

OO

Proof. A calculation shows that AWG is a chain map just as in the case of the traditional
Alexander-Whitney map for the tensor product of algebras (see, e.g., [16, (X.7.2)]). For
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example, in degree 2,

d2 AWG
2 (1⊗ s1g1 ⊗ s2g2 ⊗ 1)

= d2((1⊗ g1 ⊗ g2 ⊗ 1)⊗ (1⊗ g−1
1 g−1

2 s1
g−1
2 s2)− (g1 ⊗ g2 ⊗ 1)⊗ (1⊗ g−1

1 g−1
2 s1 ⊗ g−1

2 s2)

+ (g1g2 ⊗ 1)⊗ (1⊗ g−1
1 g−1

2 s1 ⊗ g−1
2 s2 ⊗ 1))

= (g1 ⊗ g2 ⊗ 1)⊗ (1⊗ g−1
1 g−1

2 s1
g−1
2 s2)− (1⊗ g1g2 ⊗ 1)⊗ (1⊗ g−1

1 g−1
2 s1

g−1
2 s2)

+ (1⊗ g1 ⊗ g2)⊗ (1⊗ g−1
1 g−1

2 s1
g−1
2 s2)− (g1g2 ⊗ 1)⊗ (1⊗ g−1

1 g−1
2 s1 ⊗ g−1

2 s2)

+ (g1 ⊗ g2)⊗ (1⊗ g−1
1 g−1

2 s1 ⊗ g−1
2 s2) + (g1 ⊗ g2 ⊗ 1)⊗ (g

−1
1 g−1

2 s1 ⊗ g−1
2 s2)

− (g1 ⊗ g2 ⊗ 1)⊗ (1⊗ g−1
1 g−1

2 s1
g−1
2 s2) + (g1g2 ⊗ 1)⊗ (g

−1
1 g−1

2 s1 ⊗ g−1
2 s2 ⊗ 1)

− (g1g2 ⊗ 1)⊗ (1⊗ g−1
1 g−1

2 s1
g−1
2 s2 ⊗ 1) + (g1g2 ⊗ 1)⊗ (1⊗ g−1

2 g−1
2 s1 ⊗ g−1

2 s2),

whereas

AWG
1 d2(1⊗ s1g1 ⊗ s2g2 ⊗ 1)

= AW1(s1g1 ⊗ s2g2 ⊗ 1− 1⊗ s1g1s2g1g2 ⊗ 1 + 1⊗ s1g1 ⊗ s2g2)

= s1g1((1⊗ g2 ⊗ 1)⊗ (1⊗ g−1
2 s2) + (g2 ⊗ 1)⊗ (1⊗ g−1

2 s2 ⊗ 1))

− (1⊗ g1g2 ⊗ 1)⊗ (1⊗ g−1
1 g−1

2 s1
g−1
2 s2)− (g1g2 ⊗ 1)⊗ (1⊗ g−1

1 g−1
2 s1

g−1
2 s2 ⊗ 1)

+ ((1⊗ g1 ⊗ 1)⊗ (1⊗ g−1
1 s1) + (g1 ⊗ 1)⊗ (1⊗ g−1

1 s1 ⊗ 1))s2g2

= (g1 ⊗ g2 ⊗ 1)⊗ (g
−1
1 g−1

2 s1 ⊗ g−1
2 s2) + (g1g2 ⊗ 1)⊗ (g

−1
1 g−1

2 s1 ⊗ g−1
2 s2 ⊗ 1)

− (1⊗ g1g2 ⊗ 1)⊗ (1⊗ g−1
1 g−1

2 s1
g−1
2 s2)− (g1g2 ⊗ 1)⊗ (1⊗ g−1

1 g−1
2 s1

g−1
2 s2 ⊗ 1)

+ (1⊗ g1 ⊗ g2)⊗ (1⊗ g−1
1 g−1

2 s1
g−1
2 s2) + (g1 ⊗ g2)⊗ (1⊗ g−1

1 g−1
2 s1 ⊗ g−1

2 s2),

and we see that these two expressions are equal after some cancellations. Similarly, to
show EZG is a chain map, we follow the proof that the classical Eilenberg-Zilber map
EZ is a chain map but include the group action. (See, e.g., [16, (VIII.8.9)] and [13].) �

Next we see that the maps AWG, EZG provide a splitting of the reduced bar resolution
of S oG, with a copy of the resolution BG ⊗G BS as a direct summand.

Lemma 3.2. AWG EZG is the identity map in each degree.

Proof. If the action of G is trivial, we have the standard Alexander-Whitney and
Eilenberg-Zilber maps, and AW1 EZ1 is known to be the identity map [13, Remark
3.2]. One can verify that AWG EZG is the identity map for nontrivial group actions
as well, via a straightforward but tedious calculation, keeping careful track of group
actions. For example, in degree 2, for all g in G and s in S,

AWG
2 EZG2 ((1⊗ g ⊗ 1)⊗ (1⊗ s⊗ 1)) = AWG

2 (1⊗ g ⊗ s⊗ 1− 1⊗ gs⊗ g ⊗ 1)

= (1⊗ g ⊗ 1)⊗ (1⊗ s⊗ 1).

Note that many terms in the image of AWG
2 are 0 since we are working with the reduced

(instead of unreduced) bar resolution. �
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4. Conversion between resolutions

In this section, we show that the group-twisted Alexander-Whitney and Eilenberg-
Zilber maps provide a way to convert between the reduced bar resolution for a skew group
algebra SoG and a choice of twisted product resolution for SoG, which generally can
be much smaller. Compare to [22, Lemma 4.4] for Koszul algebras; our result here is
stated for more general algebras S, and we provide a proof based on the explicit chain
maps AWG and EZG defined above. We will see in the next section that the maps AWG

and EZG have deformation-theoretic consequences.
Again, consider compatible projective resolutions

(i) C q : . . .→ C2 → C1 → C0 → 0 of kG as a kG-bimodule, and

(ii) D q : . . .→ D2 → D1 → D0 → 0 of S as an S-bimodule

as in Section 2 and their twisted product resolution C ⊗G D. We combine the group-
twisted Alexander-Whitney and Eilenberg-Zilber maps with chain maps converting be-
tween C, D and the reduced bar resolutions BG, BS , respectively, to construct a chain
map splitting

C ⊗G D // BSoG .
xx

We take the setting when chain maps

ιG : C → BG, πG : BG → C, ιS : D → BS , πS : BS → D

are given for which ιD, πD are kG-module homomorphisms and πGιG and πSιS are
identity maps in each degree:

(BG)n
dn+1 //

πG

��

(BG)n+1

πG

��
Cn+1

dn+1 //

ιG

OO

Cn

ιG

OO
(BS)n

dn+1 //

πS

��

(BS)n+1

πS

��
Dn+1

dn+1 //

ιS

OO

Dn.

ιS

OO

For example, if S = S(V ) is a symmetric algebra on a finite dimensional vector space
V with an action of G by automorphisms, and D is the Koszul resolution of S, maps
ιS , πS are constructed explicitly in [19, (2.6) and (4.2)], and the hypotheses of the next
theorem hold.

Theorem 4.1. Let G be a finite group acting on a k-algebra S by automorphisms. Let
BSoG be the reduced bar resolution for SoG. Let C⊗GD be a twisted product resolution
for S oG obtaining by twisting together a resolution C q of kG and a resolution D q of S
as above. There exist chain maps

ι : (C ⊗G D) q→ (BSoG) q and π : (BSoG) q→ (C ⊗G D) q
for which πnιn : (C ⊗GD)n → (C ⊗GD)n is the identity map for all n. If S is a graded
algebra and G consists of elements of degree 0, then the chain maps ι, π are graded maps
provided ιS and πS are graded maps.
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Proof. Define compositions

(4.2) ι = EZG(ιG ⊗ ιS) and π = (πG ⊗ πS) AWG,

which can be visualized via a diagram:

(BSoG)n+1
//

AWG

��

(BSoG)n

AWG

��
π

��

(BG ⊗G BS)n+1
//

EZG

OO

πG⊗πS

��

(BG ⊗G BS)n

EZG

OO

πG⊗πS

��

ι

BB

(C ⊗G D)n+1
//

ιG⊗ ιS

OO

(C ⊗G D)n

ιG⊗ ιS

OO

By Lemmas 3.1 and 3.2 and the hypotheses on ιG, ιS , πG, πS , the composition πι is 1. �

5. Applications to deformation theory

We now consider some applications of Theorem 4.1. We used Hochschild cohomology
to analyze PBW deformations of S o G in [21] and [22], particularly in the case that
S = S(V ) is a symmetric algebra. Our Theorem 4.1 generalizes both [21, Lemma 7.3]
and [22, Lemma 4.4], which provide an explicit connection between Hochschild cocycles
and PBW deformations. We explain here how Theorem 4.1 gives a unified proof of
this connection using the group-twisted Alexander-Whitney and Eilenberg-Zilber maps.
This approach is more elegant than the somewhat ad hoc proofs given in [21, 22]. It
also more easily applies to other settings. We emphasize that we did not assume S is
Koszul in Theorem 4.1 in the last section, although S = S(V ) is a Koszul algebra here.

Let V be a finite dimensional kG-module and S = S(V ), the symmetric algebra on
the underlying vector space V . Consider some linear parameter functions

κ : V ⊗ V → kG and λ : kG⊗ V → kG

with κ alternating. We view κ as a function on the exterior power
∧2 V .

Let Hλ,κ be the associative k-algebra generated by a basis of V and the group algebra
kG with relations given by those of kG together with

vw − wv = κ(v ∧ w) and gv − gvg = λ(g ⊗ v) for v, w ∈ V, g ∈ G.

Then Hλ,κ is a filtered algebra with deg(v) = 1 and deg(g) = 0 for all v in V and g in
G. We call Hλ,κ a PBW deformation of S(V ) o G if grHλ,κ

∼= S(V ) o G, that is, the
associated graded algebra of Hλ,κ is isomorphic to the skew group algebra.

Over fields k of characteristic 0, the PBW deformations Hλ,κ with κ ≡ 0 include the
affine graded Hecke algebras defined by Lusztig [14, 15]; those with λ ≡ 0 include the
symplectic reflection algebras and Drinfeld Hecke algebras (see [8, 10, 18]). Note that
over fields of characteristic 0 (or more generally coprime to the group order |G|), every
PBW algebra of the form Hλ,0 is isomorphic to one of the form H0,κ, but this fact does
not hold in positive characteristic (see [21, Theorem 4.1, Example 5.1]).
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The PBW property imposes conditions on κ, λ, as given in the following theorem,
which is [21, Theorem 3.1]. Observe that when λ is zero, all but conditions (2) and (4)
in the theorem are trivial.

Theorem 5.1. Let k be a field of arbitrary characteristic. The algebra Hλ,κ is a PBW
deformation of S(V ) o G if and only if the following conditions hold for all g, h in G
and u, v, w in V .

(1) λ(gh, v) = λ(g, hv)h+ gλ(h, v) in kG.

(2) κ( gu, gv)g − gκ(u, v) = λ
(
λ(g, v), u

)
− λ
(
λ(g, u), v

)
in kG.

(3) λh(g, v)( hu− gu) = λh(g, u)( hv − gv) in V .

(4) κg(u, v)(gw − w) + κg(v, w)(gu− u) + κg(w, u)(gv − v) = 0 in V .

(5) λ
(
κ(u, v), w

)
+ λ
(
κ(v, w), u

)
+ λ

(
κ(w, u), v

)
= 0 in kG.

The five conditions in Theorem 5.1 may not seem intuitive at first glance, and the proof
given in [21] indeed uses the Diamond Lemma (see [5] and [4]). Hochschild cohomology
gives a natural interpretation for the five conditions in terms of Gerstenhaber brackets
and cocycles, as explained in [21, Section 8]. There, we considered a chain map from a
twisted product resolution X q to the bar resolution,

φ q : X q−→ BSoG,

where X q = C⊗GD is defined as in (2.1) for C the bar resolution of kG and D the Koszul
resolution of S. We used this chain map to translate the five conditions of Theorem 5.1
into provisions more natural in the architecture of cohomology. But the chain map φ q
was constructed there in an improvised and utilitarian way. We now explain how to use
Theorem 4.1 instead to give a direct proof of [21, Theorem 8.3]:

Theorem 5.2. Let k be a field of arbitrary characteristic. The algebra Hλ,κ exhibits
the PBW property if and only if

• d∗(λ) = 0,
• [λ, λ] = 2d∗(κ), and
• [λ, κ] = 0

as Hochschild cochains, where λ and κ are identified with cochains on the resolution X q.
Proof. Let KoszS(V ) be the Koszul resolution of the polynomial ring S(V ) and set

S = S(V ), D = KoszS(V ), C = BkG, and X = C ⊗G D .

We take the standard embedding ιS = KoszS ↪→ BS and set ιC = 1, the identity map
on BkG. Then Theorem 4.1 implies existence of maps

ι : (C ⊗G D) q→ (BSoG) q and π : (BSoG) q→ (C ⊗G D) q
for which πι is the identity map in each degree. The map φ q constructed in [21, Lemma
7.3] is essentially our map ι: There, C was the unreduced bar resolution of kG, whereas
here we use the reduced bar resolution instead so that AWG EZG = 1 in general, avoiding
the need for [21, Lemma 7.3].
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We identify the parameter λ of the algebra Hλ,κ with a cochain in

Hom (SoG)e(X1,1, S oG),

in the following way: Since λ factors through the quotient kG⊗ V → kG⊗ V , we may
view λ as a function X1,1 → kG; composing with the chain map π from Theorem 4.1

gives a cochain µ1 = π ⊗ λ in Hom (SoG)e(BSoG, S oG) for which

µ1(1⊗ g ⊗ v ⊗ 1)− µ1(1⊗ gv ⊗ g ⊗ 1) = λ(g ⊗ v) for g ∈ G, v ∈ V.

Here, one recycles part of the calculation from the proof of Lemma 3.2. Note that
(S oG)e denotes the enveloping algebra (S oG)⊗ (S oG)op.

Similarly, we identify κ with a cochain µ2 in Hom (SoG)e(X0,2, S oG) by composing

again with π; specifically, µ2 in Hom (SoG)e(BSoG, S oG) is the cochain for which

κ(v ∧ w) = µ2(1⊗ v ⊗ w ⊗ 1)− µ2(1⊗ w ⊗ v ⊗ 1) for v, w ∈ V.

Deformation theory gives Hochschild conditions necessary for a cochain on the bar
resolution of an algebra to define a deformation of that algebra (see [9]). We apply
these conditions specifically to the cochains µ1, µ2 and then translate via ι to conditions
on λ, κ. We find that Conditions (1) and (3) of Theorem 5.1 hold exactly when λ is a
cocycle as evaluated on X2,1 and on X1,2, i.e., d∗(λ) = 0. Conditions (2) and (4) hold
exactly when the Gerstenhaber bracket [λ, λ] coincides with 2d∗(κ) as evaluated on X1,2

and on X0,3. Condition (5) holds exactly when the Gerstenhaber bracket [λ, κ] vanishes.
Details are in the proof of [21, Theorem 8.3]. �

Remark 5.3. While full details of the proof of Theorem 5.2 are in [21], we emphasize
that our contribution here is to show that the needed chain maps arise automatically
from group-twisted Alexander-Whitney and Eilenberg-Zilber maps. In this way, these
maps provide a general method for converting from Diamond Lemma conditions to
homological conditions, giving a more unified and less ad hoc approach toward studying
deformations. We expect that this approach will lend itself to interesting generalizations.

Remark 5.4. Similarly, in [22], we consider the case when S is a quadratic algebra, and
especially the case when S is Koszul. Again, we used an explicit chain map established
with improvised methods (see [22, Lemmas 4.4 and 4.6]) to convert between resolutions
and study explicit conditions giving PBW deformations of S o G. Indeed, the proof
of [22, Theorem 2.5] relies on explicit information provided by chain maps. Here again,
chain maps may be taken from Theorem 4.1 instead to give a more conceptual view of
the deformation-theoretic results in [22].
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