1. Two players are each dealt seven cards from a deck of 52 . What is the probability that each player gets exactly two aces?
2. A box contains two coins. One is fair, the other lands heads $2 / 3$ of the time. A coin is picked at random from the box and tossed 5 times. If 4 of the tosses are heads, what is the (conditional) probability that the fair coin was chosen?
3. Let X be a random variable with density

$$
f(x)=3 x^{-4}, \quad x \geq 1
$$

Find the mean μ, the median m, and the standard deviation σ of X, and verify that $|\mu-m| \leq \sigma$.
4. Suppose IQ scores in a large population have a mean of 100 .
a) Assume IQ scores are nonnegative. Without making any further assumptions about the distribution of the scores, find an upper bound on the percentage of scores exceeding 130 .
b) Find a better upper bound for the percentage in part (a), if it also known that the SD is 10 .
c) Estimate the percentage in part (a) under the assumption that the distribution of IQ scores is normal with mean 100 and SD 10.
5. Let X and Y be random variables with joint density

$$
f(x, y)=6 y, \quad 0 \leq x \leq 1, \quad 0 \leq y \leq 1-x
$$

a) Find the marginal densities of X and Y. Specify where the expressions are valid.
b) Find the conditional density of Y given $X=x$. Specify where the expression is valid.
c) Find $E(Y \mid X=1 / 2)$.
6. Let A, B and C be events in some probability space with $P(A)=1 / 6, P(B)=1 / 4$ and $P(C)=1 / 3$, and let N be the number of events from among A, B and C that occur. (For instance, if A and B happen but C does not happen, then $N=2$.)
a) Find $E(N)$. Or is this impossible without more information?
b) Assume A, B and C are independent. Find $\operatorname{Var}(N)$.
c) Assume instead that $A \subset B \subset C$. Find $\operatorname{Var}(N)$.
7. A freight train carries containers for 20 different customers. Each customer independently supplies a random number of containers that is Poisson distributed with parameter $\mu=4$. Let N be the total number of containers on the train.
a) State the distribution of N.
b) Find $E(N)$ and $\operatorname{Var}(N)$.
c) Use the normal approximation to find the probability that the train carries more than 100 containers.
8. An ambulance station, 30 miles from one end of a $100-\mathrm{mile}$ road and 70 miles from the other end, services accidents along the whole road. Suppose accidents occur with a uniform distribution along the road, and the ambulance can travel at 60 miles per hour. Let T be the time the ambulance needs to get to the accident, in minutes.
a) What is the range of T ?
b) Find the c.d.f. of T. (Hint: position the ambulance station at the origin, and the road along the x-axis. Something has a uniform distribution, but it's not T !)
9. The number of misprints in a document has a Poisson distribution with mean 3. A proofreader finds any given mistake with probability 0.9 , independently of the others. Find, to four decimal places, the chance that the proofreader finds at least 2 mistakes.
10. Let (X, Y) be a point chosen at random in the unit disk $x^{2}+y^{2} \leq 1$, and let $Z=X^{2}+Y^{2}$. Find the density function of Z.
11. In a sequence of independent tosses of a fair coin, let X denote the number of heads in the first 100 tosses, and Y the number of heads in the first 500 tosses. Compute Corr (X, Y).
12. Let X and Y have joint density

$$
f(x, y)= \begin{cases}\lambda^{2} e^{-\lambda x}, & 0<y<x \\ 0, & \text { otherwise }\end{cases}
$$

where $\lambda>0$. Find $\operatorname{Cov}(X, Y)$.

