1. a) (10 pts.) Construct a truth table for the statement

$$
[p \Rightarrow(q \wedge \sim q)] \Leftrightarrow \sim p
$$

b) (2 pts.) Based on your truth table, is the statement in (a) a tautology?
2. (9 pts.) Write the negation of the following statement such that no negation symbol (\sim) appears in front of quantifiers or logical connectives.

$$
\forall \varepsilon>0, \exists \delta>0 \ni \forall x \text { and } \forall y,[|x-y|<\delta \Rightarrow|f(x)-f(y)|<\varepsilon]
$$

3. (3 pts. each) Indicate whether each statement is true, false, or not a statement at all. (No explanations needed.)
a) 3 is prime and 7 is odd.
b) 123456789 is a very big number.
c) π is rational if and only if 17 is divisible by 4 .
d) If $5<7$ implies that $8>10$, then $5 / 2$ is an integer.
4. (4 pts. each) Determine whether each statement about the real numbers is true or false. Justify each answer carefully.
a) $\exists x \ni\left[x^{2}=-2 \Rightarrow x^{2}=5\right]$
b) $\exists x \ni \forall y, x+y=0$
c) $\forall x, \exists y$ and $\exists z \ni x y=z^{2}+1$
5. (3 pts. each) Find the following unions and/or intersections:
a) $\bigcap_{n=1}^{\infty}\left[\frac{1}{n}, 2-\frac{1}{n}\right]$
b) $\bigcup_{n \in \mathbb{Z}}(n, n+1.001)$
c) $\bigcap_{x \in[1,2]}(x, x+5)$
d) $\bigcup_{x \in[1,2]}(x, x+5)$
6. (3 pts. each) For each set below, find its interior, boundary and closure:
a) $S=(1,4)$
b) $S=\mathbb{R}$
c) $S=\{1,2,3\} \cup\{x \in \mathbb{R}| | x-3 \mid<1\}$
d) $S=\left\{\left.\frac{1}{n^{2}} \right\rvert\, n \in \mathbb{N}\right\}$
7. Recall that $A \backslash B=\{x \mid x \in A$ and $x \notin B\}$.
a) (3 pts.) Write the negation of the condition of membership in $A \backslash B$ (the bit behind " $x \mid$ "). In other words, complete the following equivalence:

$$
x \notin A \backslash B \quad \Longleftrightarrow
$$

b) (11 pts.) Let A and B be subsets of \mathbb{R}. Prove that

$$
A \backslash(A \backslash B)=A \cap B
$$

by proving that each side is a subset of the other. (No credit for just drawing a Venn diagram!!!)
8. a) (3 pts.) Write what it means, by definition, for x to be an interior point of a set S.
b) (10 pts.) Let S and T be subsets of \mathbb{R}. Prove that

$$
\operatorname{int}(S) \cup \operatorname{int}(T) \subseteq \operatorname{int}(S \cup T)
$$

c) (4 pts.) Give an example to show that the statement in (b) becomes false if " \subseteq " is replaced with " $=$ ". Justify your answer!
9. Extra credit!! (8 pts.)

Let S and T be subsets of \mathbb{R}. Prove that

$$
\operatorname{bd}(S \cup T) \subseteq \operatorname{bd}(S) \cup \operatorname{bd}(T)
$$

Show ALL of the details!

