## Math 3000, Homework assignment \#1

- Read section 2.1.
- Turn in all of the following problems:

Problem 1. Write the following neighborhoods as open intervals:
a) $N(0 ; 1 / 2)$
b) $N(0.399 ; 0.001)$

Problem 2. Write the following intervals as neighborhoods. Example: $(1,3)=N(2 ; 1)$.
a) $(0,1)$
b) $(2,2.2)$
c) $(-1,-0.5)$
d) $(-0.001,0.004)$

Problem 3. Write the following both in the form $N(x ; \varepsilon)$ for suitable $x$ and $\varepsilon>0$, and as an open interval.
a) $\{y:|y-2|<1 / 3\}$
b) $\{y:|y+\pi|<\pi / 4\}$

Problem 4. For each set below, state which points are interior points and which points are boundary points of the set. (Remember: a boundary point of a set may or may not be a point in the set itself!)
a) $[1,5]$
b) $(-2015,-2014)$
c) $\mathbb{R}$ (the set of all real numbers)
d) $\mathbb{N}$ (the set of all natural numbers: $1,2,3, \ldots$ )
e) $\{0\}$ (the set containing only the number 0 )
f) $\left\{1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \ldots\right\}$ (the set of all reciprocals of squares)

Problem 5. State whether each statement is true or false. (No explanation required)
a) An interior point of $S$ must be a point in $S$.
b) A boundary point of $S$ must be a point in $S$.
c) A boundary point of $S$ is never a point in $S$.
d) Each point in $S$ is either an interior point or a boundary point of $S$.
e) Each point that is not in $S$ is a boundary point of $S$.
f) In some cases, the same point can be both an interior point and a boundary point of $S$.

